Mapping skeleton workflows onto heterogeneous platforms

Anne Benoit, Veronika Rehn, Yves Robert

GRAAL team, LIP École Normale Supérieure de Lyon

December 2007

• Mapping applications onto parallel platforms Difficult challenge

- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

• Mapping applications onto parallel platforms Difficult challenge

- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

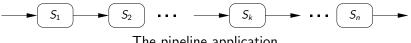
- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

- Workflow: several consecutive data-set enter pipeline
- Map each pipeline stage on a single processor (extended later)
- Goal: maximize throughput (extended later)
- Several mapping strategies

The pipeline application

- Workflow: several consecutive data-set enter pipeline
- Map each pipeline stage on a single processor (extended later)
- Goal: maximize throughput (extended later)
- Several mapping strategies



The pipeline application

- Workflow: several consecutive data-set enter pipeline
- Map each pipeline stage on a single processor (extended later)
- Goal: maximize throughput (extended later)
- Several mapping strategies

- Workflow: several consecutive data-set enter pipeline
- Map each pipeline stage on a single processor (extended later)
- Goal: maximize throughput (extended later)
- Several mapping strategies

- Workflow: several consecutive data-set enter pipeline
- Map each pipeline stage on a single processor (extended later)
- Goal: maximize throughput (extended later)
- Several mapping strategies

Major contributions

Theory Formal approach to the problem, definition of replication and data-parallelism Problem complexity for several cases Integer linear program for exact resolution

Practice Heuristics for INTERVAL MAPPING on clusters Experiments to compare heuristics and evaluate their absolute performance

Major contributions

Theory Formal approach to the problem, definition of replication and data-parallelism Problem complexity for several cases Integer linear program for exact resolution

Practice Heuristics for INTERVAL MAPPING on clusters Experiments to compare heuristics and evaluate their absolute performance

Outline

- 2 Working out an example
- 3 Part 1 Communications, monolithic stages, mono-criterion
- Part 2 Simpler model with no communications, but with replication/DP and bi-criteria

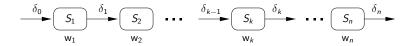
Outline

- 2 Working out an example
- 3 Part 1 Communications, monolithic stages, mono-criterion
- Part 2 Simpler model with no communications, but with replication/DP and bi-criteria

5 Conclusion

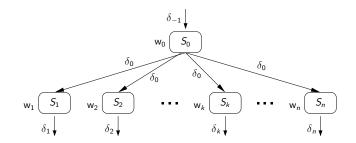
3 1 4

The application: pipeline graphs



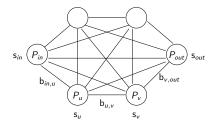
- n stages \mathcal{S}_k , $1 \leq k \leq$ n
- S_k:
 - receives input of size δ_{k-1} from \mathcal{S}_{k-1}
 - performs w_k computations
 - outputs data of size δ_k to \mathcal{S}_{k+1}

The application: fork graphs



- $\mathsf{n} + 1$ stages \mathcal{S}_k , $\mathsf{0} \leq k \leq \mathsf{n}$
 - \mathcal{S}_0 : root stage
 - S_1 to S_n : independent stages
- A data-set goes through stage S_0 , then it can be executed simultaneously for all other stages

The platform



- p processors P_u , $1 \le u \le p$, fully interconnected
- s_u : speed of processor P_u
- bidirectional link link_{u,v} : $P_u \rightarrow P_v$, bandwidth b_{u,v}
- one-port model: each processor can either send, receive or compute at any time-step

Different platforms

Fully Homogeneous – Identical processors $(s_u = s)$ and links $(b_{u,v} = b)$: typical parallel machines

Communication Homogeneous – Different-speed processors $(s_u \neq s_v)$, identical links $(b_{u,v} = b)$: networks of workstations, clusters

$$\label{eq:fully Heterogeneous} \begin{split} & \textit{Fully Heterogeneous} - \textit{Fully heterogeneous architectures, } s_u \neq s_v \\ & \text{and } b_{u,v} \neq b_{u',v'} \text{: hierarchical platforms, grids} \end{split}$$

- Consecutive data-sets fed into the workflow
- Period T_{period} = time interval between beginning of execution of two consecutive data sets (throughput=1/ T_{period})
- Latency T_{latency}(x) = time elapsed between beginning and end of execution for a given data set x, and T_{latency} = max_x T_{latency}(x)
- Map each pipeline/fork stage on one or several processors
- Goal: minimize T_{period} or T_{latency} or bi-criteria minimization

• • = • • = •

- Consecutive data-sets fed into the workflow
- Period $T_{\text{period}} = \text{time interval between beginning of execution}$ of two consecutive data sets (throughput=1/ T_{period})
- Latency T_{latency}(x) = time elapsed between beginning and end of execution for a given data set x, and T_{latency} = max_x T_{latency}(x)
- Map each pipeline/fork stage on one or several processors
- Goal: minimize T_{period} or T_{latency} or bi-criteria minimization

通 と く ヨ と く ヨ と

- Monolithic stages: must be mapped on one single processor since computation for a data-set may depend on result of previous computation
- Replicable stages: can be replicated on several processors, but not parallel, *i.e.* a data-set must be entirely processed on a single processor
- Data-parallel stages: inherently parallel stages, one data-set can be computed in parallel by several processors

Replication

Replicate stage S_k on P_1, \ldots, P_q

- S_{k+1} may be monolithic: output order must be respected
- Round-robin rule to ensure output order
- Cannot feed more fast processors than slow ones
- Most efficient with similar-speed processors

Replication

Replicate stage S_k on P_1, \ldots, P_q

- S_{k+1} may be monolithic: output order must be respected
- Round-robin rule to ensure output order
- Cannot feed more fast processors than slow ones
- Most efficient with similar-speed processors

Data-parallelism

Data-parallelize stage S_k on P_1, \ldots, P_q

• Perfect sharing of the work

• Data-parallelize single stage only

∃ ▶ ∢

Data-parallelism

Data-parallelize stage S_k on P_1, \ldots, P_q

- Perfect sharing of the work
- Data-parallelize single stage only

INTERVAL MAPPING for pipeline graphs

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications

• Partition of [1..n] into
$$m$$
 intervals $l_j = [d_j, e_j]$
(with $d_j \le e_j$ for $1 \le j \le m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \le j \le m - 1$ and $e_m = n$)

• Interval I_j mapped onto processor $P_{\text{alloc}(j)}$

$$T_{\text{period}} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b_{\text{alloc}(j-1), \text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b_{\text{alloc}(j), \text{alloc}(j+1)}} \right\}$$
$$T_{\text{latency}} = \sum_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b_{\text{alloc}(j-1), \text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta_n}{b_{\text{alloc}(m), \text{alloc}(m+1)}}$$

INTERVAL MAPPING for pipeline graphs

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications
- Partition of [1..n] into m intervals $I_j = [d_j, e_j]$ (with $d_j \le e_j$ for $1 \le j \le m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \le j \le m - 1$ and $e_m = n$)
- Interval I_j mapped onto processor $P_{\text{alloc}(j)}$

$$T_{\text{period}} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b_{\text{alloc}(j - 1), \text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b_{\text{alloc}(j), \text{alloc}(j + 1)}} \right\}$$
$$T_{\text{latency}} = \sum_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b_{\text{alloc}(j - 1), \text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta_n}{b_{\text{alloc}(m), \text{alloc}(m + 1)}}$$

> < E > < E >

INTERVAL MAPPING for pipeline graphs

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications
- Partition of [1..n] into m intervals $I_j = [d_j, e_j]$ (with $d_j \le e_j$ for $1 \le j \le m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \le j \le m - 1$ and $e_m = n$)
- Interval I_j mapped onto processor $P_{\text{alloc}(j)}$

$$T_{\text{period}} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b_{\text{alloc}(j-1),\text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b_{\text{alloc}(j),\text{alloc}(j+1)}} \right\}$$
$$T_{\text{latency}} = \sum_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b_{\text{alloc}(j-1),\text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta_n}{b_{\text{alloc}(m),\text{alloc}(m+1)}}$$

> < E > < E >

INTERVAL MAPPING for pipeline graphs

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications
- Partition of [1..n] into m intervals $I_j = [d_j, e_j]$ (with $d_j \le e_j$ for $1 \le j \le m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \le j \le m - 1$ and $e_m = n$)
- Interval I_j mapped onto processor $P_{\text{alloc}(j)}$

$$T_{\text{period}} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b_{\text{alloc}(j - 1), \text{alloc}(j)}} + \frac{\sum_{i = d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b_{\text{alloc}(j), \text{alloc}(j + 1)}} \right\}$$
$$T_{\text{latency}} = \sum_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b_{\text{alloc}(j - 1), \text{alloc}(j)}} + \frac{\sum_{i = d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta_n}{b_{\text{alloc}(m), \text{alloc}(m + 1)}}$$

Simpler problem, replication and data-parallelism

• No communication costs nor overheads

- Cost to execute S_i on P_u alone: $\frac{w_i}{s_u}$
- Cost to data-parallelize $[S_i, S_j]$ $(i = j \text{ for pipeline}; 0 < i \le j \text{ or } i = j = 0 \text{ for fork})$ on k processors P_{q_1}, \ldots, P_{q_k} :

$$\frac{\sum_{\ell=i}^{j} \mathsf{w}_{\ell}}{\sum_{u=1}^{k} \mathsf{s}_{q_{u}}}$$

 $Cost = T_{period}$ of assigned processors Cost = delay to traverse the interval

Simpler problem, replication and data-parallelism

- No communication costs nor overheads
- Cost to execute S_i on P_u alone: $\frac{W_i}{S_u}$
- Cost to data-parallelize $[S_i, S_j]$ $(i = j \text{ for pipeline}; 0 < i \le j \text{ or } i = j = 0 \text{ for fork})$ on k processors P_{q_1}, \ldots, P_{q_k} :

$$\frac{\sum_{\ell=i}^{j} \mathsf{w}_{\ell}}{\sum_{u=1}^{k} \mathsf{s}_{q_{u}}}$$

 $Cost = T_{period}$ of assigned processors Cost = delay to traverse the interval

Simpler problem, replication and data-parallelism

- No communication costs nor overheads
- Cost to execute S_i on P_u alone: $\frac{w_i}{s_u}$
- Cost to data-parallelize $[S_i, S_j]$ $(i = j \text{ for pipeline}; 0 < i \le j \text{ or } i = j = 0 \text{ for fork})$ on k processors P_{q_1}, \ldots, P_{q_k} :

$$\frac{\sum_{\ell=i}^{j} \mathsf{w}_{\ell}}{\sum_{u=1}^{k} \mathsf{s}_{q_{u}}}$$

 $Cost = T_{period}$ of assigned processors Cost = delay to traverse the interval

Simpler problem, replication and data-parallelism

• Cost to replicate $[S_i, S_j]$ on k processors P_{q_1}, \ldots, P_{q_k} :

$$\frac{\sum_{\ell=i}^{j} \mathsf{w}_{\ell}}{k \times \min_{1 \le u \le k} \mathsf{s}_{q_u}}$$

Cost = T_{period} of assigned processors Delay to traverse the interval = time needed by slowest processor:

$$t_{\max} = \frac{\sum_{\ell=i}^{j} \mathsf{w}_{\ell}}{\min_{1 \le u \le k} \mathsf{s}_{q_u}}$$

 With these formulas: easy to compute T_{period} and T_{latency} for pipeline graphs

Simpler problem, replication and data-parallelism

• Cost to replicate $[S_i, S_j]$ on k processors P_{q_1}, \ldots, P_{q_k} :

$$\frac{\sum_{\ell=i}^{j} \mathsf{w}_{\ell}}{k \times \min_{1 \le u \le k} \mathsf{s}_{q_u}}$$

Cost = T_{period} of assigned processors Delay to traverse the interval = time needed by slowest processor:

$$t_{\max} = \frac{\sum_{\ell=i}^{j} \mathsf{w}_{\ell}}{\min_{1 \le u \le k} \mathsf{s}_{q_u}}$$

 With these formulas: easy to compute T_{period} and T_{latency} for pipeline graphs

Mono-criterion

Minimize T_{period}
 Minimize T_{latency}

Bi-criteria

- How to define it?
 - Minimize α . $T_{period} + \beta$. $T_{latency}$?
- Values which are not comparable
- Minimize T_{period} for a fixed latency
- Minimize T_{latency} for a fixed period

3 1 4

Mono-criterion

Minimize T_{period}
 Minimize T_{latency}

Bi-criteria

- How to define it? Minimize α. T_{period} + β. T_{latency}?
- Values which are not comparable
- Minimize T_{period} for a fixed latency
- Minimize T_{latency} for a fixed period

Mono-criterion

- Minimize T_{period}
- Minimize T_{latency}

Bi-criteria

- How to define it? Minimize α. T_{period} + β. T_{latency}?
- Values which are not comparable
- Minimize *T*_{period} for a fixed latency
 Minimize *T*_{latency} for a fixed period

Mono-criterion

- Minimize *T*_{period}
- Minimize T_{latency}

Bi-criteria

- How to define it? Minimize α. T_{period} + β. T_{latency}?
- Values which are not comparable
- Minimize T_{period} for a fixed latency
- Minimize T_{latency} for a fixed period

Outline

1 Framework

2 Working out an example

3 Part 1 - Communications, monolithic stages, mono-criterion

Part 2 - Simpler model with no communications, but with replication/DP and bi-criteria

5 Conclusion

3 1 4

Working out an example

Interval mapping, 4 processors, $s_1 = 2$ and $s_2 = s_3 = s_4 = 1$

Optimal period?

3 1 4

6

Working out an example

Interval mapping, 4 processors, $s_1 = 2$ and $s_2 = s_3 = s_4 = 1$

Optimal period? $T_{\text{period}} = 7, \ \mathcal{S}_1 \rightarrow \mathcal{P}_1, \ \mathcal{S}_2 \mathcal{S}_3 \rightarrow \mathcal{P}_2, \ \mathcal{S}_4 \rightarrow \mathcal{P}_3 \ (T_{\text{latency}} = 17)$

Optimal latency?

6

Working out an example

Interval mapping, 4 processors, $s_1 = 2$ and $s_2 = s_3 = s_4 = 1$

$$\begin{array}{l} \label{eq:period} \hline \textbf{Optimal period}?\\ T_{\mathsf{period}} = \mathsf{7}, \ \mathcal{S}_1 \to \mathcal{P}_1, \ \mathcal{S}_2 \mathcal{S}_3 \to \mathcal{P}_2, \ \mathcal{S}_4 \to \mathcal{P}_3 \ \big(\ T_{\mathsf{latency}} = 17 \big) \end{array}$$

Optimal latency? $T_{\text{latency}} = 12, \ S_1 S_2 S_3 S_4 \rightarrow P_1 \ (T_{\text{period}} = 12)$

Min. latency if $T_{period} \leq 10$?

Working out an example

Interval mapping, 4 processors, $s_1 = 2$ and $s_2 = s_3 = s_4 = 1$

$$\begin{array}{l} \begin{array}{l} \mbox{Optimal period}?\\ \mbox{$T_{\rm period}=7$, $$\mathcal{S}_1 \rightarrow P_1, $$\mathcal{S}_2\mathcal{S}_3 \rightarrow P_2, $$\mathcal{S}_4 \rightarrow P_3 ($$T_{\rm latency}=17$)$ \end{array}$$

Optimal latency? $T_{\text{latency}} = 12, \ S_1 S_2 S_3 S_4 \rightarrow P_1 \ (T_{\text{period}} = 12)$

Min. latency if $T_{period} \leq 10$? $T_{\text{latency}} = 14, \ \mathcal{S}_1 \mathcal{S}_2 \mathcal{S}_3 \rightarrow \mathcal{P}_1, \ \mathcal{S}_4 \rightarrow \mathcal{P}_2$

Interval mapping, 4 processors, $s_1 = 2$ and $s_2 = s_3 = s_4 = 1$

Replicate interval $[S_u ... S_v]$ on P_1, \ldots, P_a

$$T_{ ext{period}} = rac{\sum_{k=u}^{v} \mathsf{w}_k}{q imes \mathsf{min}_i(\mathsf{s}_i)}$$
 and $T_{ ext{latency}} = q imes T_{ ext{period}}$

Anne.Benoit@ens-lyon.fr

Interval mapping, 4 processors, $s_1 = 2$ and $s_2 = s_3 = s_4 = 1$

Data Parallelize single stage S_k on P_1, \ldots, P_q

Anne.Benoit@ens-lyon.fr

Interval mapping, 4 processors, $s_1 = 2$ and $s_2 = s_3 = s_4 = 1$

Optimal period?

Interval mapping, 4 processors, $s_1 = 2$ and $s_2 = s_3 = s_4 = 1$

Optimal period?

$$\mathcal{S}_1 \stackrel{\mathrm{DP}}{\xrightarrow{}} \mathcal{P}_1 \mathcal{P}_2, \ \mathcal{S}_2 \mathcal{S}_3 \mathcal{S}_4 \stackrel{\mathrm{REP}}{\xrightarrow{}} \mathcal{P}_3 \mathcal{P}_4$$

$$T_{\text{period}} = \max(\frac{14}{2+1}, \frac{4+2+4}{2\times 1}) = 5$$
, $T_{\text{latency}} = 14.67$

Interval mapping, 4 processors, $s_1 = 2$ and $s_2 = s_3 = s_4 = 1$

Optimal period?

$$\mathcal{S}_1 \stackrel{\mathrm{DP}}{\longrightarrow} \mathcal{P}_1 \mathcal{P}_2, \ \mathcal{S}_2 \mathcal{S}_3 \mathcal{S}_4 \stackrel{\mathrm{REP}}{\longrightarrow} \mathcal{P}_3 \mathcal{P}_4$$

$$T_{\text{period}} = \max(\frac{14}{2+1}, \frac{4+2+4}{2\times 1}) = 5, \ T_{\text{latency}} = 14.67$$

$$\begin{array}{l} \mathcal{S}_1 \xrightarrow{\mathrm{DP}} P_2 P_3 P_4, \ \mathcal{S}_2 \mathcal{S}_3 \mathcal{S}_4 \rightarrow P_1 \\ \\ \mathcal{T}_{\mathsf{period}} = \max(\frac{14}{1+1+1}, \frac{4+2+4}{2}) = 5, \ \mathcal{T}_{\mathsf{latency}} = 9.67 \ (\mathsf{optimal}) \end{array}$$

Anne.Benoit@ens-lyon.fr

Outline

3 Part 1 - Communications, monolithic stages, mono-criterion

Part 2 - Simpler model with no communications, but with replication/DP and bi-criteria

5 Conclusion

∃ ▶ ∢

- Pipeline graph
- Different platforms, with communications
- Different mapping strategies
- Only monolithic stages: no replication nor data-parallelism
- Mono-criterion: period minimization
- Complexity results, heuristics and experiments

- Pipeline graph
- Different platforms, with communications
- Different mapping strategies
- Only monolithic stages: no replication nor data-parallelism
- Mono-criterion: period minimization
- Complexity results, heuristics and experiments

	Fully Hom.	Comm. Hom.
One-to-one Mapping		
Interval Mapping		
General Mapping		

۲

A (10) < A (10) </p>

	Fully Hom.	Comm. Hom.
One-to-one Mapping	polynomial	polynomial
Interval Mapping		
General Mapping		

- Binary search polynomial algorithm for ONE-TO-ONE MAPPING
- •
- •

	Fully Hom.	Comm. Hom.
One-to-one Mapping	polynomial	polynomial
Interval Mapping	polynomial	NP-complete
General Mapping		

- Binary search polynomial algorithm for ONE-TO-ONE MAPPING
- Dynamic programming algorithm for INTERVAL MAPPING on Hom. platforms (NP-hard otherwise)

۲

۲

	Fully Hom.	Comm. Hom.
One-to-one Mapping	polynomial	polynomial
Interval Mapping	polynomial	NP-complete
General Mapping	same complexity as Interval	

- Binary search polynomial algorithm for ONE-TO-ONE MAPPING
- Dynamic programming algorithm for INTERVAL MAPPING on Hom. platforms (NP-hard otherwise)
- General mapping: same complexity as INTERVAL MAPPING

	Fully Hom.	Comm. Hom.
One-to-one Mapping	polynomial	polynomial
Interval Mapping	polynomial	NP-complete
General Mapping	same complexity as Interval	

- Binary search polynomial algorithm for ONE-TO-ONE MAPPING
- Dynamic programming algorithm for INTERVAL MAPPING on Hom. platforms (NP-hard otherwise)
- General mapping: same complexity as INTERVAL MAPPING
- All problem instances NP-complete on *Fully Heterogeneous* platforms

One-to-one/Comm. Hom.: binary search algorithm

- \bullet Work with fastest n processors, numbered ${\it P}_1$ to ${\it P}_n,$ where $s_1 \leq s_2 \leq \ldots \leq s_n$
- Mark all stages \mathcal{S}_1 to \mathcal{S}_n as free
- **For** *u* = 1 **to** n
 - Pick up any free stage S_k s.t. $\delta_{k-1}/b + w_k/s_u + \delta_k/b \le T_{period}$
 - Assign \mathcal{S}_k to \mathcal{P}_u , and mark \mathcal{S}_k as already assigned
 - If no stage found return "failure"
- Proof: exchange argument

One-to-one/Comm. Hom.: binary search algorithm

- \bullet Work with fastest n processors, numbered ${\it P}_1$ to ${\it P}_n,$ where $s_1 \leq s_2 \leq \ldots \leq s_n$
- Mark all stages \mathcal{S}_1 to \mathcal{S}_n as free
- **For** *u* = 1 **to** n
 - Pick up any free stage S_k s.t. $\delta_{k-1}/b + w_k/s_u + \delta_k/b \le T_{period}$
 - Assign S_k to P_u , and mark S_k as already assigned
 - If no stage found return "failure"
- Proof: exchange argument

Greedy heuristics

Target clusters: *Com. hom.* platforms and INTERVAL MAPPING H1a-GR: random – fixed intervals H1b-GRIL: random interval length H2-GSW: biggest $\sum w$ – Place interval with most computations on fastest processor H3-GSD: biggest $\delta_{in} + \delta_{out}$ – Intervals are sorted by communications ($\delta_{in} + \delta_{out}$) *in*: first stage of interval; (out - 1): last one H4-GP: biggest period on fastest processor – Balancing computation and communication: processors sorted by decreasing speed s_{μ} ; for current processor u,

choose interval with biggest period

 $(\delta_{in} + \delta_{out})/b + \sum_{i \in Interval} w_i/s_u$

Sophisticated heuristics

H5-BS121: binary search for ONE-TO-ONE MAPPING – optimal algorithm for ONE-TO-ONE MAPPING. When p < n, application cut in fixed intervals of length *L*.

H6-SPL: splitting intervals – Processors sorted by decreasing speed, all stages to first processor. At each step, select used proc j with largest period, split its interval (give fraction of stages to j'): minimize max(period(j), period(j')) and split if maximum period improved.

H7a-BSL and H7b-BSC: binary search (longest/closest) – Binary search on period P: start with stage s = 1, build intervals (s, s') fitting on processors. For each u, and each $s' \ge s$, compute period (s..s', u) and check whether it is smaller than P. H7a: maximizes s'; H7b: chooses the closest period.

Plan of experiments

• Assess performance of polynomial heuristics

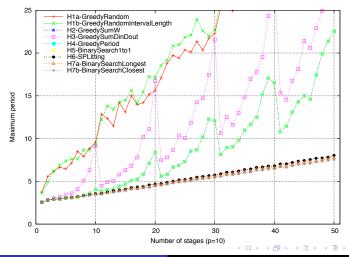
- Random applications, n = 1 to 50 stages
- Random platforms, p = 10 and p = 100 processors
- b = 10 (comm. hom.), proc. speed between 1 and 20
- Relevant parameters: ratios $\frac{\delta}{b}$ and $\frac{w}{s}$
- Average over 100 similar random appli/platform pairs

Plan of experiments

- Assess performance of polynomial heuristics
- Random applications, n = 1 to 50 stages
- $\bullet\,$ Random platforms, p=10 and p=100 processors
- b = 10 (comm. hom.), proc. speed between 1 and 20
- Relevant parameters: ratios $\frac{\delta}{b}$ and $\frac{w}{s}$
- Average over 100 similar random appli/platform pairs

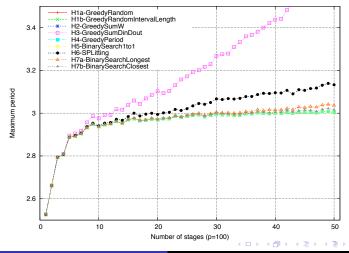
Experiment 1 - balanced comm/comp, hom comm

- $\delta_i = 10$, computation time between 1 and 20
- 10 processors



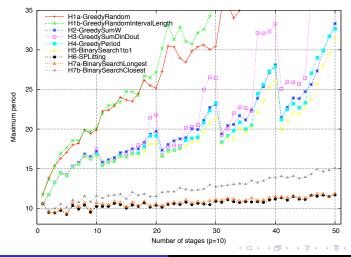
Experiment 1 - balanced comm/comp, hom comm

- $\delta_i = 10$, computation time between 1 and 20
- 100 processors



Experiment 2 - balanced comm/comp, het comm

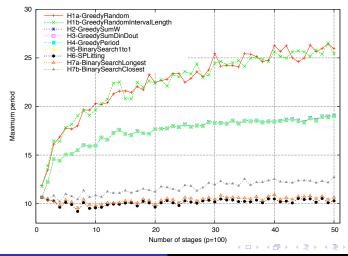
- communication time between 1 and 100
- computation time between 1 and 20



Anne.Benoit@ens-lyon.fr

Experiment 2 - balanced comm/comp, het comm

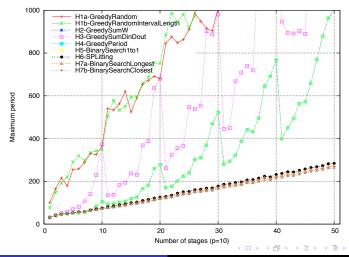
- communication time between 1 and 100
- computation time between 1 and 20



Anne.Benoit@ens-lyon.fr

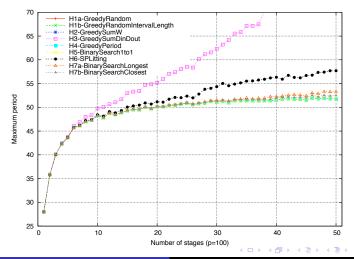
Experiment 3 - large computations

- communication time between 1 and 20
- computation time between 10 and 1000



Experiment 3 - large computations

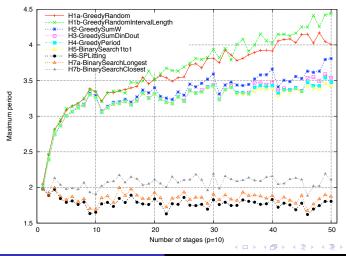
- communication time between 1 and 20
- computation time between 10 and 1000



Anne.Benoit@ens-lyon.fr

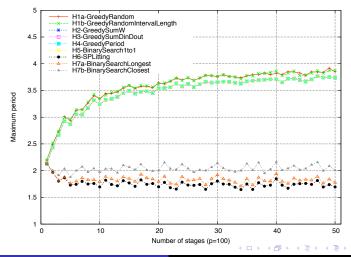
Experiment 4 - small computations

- communication time between 1 and 20
- computation time between 0.01 and 10



Experiment 4 - small computations

- communication time between 1 and 20
- computation time between 0.01 and 10



Anne.Benoit@ens-lyon.fr

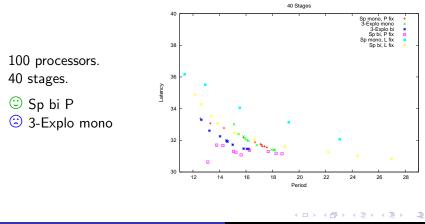
Summary of experiments

- Much more efficient than random mappings
- Three dominant heuristics for different cases
- Insignificant communications (hom. or small) and many processors: H5-BS121 (ONE-TO-ONE MAPPING)
- Insignificant communications (hom. or small) and few processors: H7b-BSC (binary search: clever choice where to split)
- Important communications (het. or big): H6-SPL (splitting choice relevant for any number of processors)

Summary of experiments

- Much more efficient than random mappings
- Three dominant heuristics for different cases
- Insignificant communications (hom. or small) and many processors: H5-BS121 (ONE-TO-ONE MAPPING)
- Insignificant communications (hom. or small) and few processors: H7b-BSC (binary search: clever choice where to split)
- Important communications (het. or big): H6-SPL (splitting choice relevant for any number of processors)

- set of heuristics and experiments
- balanced comm/comp, het comm (Exp. 2)



Outline

2 Working out an example

3 Part 1 - Communications, monolithic stages, mono-criterion

Part 2 - Simpler model with no communications, but with replication/DP and bi-criteria

5 Conclusion

- Pipeline graph
- Different platforms, with communications
- Different mapping strategies
- Only monolithic stages: no replication nor data-parallelism
- Mono-criterion: period minimization
- Complexity results, heuristics and experiments

- Pipeline and fork graphs
- Different platforms, with communications
- Different mapping strategies
- Only monolithic stages: no replication nor data-parallelism
- Mono-criterion: period minimization
- Complexity results, heuristics and experiments

- Pipeline and fork graphs
- Different platforms, without communications
- Different mapping strategies
- Only monolithic stages: no replication nor data-parallelism
- Mono-criterion: period minimization
- Complexity results, heuristics and experiments

- Pipeline and fork graphs
- Different platforms, without communications
- $\bullet \ \mbox{Interval Mapping only}$
- Only monolithic stages: no replication nor data-parallelism
- Mono-criterion: period minimization
- Complexity results, heuristics and experiments

- Pipeline and fork graphs
- Different platforms, without communications
- $\bullet \ \mbox{Interval Mapping only}$
- Replicable stages, and either data-parallelism or not
- Mono-criterion: period minimization
- Complexity results, heuristics and experiments

- Pipeline and fork graphs
- Different platforms, without communications
- $\bullet \ \mbox{Interval Mapping only}$
- Replicable stages, and either data-parallelism or not
- Bi-criteria optimization
- Complexity results, heuristics and experiments

- Pipeline and fork graphs
- Different platforms, without communications
- $\bullet \ \mbox{Interval Mapping only}$
- Replicable stages, and either data-parallelism or not
- Bi-criteria optimization
- Complexity results only

Without data-parallelism, Homogeneous platforms

Objective	period	latency	bi-criteria
Hom. pipeline		-	
Het. pipeline	Poly (str)		
Hom. fork	-	Poly (DP)	
Het. fork	Poly (str)	NP-hard	

With data-parallelism, Homogeneous platforms

Objective	period	latency	bi-criteria
Hom. pipeline		-	
Het. pipeline	Poly (DP)		
Hom. fork	-	Poly (DP)	
Het. fork	Poly (str)	NP-hard	

Without data-parallelism, Heterogeneous platforms

Objective	period	latency	bi-criteria
Hom. pipeline	Poly (*)	-	Poly (*)
Het. pipeline	NP-hard (**)	Poly (str)	NP-hard
Hom. fork		Poly (*)	
Het. fork	NP-hard	-	-

With data-parallelism, Heterogeneous platforms

Objective	period	latency	bi-criteria
Hom. pipeline		NP-har	d
Het. pipeline		-	
Hom. fork		NP-har	d
Het. fork		-	

.⊒ . ►

Most interesting case:

Without data-parallelism, Heterogeneous platforms

Objective	period	latency	bi-criteria
Hom. pipeline	Poly (*)	-	Poly (*)
Het. pipeline	NP-hard (**)	Poly (str)	NP-hard
Hom. fork		Poly (*)	
Het. fork	NP-hard	-	-

No data-parallelism, Heterogeneous platforms

- For pipeline, minimizing the latency is straightforward: map all stages on fastest proc
- Minimizing the period is NP-hard (involved reduction similar to the heterogeneous chain-to-chain one) for general pipeline
- Homogeneous pipeline: all stages have same workload w: in this case, polynomial complexity.
- Polynomial bi-criteria algorithm for homogeneous pipeline

No data-parallelism, Heterogeneous platforms

- For pipeline, minimizing the latency is straightforward: map all stages on fastest proc
- Minimizing the period is NP-hard (involved reduction similar to the heterogeneous chain-to-chain one) for general pipeline
- Homogeneous pipeline: all stages have same workload w: in this case, polynomial complexity.
- Polynomial bi-criteria algorithm for homogeneous pipeline

Lemma: form of the solution

Pipeline, no data-parallelism, Heterogeneous platform

Lemma

If an optimal solution which minimizes pipeline period uses q processors, consider q fastest processors $P_1, ..., P_q$, ordered by non-decreasing speeds: $s_1 \leq ... \leq s_q$. There exists an optimal solution which replicates intervals of stages onto k intervals of processors $I_r = [P_{d_r}, P_{e_r}]$, with $1 \leq r \leq k \leq q$, $d_1 = 1$, $e_k = q$, and $e_r + 1 = d_{r+1}$ for $1 \leq r < k$.

Proof: exchange argument, which does not increase latency

Lemma: form of the solution

Pipeline, no data-parallelism, Heterogeneous platform

Lemma

If an optimal solution which minimizes pipeline period uses q processors, consider q fastest processors $P_1, ..., P_q$, ordered by non-decreasing speeds: $s_1 \leq ... \leq s_q$. There exists an optimal solution which replicates intervals of stages onto k intervals of processors $I_r = [P_{d_r}, P_{e_r}]$, with $1 \leq r \leq k \leq q$, $d_1 = 1$, $e_k = q$, and $e_r + 1 = d_{r+1}$ for $1 \leq r < k$.

Proof: exchange argument, which does not increase latency

通 と く ヨ と く ヨ と

Binary-search/Dynamic programming algorithm

- Given latency L, given period K
- Loop on number of processors q
- Dynamic programming algorithm to minimize latency
- Success if L is obtained
- Binary search on L to minimize latency for fixed period
- Binary search on K to minimize period for fixed latency

Binary-search/Dynamic programming algorithm

- Given latency L, given period K
- Loop on number of processors q
- Dynamic programming algorithm to minimize latency
- Success if L is obtained
- Binary search on L to minimize latency for fixed period
- Binary search on K to minimize period for fixed latency

Introduction Framework Example Part 1 - Coms, No Rep/DP, 1c Part 2 - No coms, Rep/DP, 2c Conclusion

Dynamic programming algorithm

 Compute L(n, 1, q), where L(m, i, j) = minimum latency to map m pipeline stages on processors P_i to P_j, while fitting in period K.

$$L(m,i,j) = \min_{\substack{1 \le m' < m \\ i \le k < j}} \begin{cases} \frac{m.w}{s_i} & \text{if } \frac{m.w}{(j-i).s_i} \le K \quad (1) \\ L(m',i,k) + L(m-m',k+1,j) \quad (2) \end{cases}$$

Case (1): replicating *m* stages onto processors P_i, ..., P_j
Case (2): splitting the interval

Introduction Framework Example Part 1 - Coms, No Rep/DP, 1c Part 2 - No coms, Rep/DP, 2c Conclusion

Dynamic programming algorithm

 Compute L(n, 1, q), where L(m, i, j) = minimum latency to map m pipeline stages on processors P_i to P_j, while fitting in period K.

$$L(m,i,j) = \min_{\substack{1 \le m' < m \\ i \le k < j}} \begin{cases} \frac{m.w}{s_i} & \text{if } \frac{m.w}{(j-i).s_i} \le K \quad (1) \\ L(m',i,k) + L(m-m',k+1,j) \quad (2) \end{cases}$$

Initialization:

$$L(1, i, j) = \begin{cases} \frac{w}{s_i} & \text{if } \frac{w}{(j-i).s_i} \le K \\ +\infty & \text{otherwise} \end{cases}$$
$$L(m, i, i) = \begin{cases} \frac{m.w}{s_i} & \text{if } \frac{m.w}{s_i} \le K \\ +\infty & \text{otherwise} \end{cases}$$

Introduction Framework Example Part 1 - Coms, No Rep/DP, 1c Part 2 - No coms, Rep/DP, 2c Conclusion

Dynamic programming algorithm

 Compute L(n, 1, q), where L(m, i, j) = minimum latency to map m pipeline stages on processors P_i to P_j, while fitting in period K.

$$L(m,i,j) = \min_{\substack{1 \le m' < m \\ i \le k < j}} \left\{ \begin{array}{l} \frac{m.w}{s_i} & \text{if } \frac{m.w}{(j-i).s_i} \le K \quad (1) \\ L(m',i,k) + L(m-m',k+1,j) \quad (2) \end{array} \right.$$

- Complexity of the dynamic programming: $O(n^2.p^4)$
- Number of iterations of the binary search formally bounded, very small number of iterations in practice.

Outline

- 2 Working out an example
- 3 Part 1 Communications, monolithic stages, mono-criterion
- Part 2 Simpler model with no communications, but with replication/DP and bi-criteria

∃ ▶ ∢

Related work

Subhlok and Vondran- Extension of their work (pipeline on hom platforms)

Chains-to-chains- In our work possibility to replicate or data-parallelize

Mapping pipelined computations onto clusters and grids- DAG [Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations [Melhem et al.], three-criteria optimization

Mapping pipelined computations onto special-purpose architectures– FPGA arrays [Fabiani et al.]. Fault-tolerance for embedded systems [Zhu et al.]

Mapping skeletons onto clusters and grids– Use of stochastic process algebra [Benoit et al.]

A B F A B F

Conclusion

Theoretical side Complexity results for several cases Solid theoretical foundation for study of single/bi-criteria mappings, with possibility to replicate and data-parallelize application stages

Practical side

- Optimal polynomial algorithms, heuristics for NP-hard instances of the problem
- Experiments: Comparison of heuristics performance
- Linear program to assess the absolute performance of the heuristics, which turns out to be quite good

Also in the pipeline

Bi-criteria

- Several heuristics and experiments not detailed in this talk
- Bi-criteria linear program
- Real experiments on a JPEG encoder pipeline application

Three-criteria

- Introduction of failure probabilities to the model
- Replication for fault-tolerance vs replication for parallelism
 - compute several time the same data-set in case of failure
 - uses more resources and does not decrease period or latency
 - three objectives: min latency and period, max reliability
- Complexity analysis

Future work

Short term

- Heuristics for *Fully Heterogeneous* platforms and other NP-hard instances of the problem
- Extension to DAG-trees (a DAG which is a tree when un-oriented)

Longer term

- Heuristics based on our polynomial algorithms for general application graphs structured as combinations of pipeline and fork kernels
- Real experiments on heterogeneous clusters, using an already-implemented skeleton library and MPI
- Comparison of effective performance against theoretical performance

(3)

Open problems

• Energy savings

- processors that can run at different frequencies
- trade-off between energy consumption and speed
- Simultaneous execution of several (concurrent) workflows
 - competition for CPU and network resources
 - fairness between applications (stretch)
 - sensitivity to application/platform parameter changes