Performance and energy optimization of concurrent pipelined applications

Anne Benoit, Paul Renaud-Goud and Yves Robert

Institut Universitaire de France

ROMA team, LIP École Normale Supérieure de Lyon, France

GT-ETIC: Groupe de travail consommation d'énergie dans les TIC, 21 Juin 2011

- Mapping concurrent pipelined applications onto distributed platforms: practical applications, but difficult problems
- Assess problem hardness ⇒ different mapping rules and platform characteristics
- Energy saving is becoming a crucial problem
- Several concurrent objective functions: period, latency, power
- • Multi-criteria approach: minimize power consumption
 while guaranteeing some performance
- Exhaustive complexity study
- Heuristics on most general (NP-complete) case

- Mapping concurrent pipelined applications onto distributed platforms: practical applications, but difficult problems
- Assess problem hardness ⇒ different mapping rules and platform characteristics
- Energy saving is becoming a crucial problem
- Several concurrent objective functions: period, latency, power
- → Multi-criteria approach: minimize power consumption while guaranteeing some performance
- Exhaustive complexity study
- Heuristics on most general (NP-complete) case

- Mapping concurrent pipelined applications onto distributed platforms: practical applications, but difficult problems
- Assess problem hardness ⇒ different mapping rules and platform characteristics
- Energy saving is becoming a crucial problem
- Several concurrent objective functions: period, latency, power
- → Multi-criteria approach: minimize power consumption while guaranteeing some performance
- Exhaustive complexity study
- Heuristics on most general (NP-complete) case

- Mapping concurrent pipelined applications onto distributed platforms: practical applications, but difficult problems
- Assess problem hardness ⇒ different mapping rules and platform characteristics
- Energy saving is becoming a crucial problem
- Several concurrent objective functions: period, latency, power
- → Multi-criteria approach: minimize power consumption while guaranteeing some performance
- Exhaustive complexity study
- Heuristics on most general (NP-complete) case

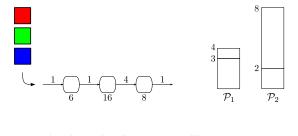
- Minimizing total energy consumed by processors: very important objective (economic and environmental reasons)
- M. P. Mills, The internet begins with coal, Environment and Climate News (1999)
- Algorithmic techniques:
 - Shut down idle processors
 - Dynamic speed scaling
 - The higher the speed, the higher the power consumption
 - Power = $f \times V^2$, and V (voltage) increases with f (frequency)
 - Speed s: $P(s) = s^{\alpha} + P_{static}$, with $2 \le \alpha \le 3$
- Problem: decide which processors to enroll, and at which speed to run them

- Minimizing total energy consumed by processors: very important objective (economic and environmental reasons)
- M. P. Mills, The internet begins with coal, Environment and Climate News (1999)
- Algorithmic techniques:
 - Shut down idle processors
 - Dynamic speed scaling
 - The higher the speed, the higher the power consumption
 - Power = $f \times V^2$, and V (voltage) increases with f (frequency)
 - Speed s: $P(s) = s^{\alpha} + P_{static}$, with $2 \le \alpha \le 3$
- Problem: decide which processors to enroll, and at which speed to run them

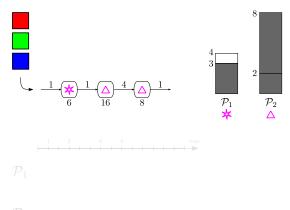
- Minimizing total energy consumed by processors: very important objective (economic and environmental reasons)
- M. P. Mills, The internet begins with coal, Environment and Climate News (1999)
- Algorithmic techniques:
 - Shut down idle processors
 - Dynamic speed scaling: processors can run at variable speed, e.g., Intel XScale, Intel Speed Step, AMD PowerNow
 - The higher the speed, the higher the power consumption
 - Power = $f \times V^2$, and V (voltage) increases with f (frequency)
 - Speed s: $P(s) = s^{\alpha} + P_{static}$, with $2 \le \alpha \le 3$
- Problem: decide which processors to enroll, and at which speed to run them

- Minimizing total energy consumed by processors: very important objective (economic and environmental reasons)
- M. P. Mills, The internet begins with coal, Environment and Climate News (1999)
- Algorithmic techniques:
 - Shut down idle processors
 - Dynamic speed scaling: processors can run at variable speed, e.g., Intel XScale, Intel Speed Step, AMD PowerNow
 - The higher the speed, the higher the power consumption
 - Power = $f \times V^2$, and V (voltage) increases with f (frequency)
 - Speed s: $P(s) = s^{\alpha} + P_{static}$, with $2 \le \alpha \le 3$
- Problem: decide which processors to enroll, and at which speed to run them

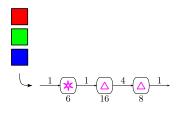
- Minimizing total energy consumed by processors: very important objective (economic and environmental reasons)
- M. P. Mills, The internet begins with coal, Environment and Climate News (1999)
- Algorithmic techniques:
 - Shut down idle processors
 - Dynamic speed scaling: processors can run at variable speed, e.g., Intel XScale, Intel Speed Step, AMD PowerNow
 - The higher the speed, the higher the power consumption
 - Power = $f \times V^2$, and V (voltage) increases with f (frequency)
 - Speed s: $P(s) = s^{\alpha} + P_{static}$, with $2 \le \alpha \le 3$
- Problem: decide which processors to enroll, and at which speed to run them

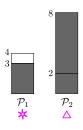


- P.
- P
 - Period: T = 3
 - Latency: L = 8



- \mathcal{P}_2
 - Period: T = 3
 - Latency: L=8



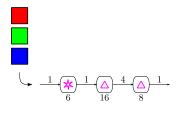


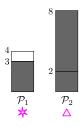
$$P = 3^3 + 8^3$$
$$= 539$$

P

P

- Period: T = 3
- Latency: L = 8



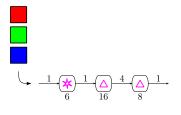


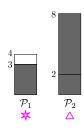
$$P = 3^3 + 8^3$$
$$= 539$$



$$\mathcal{P}_2$$

- Period: T = 3
- Latency: L = 8

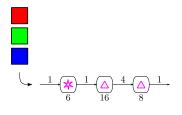


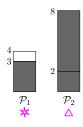


$$P = 3^3 + 8^3$$
$$= 539$$

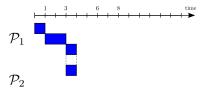
$$\mathcal{P}_2$$

- Period: T = 3
- Latency: L = 8

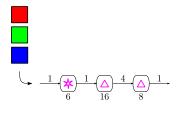


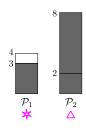


$$P = 3^3 + 8^3$$
$$= 539$$

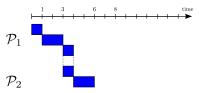


- Period: T = 3
- Latency: L=8

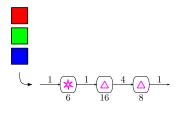


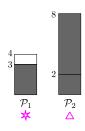


$$P = 3^3 + 8^3$$
$$= 539$$

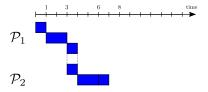


- Period: T = 3
- Latency: L = 8

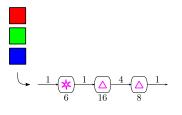


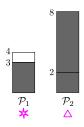


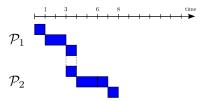
$$P = 3^3 + 8^3$$
$$= 539$$



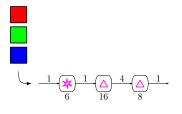
- Period: T = 3
- Latency: L = 8

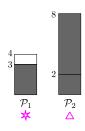




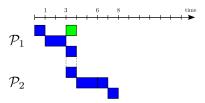


- Period: T = 3
- Latency: L = 8

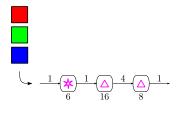


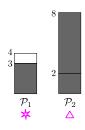


$$P = 3^3 + 8^3$$
$$= 539$$

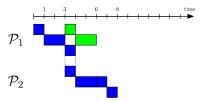


- Period: T = 3
- Latency: L = 8

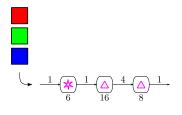


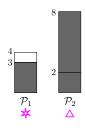


$$P = 3^3 + 8^3$$
$$= 539$$

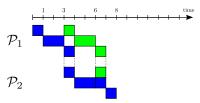


- Period: T = 3
- Latency: L = 8

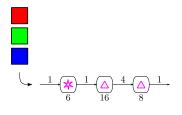


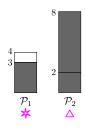


$$P = 3^3 + 8^3$$
$$= 539$$

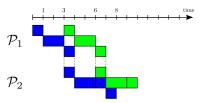


- Period: T = 3
- Latency: L = 8

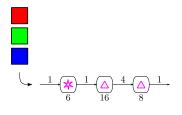


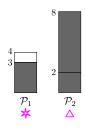


$$P = 3^3 + 8^3$$
$$= 539$$

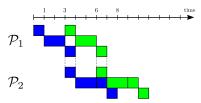


- Period: T = 3
- Latency: L = 8

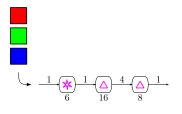


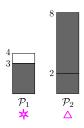


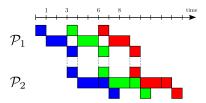
$$P = 3^3 + 8^3$$
$$= 539$$



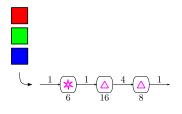
- Period: T = 3
- Latency: L = 8

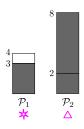




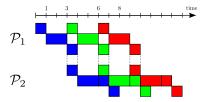


- Period: T = 3
- Latency: L = 8

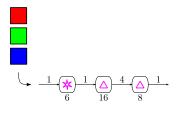


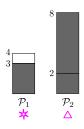


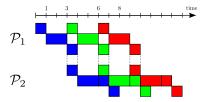
$$P = 3^3 + 8^3$$
$$= 539$$



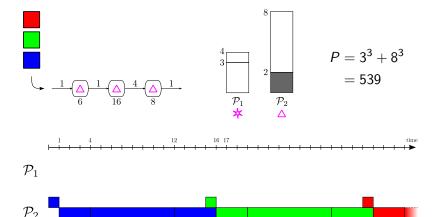
- Period: T=3
- Latency: L=8



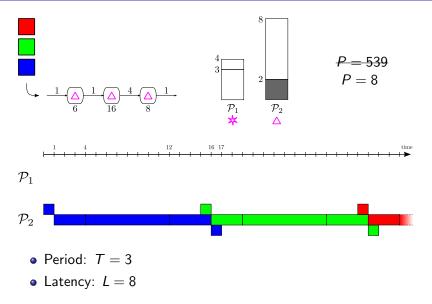


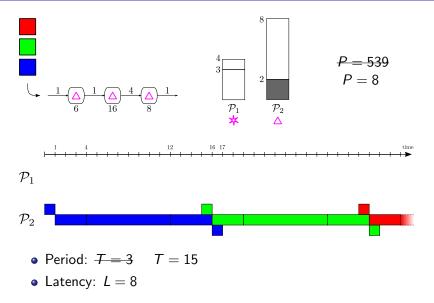


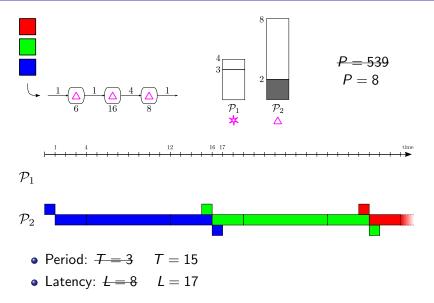
- Period: T=3
- Latency: L = 8



- Period: T = 3
- Latency: L = 8







Outline of the talk

- Tramework
 - Application and platform
 - Mapping rules
 - Metrics
- 2 Complexity results
 - Mono-criterion problems
 - Bi-criteria problems
 - Tri-criteria problems
 - With resource sharing
- 3 Experiments
 - Heuristics
 - Experiments
 - Summary
- 4 Conclusion

Outline of the talk

- Framework
 - Application and platform
 - Mapping rules
 - Metrics
- - Mono-criterion problems
 - Bi-criteria problems
 - Tri-criteria problems
 - With resource sharing
- - Heuristics
 - Experiments
 - Summary



Application model and execution platform

- Concurrent pipelined applications
 - w_a^i : weight of stage S_a^i (i^{th} stage of application a)
 - δ_a^i : size of outcoming data of \mathcal{S}_a^i
- Processors with multiple speeds (or modes): $\{s_{u,1}, \ldots, s_{u,m_u}\}$
- Platform fully interconnected;
- Three platform types:
 - Fully homogeneous, or speed homogeneous
 - Communication homogeneous, or speed heterogeneous
 - Fully heterogeneous

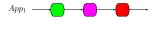
- Concurrent pipelined applications
 - w_a^i : weight of stage S_a^i (i^{th} stage of application a)
 - δ_{a}^{i} : size of outcoming data of \mathcal{S}_{a}^{i}
- Processors with multiple speeds (or modes): $\{s_{u,1}, \ldots, s_{u,m_u}\}$ Constant speed during the execution
- Platform fully interconnected; $b_{u,v}$: bandwidth between processors \mathcal{P}_u and \mathcal{P}_v ; overlap or non-overlap of communications and computations
- Three platform types:
 - Fully homogeneous, or speed homogeneous
 - Communication homogeneous, or speed heterogeneous
 - Fully heterogeneous

Concurrent pipelined applications

- w_a^i : weight of stage S_a^i (i^{th} stage of application a)
- δ_{a}^{i} : size of outcoming data of \mathcal{S}_{a}^{i}
- Processors with multiple speeds (or modes): $\{s_{u,1}, \ldots, s_{u,m_u}\}$ Constant speed during the execution
- Platform fully interconnected; $b_{u,v}$: bandwidth between processors \mathcal{P}_u and \mathcal{P}_v ; overlap or non-overlap of communications and computations
- Three platform types:
 - Fully homogeneous, or speed homogeneous
 - Communication homogeneous, or speed heterogeneous
 - Fully heterogeneous

Mapping rules

- Mapping with no processor sharing: relevant in practice (security rules)
 - One-to-one mapping



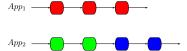
Interval mapping

 General mapping with resource sharing: better resource utilization

Mapping rules

- Mapping with no processor sharing: relevant in practice (security rules)
 - One-to-one mapping

Interval mapping



 General mapping with resource sharing: better resource utilization

Mapping rules

- Mapping with no processor sharing: relevant in practice (security rules)
 - One-to-one mapping

Interval mapping

 General mapping with resource sharing: better resource utilization

Interval mapping on a single application with no resource sharing: k intervals I_i of stages from S^{d_j} to S^{e_j}

 Period T of an application: minimum delay between the processing of two consecutive data sets

$$T^{(overlap)} = \max_{j \in \{1, \dots, k\}} \left(\max \left(\frac{\delta^{d_j - 1}}{b_{\mathsf{alloc}(d_j - 1), \mathsf{alloc}(d_j)}}, \frac{\sum_{i = d_j}^{c_j} w^i}{s_{\mathsf{alloc}(d_j)}}, \frac{\delta^{e_j}}{b_{\mathsf{alloc}(d_j), \mathsf{alloc}(e_j + 1)}} \right) \right)$$

 Latency L of an application: time, for a data set, to go through the whole pipeline

$$L = \frac{\delta^0}{b_{\mathrm{alloc}(0),\mathrm{alloc}(1)}} + \sum_{j=1}^m \left(\sum_{i=d_j}^{e_j} \frac{w^i}{s_{\mathrm{alloc}(d_j)}} + \frac{\delta^{e_j}}{b_{\mathrm{alloc}(d_j),\mathrm{alloc}(e_j+1)}} \right)$$

Power P of the platform: sum of power of processors

$$P = \sum_{\mathcal{P}_u} P(u), \quad P(u) = P_{dyn}(s_u) + P_{stat}(u), \quad P_{dyn}(s_u) = s_u^{\alpha}, \quad 2 \leq \alpha \leq 3$$

◆ロト ◆問 ▶ ◆ 差 ▶ ◆ 差 ▶ の 気 や の へ で

Interval mapping on a single application with no resource sharing: k intervals I_i of stages from S^{d_j} to S^{e_j}

• Period T of an application: minimum delay between the processing of two consecutive data sets

$$T^{(overlap)} = \max_{j \in \{1, \dots, k\}} \left(\max \left(\frac{\delta^{d_j - 1}}{b_{\mathsf{alloc}(d_j - 1), \mathsf{alloc}(d_j)}}, \frac{\sum_{i = d_j}^{e_j} w^i}{s_{\mathsf{alloc}(d_j)}}, \frac{\delta^{e_j}}{b_{\mathsf{alloc}(d_j), \mathsf{alloc}(e_j + 1)}} \right) \right)$$

• Latency L of an application: time, for a data set, to go

$$L = \frac{\delta^0}{b_{\mathrm{alloc}(0),\mathrm{alloc}(1)}} + \sum_{j=1}^m \left(\sum_{i=d_j}^{e_j} \frac{w^i}{s_{\mathrm{alloc}(d_j)}} + \frac{\delta^{e_j}}{b_{\mathrm{alloc}(d_j),\mathrm{alloc}(e_j+1)}} \right)$$

• Power P of the platform: sum of power of processors

$$P = \sum_{\mathcal{P}_u} P(u), \quad P(u) = P_{dyn}(s_u) + P_{stat}(u), \quad P_{dyn}(s_u) = s_u^{\alpha}, \quad 2 \leq \alpha \leq 3$$

Interval mapping on a single application with no resource sharing: k intervals I_i of stages from S^{d_j} to S^{e_j}

• Period T of an application: minimum delay between the processing of two consecutive data sets

$$T^{(overlap)} = \max_{j \in \{1, \dots, k\}} \left(\max \left(\frac{\delta^{d_j - 1}}{b_{\mathsf{alloc}(d_j - 1), \mathsf{alloc}(d_j)}}, \frac{\sum_{i = d_j}^{e_j} w^i}{s_{\mathsf{alloc}(d_j)}}, \frac{\delta^{e_j}}{b_{\mathsf{alloc}(d_j), \mathsf{alloc}(e_j + 1)}} \right) \right)$$

• Latency L of an application: time, for a data set, to go through the whole pipeline

$$L = \frac{\delta^0}{b_{\mathsf{alloc}(0),\mathsf{alloc}(1)}} + \sum_{j=1}^m \left(\sum_{i=d_j}^{e_j} \frac{\mathsf{w}^i}{\mathsf{s}_{\mathsf{alloc}(d_j)}} + \frac{\delta^{e_j}}{b_{\mathsf{alloc}(d_j),\mathsf{alloc}(e_j+1)}} \right)$$

• Power P of the platform: sum of power of processors

$$P = \sum_{\mathcal{P}_u} P(u), \quad P(u) = P_{dyn}(s_u) + P_{stat}(u), \quad P_{dyn}(s_u) = s_u^{\alpha}, \quad 2 \leq \alpha \leq 3$$

Interval mapping on a single application with no resource sharing: k intervals l_j of stages from S^{d_j} to S^{e_j}

 Period T of an application: minimum delay between the processing of two consecutive data sets

$$T^{(overlap)} = \max_{j \in \{1, \dots, k\}} \left(\max \left(\frac{\delta^{d_j - 1}}{b_{\mathsf{alloc}(d_j - 1), \mathsf{alloc}(d_j)}}, \frac{\sum_{i = d_j}^{e_j} w^i}{s_{\mathsf{alloc}(d_j)}}, \frac{\delta^{e_j}}{b_{\mathsf{alloc}(d_j), \mathsf{alloc}(e_j + 1)}} \right) \right)$$

 Latency L of an application: time, for a data set, to go through the whole pipeline

$$L = \frac{\delta^0}{b_{\mathsf{alloc}(0),\mathsf{alloc}(1)}} + \sum_{j=1}^m \left(\sum_{i=d_j}^{e_j} \frac{w^i}{\mathsf{s}_{\mathsf{alloc}(d_j)}} + \frac{\delta^{e_j}}{b_{\mathsf{alloc}(d_j),\mathsf{alloc}(e_j+1)}} \right)$$

Power P of the platform: sum of power of processors

$$P = \sum_{\mathcal{D}} P(u), \quad P(u) = P_{dyn}(s_u) + P_{stat}(u), \quad P_{dyn}(s_u) = s_u^{\alpha}, \quad 2 \leq \alpha \leq 3$$

With classical latency definition, NP-completeness of the execution scheduling, given a mapping with a period/latency objective

 \Rightarrow for general mappings, latency model of Özgüner: L=(2m-1)T, where m-1 is the number of processor changes, and T the period of the application

Period given \Rightarrow bound on number of processor changes

Given an application, we can check if the mapping is valid, given a bound on period and latency per application:

- For period, check that each processor can handle its load computation and meet some communication constraints
- For latency, check the number of processor changes

With classical latency definition, NP-completeness of the execution scheduling, given a mapping with a period/latency objective

⇒ for general mappings, latency model of Ozgüner: L = (2m-1)T, where m-1 is the number of processor changes, and T the period of the application

- For period, check that each processor can handle its load
- For latency, check the number of processor changes

With classical latency definition, NP-completeness of the execution scheduling, given a mapping with a period/latency objective

 \Rightarrow for general mappings, latency model of Ozgüner: L=(2m-1)T, where m-1 is the number of processor changes, and T the period of the application

Period given \Rightarrow bound on number of processor changes

Given an application, we can check if the mapping is valid, given a bound on period and latency per application:

- For period, check that each processor can handle its load computation and meet some communication constraints
- For latency, check the number of processor changes

With classical latency definition, NP-completeness of the execution scheduling, given a mapping with a period/latency objective

⇒ for general mappings, latency model of Ozgüner: L = (2m-1)T, where m-1 is the number of processor changes, and T the period of the application

$$L = 7 \times T$$

- For period, check that each processor can handle its load
- For latency, check the number of processor changes

With classical latency definition, NP-completeness of the execution scheduling, given a mapping with a period/latency objective

⇒ for general mappings, latency model of Ozgüner: L = (2m-1)T, where m-1 is the number of processor changes, and T the period of the application

$$L = 7 \times T$$

Period given ⇒ bound on number of processor changes

- For period, check that each processor can handle its load
- For latency, check the number of processor changes

With classical latency definition, NP-completeness of the execution scheduling, given a mapping with a period/latency objective

⇒ for general mappings, latency model of Ozgüner: L = (2m-1)T, where m-1 is the number of processor changes, and T the period of the application

$$L = 7 \times T$$

Period given ⇒ bound on number of processor changes

Given an application, we can check if the mapping is valid, given a bound on period and latency per application:

- For period, check that each processor can handle its load computation and meet some communication constraints
- For latency, check the number of processor changes

Optimization problems

- Minimizing one criterion:
 - Period or latency: minimize $\max_a W_a \times T_a$ or $\max_a W_a \times L_a$
 - Power: minimize $P = \sum_{u} P(u)$
- Fixing one criterion:
 - Fix the period or latency of each application
 - Fix a bound on total power consumption P
- Multi-criteria approach: minimizing one criterion, fixing the
- Energy criterion = power consumption, i.e., energy per time

Optimization problems

- Minimizing one criterion:
 - Period or latency: minimize $\max_a W_a \times T_a$ or $\max_a W_a \times L_a$
 - Power: minimize $P = \sum_{u} P(u)$
- Fixing one criterion:
 - Fix the period or latency of each application \rightarrow fix an array of periods or latencies
 - Fix a bound on total power consumption P
- Multi-criteria approach: minimizing one criterion, fixing the
- Energy criterion = power consumption, i.e., energy per time

Optimization problems

- Minimizing one criterion:
 - Period or latency: minimize $\max_a W_a \times T_a$ or $\max_a W_a \times L_a$
 - Power: minimize $P = \sum_{u} P(u)$
- Fixing one criterion:
 - Fix the period or latency of each application
 → fix an array of periods or latencies
 - Fix a bound on total power consumption P
- Multi-criteria approach: minimizing one criterion, fixing the other ones
- Energy criterion = power consumption, i.e., energy per time unit ⇒ combination power/period

Outline of the talk

- Tramework
 - Application and platform
 - Mapping rules
 - Metrics
- 2 Complexity results
 - Mono-criterion problems
 - Bi-criteria problems
 - Tri-criteria problems
 - With resource sharing
- 3 Experiments
 - Heuristics
 - Experiments
 - Summary
- 4 Conclusion

Period minimization:

	proc-hom		proc-het	
	com-hom	special-app ¹	com-hom	com-het
one-to-one	polynomial (binary search)			NP-complete
interval	polynomial	NP-complete NP-complete		complete

Latency minimization:

	proc-hom	proc-het			
	com-hom	special-app ¹ com-hom com-het			
one-to-one	polynomial	NP-com	NP-complete		
interval	polyno	mial (binary se	NP-complete		

¹special-app: com-hom & pipe-hom

Mono-criterion complexity results

Period minimization:

	proc-hom		proc-het	
	com-hom	special-app ¹	com-hom	com-het
one-to-one	polyno	polynomial (binary search) NF		
interval	polynomial	NP-complete NP-complete		complete

Latency minimization:

	proc-hom	proc-het			
	com-hom	special-app ¹ com-hom com-het			
one-to-one	polynomial	NP-complete		NP-complete	
interval	polyno	mial (binary search)		NP-complete	

¹special-app: com-hom & pipe-hom

Latency minimization

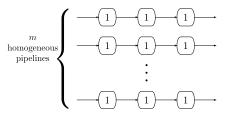
- Single application: greedy polynomial algorithm
- Many applications: NP-hard; reduction from 3-PARTITION
 - Input: 3m + 1 integers a_1, a_2, \ldots, a_{3m} and B such that
 - Does there exist a partition l_1, \ldots, l_m of $\{1, \ldots, 3m\}$ such that

Latency minimization

- Single application: greedy polynomial algorithm
- Many applications: NP-hard; reduction from 3-PARTITION
 - Input: 3m + 1 integers a_1, a_2, \ldots, a_{3m} and B such that $\sum_i a_i = mB$
 - Does there exist a partition I_1, \ldots, I_m of $\{1, \ldots, 3m\}$ such that for all $j \in \{1, ..., m\}$, $|I_j| = 3$ and $\sum_{i \in I_i} a_i = B$?

Latency minimization

- Single application: greedy polynomial algorithm
- Many applications: NP-hard; reduction from 3-PARTITION
 - Input: 3m + 1 integers a_1, a_2, \ldots, a_{3m} and B such that $\sum_i a_i = mB$
 - \bullet Does there exist a partition $\emph{I}_1,\ldots,\emph{I}_m$ of $\{1,\ldots,3m\}$ such that for all $j \in \{1, \dots, m\}$, $|I_j| = 3$ and $\sum_{i \in I_i} a_i = B$?
- Reduction:



3m heterogeneous unimodal processors

Can we obtain a latency $L^0 \leq B$?

Equivalence of problems

Bi-criteria complexity results

Period/latency minimization:

	proc-hom	proc-het		
	com-hom	special-app	com-hom	com-het
one-to-one				
or	polynomial	N	P-complete	
interval				

Power/period minimization:

	proc-hom	proc-het			
	com-hom	special-app com-hom com-het			
one-to-one	polynomia	al (minimum matching) NP-complete			
interval	polynomial	NP-complete			

Bi-criteria complexity results

Period/latency minimization:

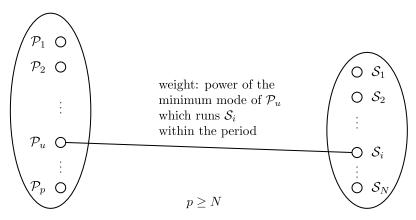
	proc-hom	proc-het		
	com-hom	special-app	com-hom	com-het
one-to-one				
or	polynomial	N	P-complete	
interval				

Power/period minimization:

	proc-hom	proc-het			
	com-hom	special-app com-hom com-het			
one-to-one	polynomia	al (minimum matching) NP-complete			
interval	polynomial	NP-complete			

Power/period minimization

• Minimum weighted matching of a bipartite graph:



Bi-criteria complexity results

Period/latency minimization:

	proc-hom	proc-het		
	com-hom	special-app	com-hom	com-het
one-to-one			_	
or	polynomial	N	P-complete	
interval				

Power/period minimization:

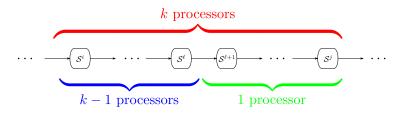
	proc-hom	proc-het			
	com-hom	special-app com-hom com-het			
one-to-one	polynomial	I (minimum matching) NP-complete			
interval	polynomial	NP-complete			

- For one application, $P_1(i, j, k)$: minimum power to run stages S^i to S^j using exactly k processors
- Solution to the single application problem:

$$\min_{1\leq k\leq p} P_1(1,n,k)$$

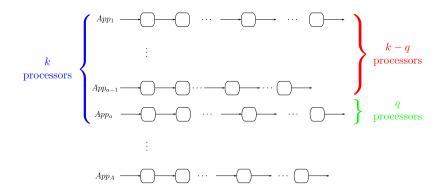
Recurrence relation:

$$P_1(i,j,k) = \min_{1 \le \ell \le j-1} (P_1(i,\ell,k-1) + P_1(\ell+1,j,1))$$



Recurrence:

$$P(a, k) = \min_{1 < q < k} (P(a-1, k-q) + P_1(1, n, q))$$



Tri-criteria complexity results

	proc-hom		proc-het	
	com-hom	special-app	com-hom	com-het
one-to-one				
or		NP-com	plete	
interval				

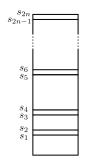
Reduction from 2-PARTITION

(Instance of 2-PARTITION:
$$a_1, a_2, \ldots, a_n$$
 with $\sigma = \sum_{i=1}^n a_i$)

Framework Complexity Experiments Conclusion

Problem instance

One-to-one mapping - fully homogeneous platform



$$\begin{cases} s_{2i-1} = K^i \\ s_{2i} = K^i + \frac{a_i}{K^{i(\alpha-1)}} X \end{cases}$$

$$w_i = K^{i(\alpha+1)}$$

- Stage S_i must be processed at speed s_{2i-1} or s_{2i}
- $P^0 = P^* + \alpha X(\sigma/2 + 1/2)$, $L^0 = L^* X(\sigma/2 1/2)$, $T^0 = L^0$, where P^* and L^* are power and latency with speeds s_{2i-1}

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

And for general mappings with resource sharing?

- Exhaustive complexity study with no resource sharing: new polynomial algorithms for multiple applications and results of NP-completeness
- With the simplified latency model, tri-criteria polynomial dynamic programming algorithm with no resource sharing and speed-homogeneous platforms
- With resource sharing or speed-heterogeneous platforms, all problem instances are NP-hard, even for only period minimization

And for general mappings with resource sharing?

- Exhaustive complexity study with no resource sharing: new polynomial algorithms for multiple applications and results of NP-completeness
- With the simplified latency model, tri-criteria polynomial dynamic programming algorithm with no resource sharing and speed-homogeneous platforms
- With resource sharing or speed-heterogeneous platforms, all problem instances are NP-hard, even for only period minimization

- Exhaustive complexity study with no resource sharing: new polynomial algorithms for multiple applications and results of NP-completeness
- With the simplified latency model, tri-criteria polynomial dynamic programming algorithm with no resource sharing and speed-homogeneous platforms
- With resource sharing or speed-heterogeneous platforms, all problem instances are NP-hard, even for only period minimization

Outline of the talk

- Tramework
 - Application and platform
 - Mapping rules
 - Metrics
- 2 Complexity results
 - Mono-criterion problems
 - Bi-criteria problems
 - Tri-criteria problems
 - With resource sharing
- 3 Experiments
 - Heuristics
 - Experiments
 - Summary
- 4 Conclusion

Heuristics

Tri-criteria problem: power consumption minimization given a bound on period and latency per application, on speed heterogeneous platform

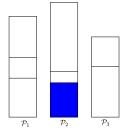
Each heuristic (except H2) exists in two variants: interval mapping without resource sharing and general mapping with resource sharing in order to evaluate the impact of processor reuse

Latency model of Özgüner: L = (2m - 1)T

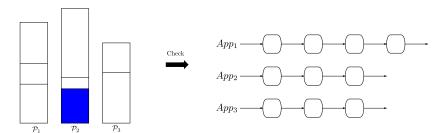
- H1: random cuts
- H2: one entire application per processor (assignment problem)
- H2-split: interval splitting
- H3: two-step heuristic: choose a speed distribution and find a valid mapping (variants on both steps)

H3-energy

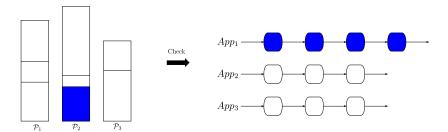
Fix processor speeds



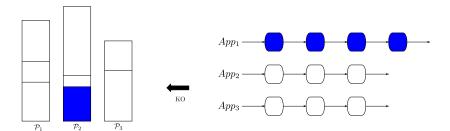
Mapping heuristic: find a valid maping

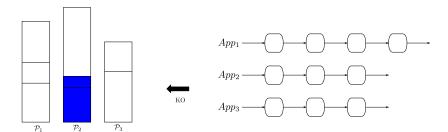


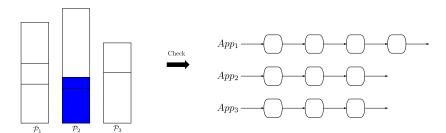
Mapping heuristic: find a valid maping

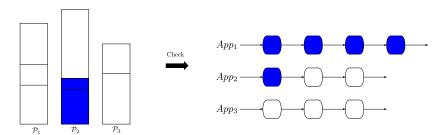


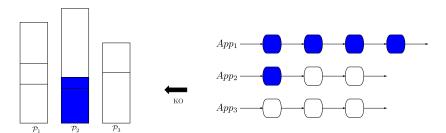
Mapping heuristic: find a valid maping

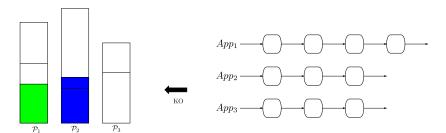


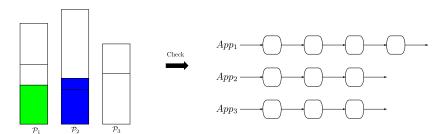


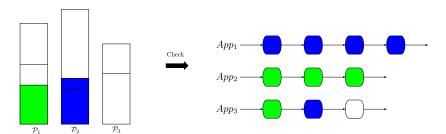


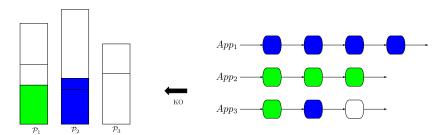


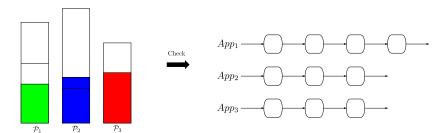


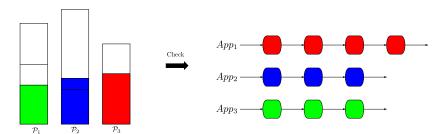


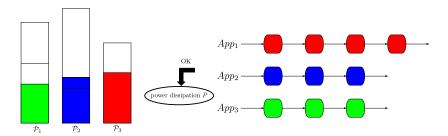












- Integer linear program to assess the absolute performance of the heuristics on small instances
- Small instances: two or three applications, around 15 stages
- Execution time on 30 small instances: less than one second
- Each heuristic and the ILP: variant without sharing ("-n")
 - General behavior of heuristics
 - Impact of resource sharing
 - Scalability of heuristics



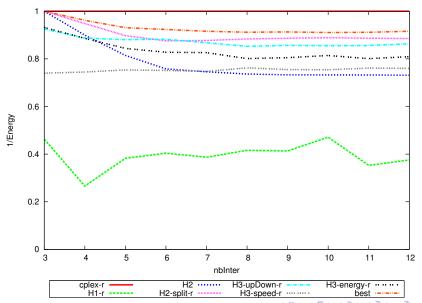
Experimental plan

- Integer linear program to assess the absolute performance of the heuristics on small instances
- Small instances: two or three applications, around 15 stages per application, around 8 processors
- Execution time on 30 small instances: less than one second for all heuristics, one week for the ILP
- Each heuristic and the ILP: variant without sharing ("-n") and variant with sharing ("-r")
 - General behavior of heuristics
 - Impact of resource sharing
 - Scalability of heuristics

Experimental plan

- Integer linear program to assess the absolute performance of the heuristics on small instances
- Small instances: two or three applications, around 15 stages per application, around 8 processors
- Execution time on 30 small instances: less than one second for all heuristics, one week for the ILP
- Each heuristic and the ILP: variant without sharing ("-n") and variant with sharing ("-r")
 - General behavior of heuristics
 - Impact of resource sharing
 - Scalability of heuristics

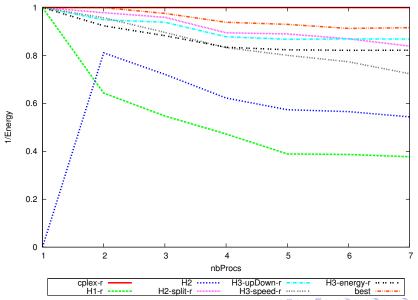
Increasing latency



Anne.Benoit@ens-lyon.fr

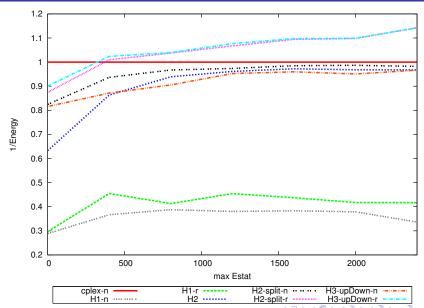
Performance and energy optimization

Increasing number of processors

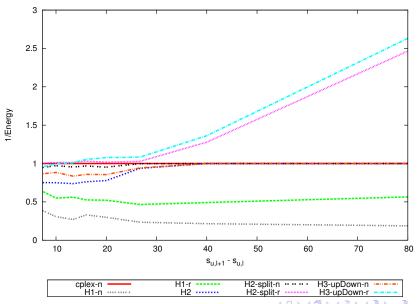


Anne.Benoit@ens-lyon.fr

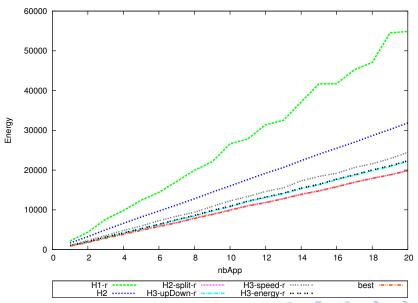
Impact of static power



Impact of mode distribution



Scalability



Summary of experiments

- Efficient heuristics: best heuristic always at 90% of the optimal solution on small instances
- Supremacy of H2-split-r, better in average, and gets even better when problem instances get larger
- H3 has smaller execution time (one second versus three minutes for 20 applications), ILP not usable in practice
- Resource sharing becomes crucial with important static power (use fewer processors) or with distant modes (better use of all available speed)

Summary of experiments

- Efficient heuristics: best heuristic always at 90% of the optimal solution on small instances
- Supremacy of H2-split-r, better in average, and gets even better when problem instances get larger
- H3 has smaller execution time (one second versus three minutes for 20 applications), ILP not usable in practice
- Resource sharing becomes crucial with important static power (use fewer processors) or with distant modes (better use of all available speed)

Outline of the talk

- Tramework
 - Application and platform
 - Mapping rules
 - Metrics
- 2 Complexity results
 - Mono-criterion problems
 - Bi-criteria problems
 - Tri-criteria problems
 - With resource sharing
- 3 Experiments
 - Heuristics
 - Experiments
 - Summary
- Conclusion

Conclusion

- Exhaustive complexity study
 - new polynomial algorithms
 - new NP-completeness proofs
 - impact of model on complexity (tri-criteria homogeneous)
- Experimental study
 - efficient heuristics
 - impact of resource reuse

Conclusion

- Exhaustive complexity study
 - new polynomial algorithms
 - new NP-completeness proofs
 - impact of model on complexity (tri-criteria homogeneous)
- Experimental study
 - efficient heuristics
 - impact of resource reuse

- Pipelined linear chain applications
 - continuous speeds
 - approximation algorithms
- Series-parallel applications
 - Mapping onto chip multi-processors (CMP)
 - Period/power trade-offs
 - Impact of routing and power consumed by communications
- Replica placement
 - Power-aware algorithms
 - Pseudo-polynomial algorithms, problem NP-hard with M different possible speeds
- Reflexion on energy models
 - discrete vs continuous vs VDD-hopping vs incremental

- Pipelined linear chain applications
 - continuous speeds
 - approximation algorithms
- Series-parallel applications
 - Mapping onto chip multi-processors (CMP)
 - Period/power trade-offs
 - Impact of routing and power consumed by communications
- Replica placement
 - Power-aware algorithms
 - Pseudo-polynomial algorithms, problem NP-hard with M different possible speeds
- Reflexion on energy models
 - discrete vs continuous vs VDD-hopping vs incremental

- Pipelined linear chain applications
 - continuous speeds
 - approximation algorithms
- Series-parallel applications
 - Mapping onto chip multi-processors (CMP)
 - Period/power trade-offs
 - Impact of routing and power consumed by communications
- Replica placement
 - Power-aware algorithms
 - Pseudo-polynomial algorithms, problem NP-hard with M different possible speeds
- Reflexion on energy models
 - discrete vs continuous vs VDD-hopping vs incremental

- Pipelined linear chain applications
 - continuous speeds
 - approximation algorithms
- Series-parallel applications
 - Mapping onto chip multi-processors (CMP)
 - Period/power trade-offs
 - Impact of routing and power consumed by communications
- Replica placement
 - Power-aware algorithms
 - Pseudo-polynomial algorithms, problem NP-hard with M different possible speeds
- Reflexion on energy models
 - discrete vs continuous vs VDD-hopping vs incremental

