Energy-efficient scheduling

Guillaume Aupy¹, Anne Benoit^{1,2},
Paul Renaud-Goud¹ and Yves Robert^{1,2,3}

- 1. Ecole Normale Supérieure de Lyon, France
 - 2. Institut Universitaire de France
 - 3. University of Tennessee Knoxville, USA

```
Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/
```

Int. Workshop on Power-aware Algorithms, Systems, and Archi. In conjunction with ICPP'3013, Lyon, France, October 2013

Energy: a crucial issue

- Data centers
 - 330, 000, 000, 000 Watts hour in 2007: more than France
 - 533,000,000 tons of CO_2 : in the top ten countries
- Exascale computers (10¹⁸ floating operations per second)
 - Need effort for feasibility
 - ullet 1% of power saved \leadsto 1 million dollar per year
- Lambda user
 - 1 billion personal computers
 - 500, 000, 000, 000, 000 Watts hour per year
- ~ crucial for both environmental and economical reasons

Introduction Tri-criteria

Energy: a crucial issue

Data centers

- 330,000,00
- 533,000,00
- Exascale compu
 - Need effort
 - 1% of powe
- Lambda user
 - 1 billion per
 - 500,000,00

hore than France h countries

bns per second)

r year

Ŀar

• ~ crucial for both environmental and economical reasons

Power dissipation of a processor

- $P = P_{\text{leak}} + P_{\text{dyn}}$
 - P_{leak} : constant

- Standard approximation: $P = P_{\text{leak}} + f^{\alpha}$ $(2 \le \alpha \le 3)$
- Energy $E = P \times time$
- Dynamic Voltage and Frequency Scaling
 - Real life: discrete speeds
 - Continuous speeds can be emulated

Outline

- Revisiting the greedy algorithm for independent jobs
- 2 Reclaiming the slack of a schedule
- Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption
- Conclusion

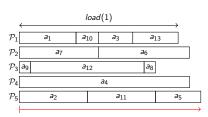
Framework

Scheduling independent jobs

- Greedy algorithm: assign next job to least-loaded processor
- Two variants:
 - ONLINE-GREEDY: assign jobs on the fly OFFLINE-GREEDY: sort jobs before execution

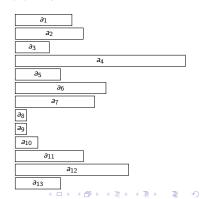
Classical problem

- *n* independent jobs $\{J_i\}_{1 \le i \le n}$, $a_i = \text{size of } J_i$
- ullet p processors $\{\mathcal{P}_q\}_{1\leq q\leq p}$
- allocation function $alloc: \{J_i\} \to \{\mathcal{P}_q\}$
- ullet load of $\mathcal{P}_q = load(q) = \sum_{\{i \mid alloc(J_i) = \mathcal{P}_q\}} a_i$



Execution time:

$$\max_{1 \leq q \leq p} load(q)$$

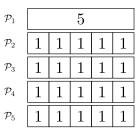


OnLine-Greedy

Theorem

OnLine-Greedy is a $2 - \frac{1}{p}$ approximation (tight bound)

OnLine-Greedy



Optimal solution

OffLine-Greedy

Theorem

OffLine-Greedy is a $\frac{4}{3} - \frac{1}{3p}$ approximation (tight bound)

\mathcal{P}_1	9		5	5
\mathcal{P}_2	9		5	
\mathcal{P}_3	8		6	
\mathcal{P}_4	8		6	
\mathcal{P}_5	7		7	

 \mathcal{P}_1

5 5 5

 \mathcal{P}_2 \mathcal{P}_3

9 6

 \mathcal{P}_4

8 7

 \mathcal{P}_5

8 | 7

OffLine-Greedy

Optimal solution

Bi-criteria problem

Minimizing (dynamic) power consumption:
 ⇒ use slowest possible speed

$$P_{dyn} = f^{\alpha} = f^3$$

Bi-criteria problem:
 Given bound M = 1 on execution time,
 minimize power consumption while meeting the bound

Bi-criteria problem statement

- *n* independent jobs $\{J_i\}_{1 \le i \le n}$, $a_i = \text{size of } J_i$
- p processors $\{\mathcal{P}_q\}_{1 \leq q \leq p}$
- allocation function alloc : $\{J_i\} \rightarrow \{\mathcal{P}_q\}$
- load of $\mathcal{P}_q = load(q) = \sum_{\{i \mid alloc(J_i) = \mathcal{P}_q\}} a_i$

 $(load(q))^3$ power dissipated by \mathcal{P}_q

$$\sum_{q=1}^{p} (load(q))^3$$
Power

 $\max_{1 \leq q \leq p} load(q)$ **Execution time**

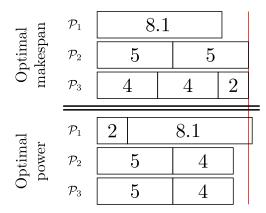
Same GREEDY algorithm ...

Strategy: assign next job to least-loaded processor

- Natural for execution-time
 - smallest increment of maximum load
 - minimize objective value for currently processed jobs

- Natural for power too
 - smallest increment of total power (convexity)
 - minimize objective value for currently processed jobs

... but different optimal solution!



- Makespan 10, power 2531.441
- Makespan 10.1, power 2488.301

GREEDY and L_r norms

$$N_r = \left(\sum_{q=1}^p \left(load(q)\right)^r\right)^{\frac{1}{r}}$$

- Execution time $N_{\infty} = \lim_{r \to \infty} N_r = \max_{1 \le q \le p} load(q)$
- Power $(N_3)^3$

Known results

N_2 , OffLine-Greedy

- Chandra and Wong 1975: upper and lower bounds
- Leung and Wei 1995: tight approximation factor

N₃, OffLine-Greedy

Chandra and Wong 1975: upper and lower bounds

N_r

- Alon et al. 1997: PTAS for offline problem
- Avidor et al. 1998: upper bound $2 \Theta(\frac{\ln r}{r})$ for ONLINE-GREEDY

Contribution

 N_3

- Tight approximation factor for OnLine-Greedy
- Tight approximation factor for OffLine-Greedy

Greedy for power fully solved!

Approximation for OnLine-Greedy

$$\frac{P_{\text{online}}}{P_{\text{opt}}} \leq \underbrace{\frac{\frac{1}{p^3} \left((1 + (p-1)\beta)^3 + (p-1)(1-\beta)^3 \right)}{\beta^3 + \frac{(1-\beta)^3}{(p-1)^2}}}_{f_p^{(\text{on})}(\beta)}$$

$\mathsf{Theorem}$

- $f_p^{(\text{on})}$ has a single maximum in $\beta_p^{(\text{on})} \in [\frac{1}{p}, 1]$
- OnLine-Greedy is a $f_p^{(on)}(\beta_p^{(on)})$ approximation
- This approximation factor is tight

Approximation for OffLine-Greedy

$$\frac{P_{\text{offline}}}{P_{\text{opt}}} \leq \underbrace{\frac{\frac{1}{p^3} \left(\left(1 + \frac{(p-1)\beta}{3}\right)^3 + \left(p-1\right) \left(1 - \frac{\beta}{3}\right)^3 \right)}{\beta^3 + \frac{(1-\beta)^3}{(p-1)^2}}}_{f_p^{(\text{off})}(\beta)}$$

Theorem

- $f_p^{(\text{off})}$ has a single maximum in $\beta_p^{(\text{off})} \in [\frac{1}{p}, 1]$
- OffLine-Greedy is a $f_p^{(\mathrm{off})}(eta_p^{(\mathrm{off})})$ approximation
- This approximation factor is tight

Numerical values of approximation ratios

р	OnLine-Greedy	OffLine-Greedy
2	1.866	1.086
3	2.008	1.081
4	2.021	1.070
5	2.001	1.061
6	1.973	1.054
7	1.943	1.048
8	1.915	1.043
64	1.461	1.006
512	1.217	1.00083
2048	1.104	1.00010
2 ²⁴	1.006	1.000000025

Large values of p

Asymptotic approximation factors

```
OnLine-Greedy \frac{4}{3} 1
OffLine-Greedy 2 1
\uparrow
optimal
```


Outline

- Revisiting the greedy algorithm for independent jobs
- 2 Reclaiming the slack of a schedule
- Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption
- Conclusion

Motivation

- Mapping of tasks is given (ordered list for each processor and dependencies between tasks)
- If deadline not tight, why not take our time?
- Slack: unused time slots

Goal: efficiently use speed scaling (DVFS)

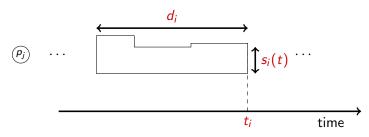
Speed models

		Change speed		
		Anytime	Beginning of tasks	
Type of speeds	$[s_{\min}, s_{\max}]$	Continuous	-	
Type of speeds	$\{s_1,, s_m\}$	VDD-HOPPING	Discrete, Incremental	

- CONTINUOUS: great for theory
- Other "discrete" models more realistic
- VDD-HOPPING simulates CONTINUOUS
- Incremental is a special case of Discrete with equally-spaced speeds: for all $1 \leq q < m$, $s_{q+1} s_q = \delta$

Tasks

- DAG: $\mathcal{G} = (V, E)$
- n = |V| tasks T_i of weight $w_i = \int_{t_i d_i}^{t_i} s_i(t) dt$
- d_i : task duration; t_i : time of end of execution of T_i



Parameters for T_i scheduled on processor p_i

Makespan

Assume T_i is executed at constant speed s_i

$$d_i = \mathcal{E} xe(w_i, s_i) = \frac{w_i}{s_i}$$

$$t_j + d_i \le t_i$$
 for each $(T_j, T_i) \in E$

Constraint on makespan:

$$t_i \leq D$$
 for each $T_i \in V$

Energy

Energy to execute task T_i once at speed s_i :

$$E_i(s_i) = d_i s_i^3 = w_i s_i^2$$

→ Dynamic part of classical energy models

Bi-criteria problem

- Constraint on deadline: $t_i \leq D$ for each $T_i \in V$
- Minimize energy consumption: $\sum_{i=1}^{n} w_i \times s_i^2$

Complexity results

Minimizing energy with fixed mapping on *p* processors:

- CONTINUOUS: Polynomial for some special graphs, geometric optimization in the general case
- DISCRETE: NP-complete (reduction from 2-partition);
 approximation algorithm
- INCREMENTAL: NP-complete (reduction from 2-partition); approximation algorithm
- VDD-HOPPING: Polynomial (linear programming)

Summary

- Results for CONTINUOUS, but not very practical
- In real life, DISCRETE model (DVFS)
- VDD-HOPPING: good alternative, mixing two consecutive modes, smoothes out the discrete nature of modes
- INCREMENTAL: alternate (and simpler in practice) solution, with one unique speed during task execution; can be made arbitrarily efficient

Outline

- Revisiting the greedy algorithm for independent jobs
- Reclaiming the slack of a schedule
- 3 Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption
- Conclusion

Framework

- DAG: $\mathcal{G} = (V, E)$
- n = |V| tasks T_i of weight w_i

- p identical processors fully connected
- DVFS: interval of available continuous speeds $[s_{min}, s_{max}]$
- One speed per task

 \bullet (I will not discuss results for the $VDD ext{-}HOPPING$ model)

Makespan

Execution time of T_i at speed s_i :

$$d_i = \frac{w_i}{s_i}$$

If T_i is executed twice on the same processor at speeds s_i and s'_i :

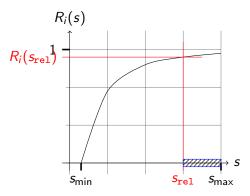
$$d_i = \frac{w_i}{s_i} + \frac{w_i}{s_i'}$$

Constraint on makespan:

end of execution before deadline D

Reliability

- Transient fault: local, no impact on the rest of the system
- Reliability R_i of task T_i as a function of speed s
- Threshold reliability (and hence speed s_{rel})



Re-execution: a task is re-executed on the same processor, just after its first execution

With two executions, reliability R_i of task T_i is:

$$R_i = 1 - (1 - R_i(s_i))(1 - R_i(s_i'))$$

Constraint on reliability:

Reliability: $R_i \geq R_i(s_{rel})$, and at most one re-execution

Energy

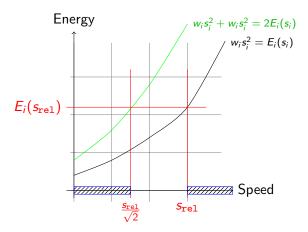
• Energy to execute task T_i once at speed s_i :

$$E_i(s_i) = w_i s_i^2$$

- → Dynamic part of classical energy models
- With re-executions, it is natural to take the worst-case scenario:

Energy:
$$E_i = w_i \left(s_i^2 + s_i'^2 \right)$$

Energy and reliability: set of possible speeds



TRI-CRIT-CONT

Given
$$G = (V, E)$$

Find

- A schedule of the tasks
- A set of tasks $I = \{i \mid T_i \text{ is executed twice}\}$
- Execution speed s_i for each task T_i
- Re-execution speed s'_i for each task in I

such that

$$\sum_{i \in I} w_i (s_i^2 + s_i'^2) + \sum_{i \notin I} w_i s_i^2$$

is minimized, while meeting reliability and deadline constraints

Complexity results

- One speed per task
- Re-execution at same speed as first execution, i.e., $s_i = s_i'$

- TRI-CRIT-CONT is NP-hard even for a linear chain, but not known to be in NP (because of CONTINUOUS model)
- Polynomial-time solution for a fork

Energy-reducing heuristics

Two steps:

- Mapping (NP-hard) → List scheduling
- Speed scaling + re-execution (NP-hard) → Energy reducing

- The list-scheduling heuristic maps tasks onto processors at speed s_{max} , and we keep this mapping in step two
- Step two = slack reclamation! Use of deceleration and re-execution

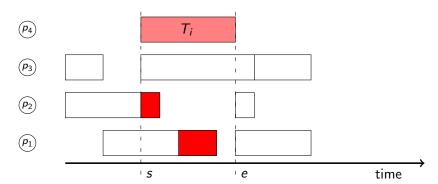
Deceleration and re-execution

• Deceleration: select a set of tasks that we execute at speed $\max(s_{\texttt{rel}}, s_{\texttt{max}} \frac{\max_{i=1..n} t_i}{D})$: slowest possible speed meeting both reliability and deadline constraints

• Re-execution: greedily select tasks for re-execution

Super-weight (SW) of a task

- SW: sum of the weights of the tasks (including T_i) whose execution interval is included into T_i 's execution interval
- SW of task slowed down = estimation of the total amount of work that can be slowed down together with that task



Selected heuristics

- A.SUS-Crit: efficient on DAGs with low degree of parallelism
 - Set the speed of every task to $\max(s_{rel}, s_{max} \frac{\max_{i=1...n} t_i}{D})$
 - Sort the tasks of every critical path according to their SW and try to re-execute them
 - Sort all the tasks according to their weight and try to re-execute them
- B.SUS-Crit-Slow: good for highly parallel tasks: re-execute, then decelerate
 - Sort the tasks of every critical path according to their SW and try to re-execute them. If not possible, then try to slow them down
 - Sort all tasks according to their weight and try to re-execute them. If not possible, then try to slow them down

Results

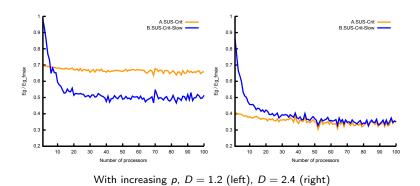
We compare the impact of:

- the number of processors p
- the ratio D of the deadline over the minimum deadline D_{\min} (given by the list-scheduling heuristic at speed s_{\max})

on the output of each heuristic

Results normalized by heuristic running each task at speed s_{max} ; the lower the better

Results



- A better when number of processors is small
- B better when number of processors is large
- Superiority of B for tight deadlines: decelerates critical tasks that cannot be re-executed

Summary

- Tri-criteria energy/makespan/reliability optimization problem
- Various theoretical results
- Two-step approach for polynomial-time heuristics:
 - List-scheduling heuristic
 - Energy-reducing heuristics

 Two complementary energy-reducing heuristics for TRI-CRIT-CONT

Outline

- Revisiting the greedy algorithm for independent jobs
- 2 Reclaiming the slack of a schedule
- Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption
- 6 Conclusion

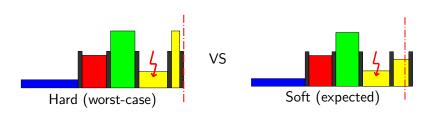
Framework

- Execution of a divisible task (W operations)
- Failures may occur
 - Transient faults
 - Resilience through checkpointing
- Objective: minimize expected energy consumption $\mathbb{E}(E)$, given a deadline bound D

- Probabilistic nature of failure hits: expectation of energy consumption is natural (average cost over many executions)
- Deadline bound: two relevant scenarios (soft or hard deadline)

Soft vs hard deadline

- Soft deadline: met in expectation, i.e., $\mathbb{E}(T) \leq D$ (average response time)
- Hard deadline: met in the worst case, i.e., $T_{wc} \leq D$



Conclusion

Execution time, one single chunk

One single chunk of size W

- Checkpoint overhead: execution time T_C
- Instantaneous failure rate: λ
- First execution at speed s: $T_{\text{exec}} = \frac{W}{s} + T_C$
- Failure probability: $P_{\text{fail}} = \lambda T_{\text{exec}} = \lambda (\frac{W}{s} + T_C)$
- In case of failure: re-execute at speed σ : $T_{\text{reexec}} = \frac{W}{\sigma} + T_C$
- And we assume success after re-execution
- $\mathbb{E}(T) = T_{\text{exec}} + P_{\text{fail}} T_{\text{reexec}} = (\frac{W}{s} + T_C) + \lambda (\frac{W}{s} + T_C) (\frac{W}{\sigma} + T_C)$
- $T_{wc} = T_{\text{exec}} + T_{\text{reexec}} = (\frac{W}{s} + T_C) + (\frac{W}{\sigma} + T_C)$

Energy consumption, one single chunk

One single chunk of size W

• Checkpoint overhead: energy consumption E_C

- First execution at speed s: $\frac{W}{s} \times s^3 + E_C = Ws^2 + E_C$
- Re-execution at speed σ : $W\sigma^2 + E_C$, with probability P_{fail} $\left(P_{\text{fail}} = \lambda T_{\text{exec}} = \lambda \left(\frac{W}{s} + T_C\right)\right)$

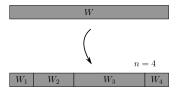
• $\mathbb{E}(E) = (Ws^2 + E_C) + \lambda \left(\frac{W}{s} + T_C\right) \left(W\sigma^2 + E_C\right)$

Multiple chunks

- Execution times: sum of execution times for each chunk (worst-case or expected)
- Expected energy consumption: sum of expected energy for each chunk
- Coherent failure model: consider two chunks $W_1 + W_2 = W$
- Probability of failure for first chunk: $P_{\text{fail}}^1 = \lambda (\frac{W_1}{s} + T_C)$
- For second chunk: $P_{\mathrm{fail}}^2 = \lambda (\frac{W_2}{s} + T_C)$
- With a single chunk of size W: $P_{\text{fail}} = \lambda (\frac{W}{s} + T_C)$, differs from $P_{\text{fail}}^1 + P_{\text{fail}}^2$ only because of extra checkpoint
- Trade-off: many small chunks (more T_C to pay, but small re-execution cost) vs few larger chunks (fewer T_C, but increased re-execution cost)

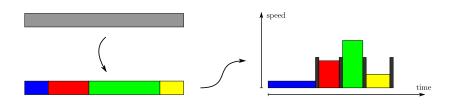
Optimization problem

- Decisions that should be taken before execution:
 - Chunks: how many (n)? which sizes $(W_i \text{ for chunk } i)$?
 - Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?
- Input: W, T_C (checkpointing time), E_C (energy spent for checkpointing), λ (instantaneous failure rate), D (deadline)



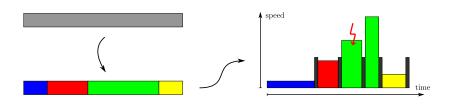
Optimization problem

- Decisions that should be taken before execution:
 - Chunks: how many (n)? which sizes $(W_i \text{ for chunk } i)$?
 - Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?
- Input: W, T_C (checkpointing time), E_C (energy spent for checkpointing), λ (instantaneous failure rate), D (deadline)



Optimization problem

- Decisions that should be taken before execution:
 - Chunks: how many (n)? which sizes $(W_i \text{ for chunk } i)$?
 - Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?
- Input: W, T_C (checkpointing time), E_C (energy spent for checkpointing), λ (instantaneous failure rate), D (deadline)

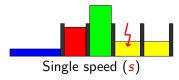


Models

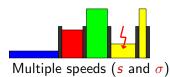
Chunks

VS Multiple chunks (n and W_i 's)

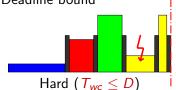
Speed per chunk



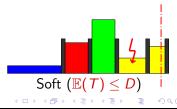
VS



Deadline bound



VS



Single chunk and single speed

Consider first that $s = \sigma$ (single speed): need to find optimal speed

- $\mathbb{E}(E)$ is a function of s: $\mathbb{E}(E)(s) = (Ws^2 + E_C)(1 + \lambda(\frac{W}{s} + T_C))$
- Lemma: this function is convex and has a unique minimum s^* (function of λ , W, E_c , T_c)

$$\begin{split} s^{\star} &= \frac{\lambda W}{6(1+\lambda T_C)} \left(\frac{-(3\sqrt{3}\sqrt{27a^2-4a}-27a+2)^{1/3}}{2^{1/3}} - \frac{2^{1/3}}{(3\sqrt{3}\sqrt{27a^2-4a}-27a+2)^{1/3}} - 1 \right), \\ &\text{where } a = \lambda E_C \left(\frac{2(1+\lambda T_C)}{\lambda W} \right)^2 \end{split}$$

- $\mathbb{E}(T)$ and T_{wc} : decreasing functions of s
- Minimum speed s_{exp} and s_{wc} required to match deadline D (function of D, W, T_c , and λ for s_{exp})
- \rightarrow Optimal speed: maximum between s^* and s_{exp} or s_{wc}

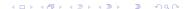
Consider now that $s \neq \sigma$ (multiple speeds): two unknowns

•
$$\mathbb{E}(E)$$
 is a function of s and σ :
$$\mathbb{E}(E)(s,\sigma) = (Ws^2 + E_C) + \lambda(\frac{W}{s} + T_C)(W\sigma^2 + E_C)$$

- Lemma: energy minimized when deadline tight (both for wc and exp)
- $\sim \sigma$ expressed as a function of s:

$$\sigma_{\rm exp} = \frac{\lambda W}{\frac{D}{s} + T_{\rm C}} - (1 + \lambda T_{\rm C}), \quad \sigma_{\rm wc} = \frac{W}{(D - 2T_{\rm C})s - W}s$$

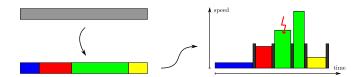
 \rightarrow Minimization of single-variable function, can be solved numerically (no expression of optimal s)



General problem with multiple chunks

- Divisible task of size W
- Split into *n* chunks of size W_i : $\sum_{i=1}^n W_i = W$
- Chunk i is executed once at speed s_i , and re-executed (if necessary) at speed σ_i
- Unknowns: n, W_i , s_i , σ_i

•
$$\mathbb{E}(E) = \sum_{i=1}^{n} (W_i s_i^2 + E_C) + \lambda \sum_{i=1}^{n} \left(\frac{W_i}{s_i} + T_C \right) (W_i \sigma_i^2 + E_C)$$



Multiple chunks and single speed

With a single speed, $\sigma_i = s_i$ for each chunk

- Theorem: in optimal solution, n equal-sized chunks $(W_i = \frac{W}{n})$, executed at same speed $s_i = s$
 - Proof by contradiction: consider two chunks W_1 and W_2 executed at speed s_1 and s_2 , with either $s_1 \neq s_2$, or $s_1 = s_2$ and $W_1 \neq W_2$
 - \Rightarrow Strictly better solution with two chunks of size $w = (W_1 + W_2)/2$ and same speed s
- Only two unknowns, s and n
- Minimum speed with n chunks: $s_{exp}^{\star}(n) = w \frac{1 + 2\lambda T_C + \sqrt{4\frac{\lambda D}{n} + 1}}{2(D nT_C(1 + \lambda T_C))}$
- ightarrow Minimization of double-variable function, can be solved numerically both for expected and hard deadline

Multiple chunks and multiple speeds

Need to find n, W_i , s_i , σ_i

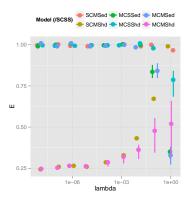
- With expected deadline:
 - All re-execution speeds are equal $(\sigma_i = \sigma)$ and tight deadline
 - All chunks have same size and are executed at same speed
- WIth hard deadline:
 - If $s_i = s$ and $\sigma_i = \sigma$, then all W_i 's are equal
 - Conjecture: equal-sized chunks, same first-execution / re-execution speeds
- σ as a function of s, bound on s given n
- \rightarrow Minimization of double-variable function, can be solved numerically

Simulation settings

- Large set of simulations: illustrate differences between models
- Maple software to solve problems
- ullet We plot relative energy consumption as a function of λ
 - The lower the better
 - Given a deadline constraint (hard or expected), normalize with the result of single-chunk single-speed
 - Impact of the constraint: normalize expected deadline with hard deadline

Parameters varying within large ranges

Comparison with single-chunk single-speed

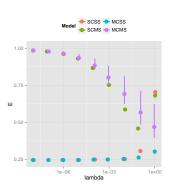


• Results identical for any value of W/D

For expected deadline, with

- small λ ($< 10^{-2}$), using multiple chunks or multiple speeds do not improve energy ratio: re-execution term negligible; increasing λ : improvement with multiple chunks
- For hard deadline, better to run at high speed during second execution: use multiple speeds; use multiple chunks if frequent failures

Expected vs hard deadline constraint



- Important differences for single speed models, confirming previous conclusions: with hard deadline, use multiple speeds
- Multiple speeds: no difference for small λ: re-execution at maximum speed has little impact on expected energy consumption; increasing λ: more impact of re-execution, and expected deadline may use slower re-execution speed, hence reducing energy consumption

Outline

- Revisiting the greedy algorithm for independent jobs
- 2 Reclaiming the slack of a schedule
- Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption
- Conclusion

Conclusion

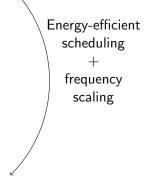
- ONLINE-GREEDY and OFFLINE-GREEDY for power: tight approximation factor for any p, extends long series of papers and completely solves N₃ minimization problem
- Different energy models, from continuous to discrete (through VDD-hopping and incremental)
- Tri-criteria heuristics with re-execution to deal with reliability
- Checkpointing techniques for reliability while minimizing energy consumption

On-going and future research directions

- Investigate other reliability models (for instance, local constraints on reliability of each task, or global reliability of success of the execution of the DAG)
- Consider both re-execution and replication (recent results for linear chains and independent tasks: approximation algorithms)

 Checkpointing at the exascale: find the optimal checkpointing period (with the goal of minimizing the energy consumption)

What we had:



What we aim at:

