A different re-execution speed can help

Anne Benoit, Aurélien Cavelan, Valentin Le Fèvre, Yves Robert, Hongyang Sun

LIP, ENS de Lyon, France

PASA Workshop, in conjunction with ICPP'16 August 16, 2016

- Large-scale platforms: increasingly subject to errors
- Major challenge for Exascale: frequent striking of silent errors
- How to deal with these errors? Verification + Checkpoint/Restart
- Verification mechanism: general-purpose (replication, triplication) or application-specific
- *Verified checkpoints*: a verification is performed just before each checkpoint

Silent vs Fail-stop errors

- C: time to checkpoint; λ: error rate (platform MTBF μ = 1/λ);
 V: time to verify; R: time to recover
- Optimal checkpointing period W for fail-stop errors (Young/Daly): $W = \sqrt{2C/\lambda} (V = 0)$

• Silent errors: $W = \sqrt{(V+C)/\lambda} (C \rightarrow V + C)$; missing factor 2)

- Power requirement of current petascale platforms = small town
- Need to reduce energy consumption of future platforms
- Popular technique: dynamic voltage and frequency scaling (DVFS)
- Lower speed \rightarrow energy savings: when computing at speed σ , power proportional to σ^3 and execution time proportional to $1/\sigma \rightarrow$ (dynamic) energy proportional to σ^2
- Also account for static energy: trade-offs to be found
- Realistic approach: minimize energy while guaranteeing a performance bound

- Power requirement of current petascale platforms = small town
- Need to reduce energy consumption of future platforms
- Popular technique: dynamic voltage and frequency scaling (DVFS)
- Lower speed \rightarrow energy savings: when computing at speed σ , power proportional to σ^3 and execution time proportional to $1/\sigma \rightarrow$ (dynamic) energy proportional to σ^2
- Also account for static energy: trade-offs to be found
- Realistic approach: minimize energy while guaranteeing a performance bound
- \Rightarrow At which speed should we execute the workload?

- Model and optimization problem
- Optimal pattern size and speeds
- Simulations
- Extensions: both fail-stop and silent errors
- Conclusion

- Divisible-load applications
- Subject to silent data corruption
- Checkpoint/restart strategy: periodic patterns that repeat over time
- Verified checkpoints
- Is it better to use two different speeds rather than only one? What are the optimal checkpointing period and optimal execution speeds?

• Set of speeds $S = \{s_1, \dots, s_K\}$: $\sigma_1 \in S$ speed for first execution, $\sigma_2 \in S$ speed for re-executions

- Set of speeds $S = \{s_1, \dots, s_K\}$: $\sigma_1 \in S$ speed for first execution, $\sigma_2 \in S$ speed for re-executions
- Silent errors: exponential distribution of rate λ

- Set of speeds $S = \{s_1, \dots, s_K\}$: $\sigma_1 \in S$ speed for first execution, $\sigma_2 \in S$ speed for re-executions
- Silent errors: exponential distribution of rate λ
- Verif.: V units of work; checkpointing: time C; recovery: time R

- Set of speeds $S = \{s_1, \dots, s_K\}$: $\sigma_1 \in S$ speed for first execution, $\sigma_2 \in S$ speed for re-executions
- Silent errors: exponential distribution of rate λ
- Verif.: V units of work; checkpointing: time C; recovery: time R
- $P_{\rm idle}$ and $P_{\rm io}$ constant; and $P_{\rm cpu}(\sigma) = \kappa \sigma^3$

- Set of speeds $S = \{s_1, \dots, s_K\}$: $\sigma_1 \in S$ speed for first execution, $\sigma_2 \in S$ speed for re-executions
- Silent errors: exponential distribution of rate λ
- Verif.: V units of work; checkpointing: time C; recovery: time R
- $P_{\rm idle}$ and $P_{\rm io}$ constant; and $P_{\rm cpu}(\sigma) = \kappa \sigma^3$
- Energy for W units of work at speed $\sigma: \frac{W}{\sigma}(P_{idle} + \kappa\sigma^3)$ Energy of a verification at speed $\sigma: \frac{V}{\sigma}(P_{idle} + \kappa\sigma^3)$ Energy of a checkpoint: $C(P_{idle} + P_{io})$ Energy of a recovery: $R(P_{idle} + P_{io})$

Optimization problem BICRIT:

MINIMIZE
$$\frac{\mathcal{E}(W, \sigma_1, \sigma_2)}{W}$$
 s.t. $\frac{\mathcal{T}(W, \sigma_1, \sigma_2)}{W} \leq \rho$,

- *E*(W, σ₁, σ₂) is the expected energy consumed to execute W units of work at speed σ₁, with eventual re-executions at speed σ₂
- *T*(*W*, σ₁, σ₂) is the expected execution time to execute *W* units of
 work at speed σ₁, with eventual re-executions at speed σ₂
- ρ is a performance bound, or admissible degradation factor

Proposition 1

For the BICRIT problem with a single speed,

$$\mathcal{T}(W,\sigma,\sigma) = C + e^{\frac{\lambda W}{\sigma}} \left(\frac{W+V}{\sigma}\right) + \left(e^{\frac{\lambda W}{\sigma}} - 1\right)R$$

Proposition 2

For the BICRIT problem,

$$\mathcal{T}(W,\sigma_1,\sigma_2) = C + \frac{W+V}{\sigma_1} + \left(1 - e^{-\frac{\lambda W}{\sigma_1}}\right) e^{\frac{\lambda W}{\sigma_2}} \left(R + \frac{W+V}{\sigma_2}\right)$$

Proof of Proposition 1

Proof.

The recursive equation to compute $\mathcal{T}(W, \sigma, \sigma)$ writes:

$$\mathcal{T}(W,\sigma,\sigma) = rac{W+V}{\sigma} + p(W/\sigma)(R+\mathcal{T}(W,\sigma,\sigma)) + (1-p(W/\sigma))C,$$

where $p(W/\sigma) = 1 - e^{-\frac{\lambda W}{\sigma}}$. The reasoning is as follows:

- We always execute W units of work followed by the verification, in time $\frac{W+V}{\sigma}$;
- With probability $p(W/\sigma)$, a silent error occurred and is detected, in which case we recover and start anew;
- Otherwise, with probability $1 p(W/\sigma)$, we simply checkpoint after a successful execution.

Solving this equation leads to the expected execution time.

Proof of Proposition 2

Proof.

The recursive equation to compute $\mathcal{T}(W, \sigma_1, \sigma_2)$ writes:

$$\mathcal{T}(W,\sigma_1,\sigma_2) = \frac{W+V}{\sigma_1} + p(W/\sigma_1) \left(R + \mathcal{T}(W,\sigma_2,\sigma_2)\right) + \left(1 - p(W/\sigma_1)\right)C,$$

where $p(W/\sigma_1) = 1 - e^{-\frac{\lambda W}{\sigma_1}}$. The reasoning is as follows:

- We always execute W units of work followed by the verification, in time $\frac{W+V}{\sigma_1}$;
- With probability p(W/σ₁), a silent error occurred and is detected, in which case we recover and start anew at speed σ₂;
- Otherwise, with probability $1 p(W/\sigma_1)$, we simply checkpoint after a successful execution.

Solving this equation leads to the expected execution time.

Proposition 3

For the BICRIT problem,

$$\begin{split} \mathcal{E}(W,\sigma_{1},\sigma_{2}) &= \left(C + \left(1 - e^{-\frac{\lambda W}{\sigma_{1}}}\right)e^{\frac{\lambda W}{\sigma_{2}}}R\right)\left(P_{\text{io}} + P_{\text{idle}}\right) \\ &+ \frac{W + V}{\sigma_{1}}(\kappa\sigma_{1}^{3} + P_{\text{idle}}) \\ &+ \frac{W + V}{\sigma_{2}}(1 - e^{-\frac{\lambda W}{\sigma_{1}}})e^{\frac{\lambda W}{\sigma_{2}}}(\kappa\sigma_{2}^{3} + P_{\text{idle}}) \end{split}$$

Power spent during checkpoint or recovery: $P_{io} + P_{idle}$; power spent during computation and verification at speed σ : $P_{cpu}(\sigma) + P_{idle} = \kappa \sigma^3 + P_{idle}$. From Proposition 2, we get the expression of $\mathcal{E}(W, \sigma_1, \sigma_2)$. To get closed-form expression for optimal value of W, use of first-order approximations, using Taylor expansion $e^{\lambda W} = 1 + \lambda W + O(\lambda^2 W^2)$:

$$\frac{\mathcal{T}(W,\sigma_{1},\sigma_{2})}{W} = \frac{1}{\sigma_{1}} + \frac{\lambda W}{\sigma_{1}\sigma_{2}} + \frac{\lambda R}{\sigma_{1}} + \frac{\lambda V}{\sigma_{1}\sigma_{2}} + \frac{C + V/\sigma_{1}}{W} + O(\lambda^{2}W) \quad (1)$$

$$\frac{\mathcal{E}(W,\sigma_{1},\sigma_{2})}{W} = \frac{\kappa\sigma_{1}^{3} + P_{\text{idle}}}{\sigma_{1}} + \frac{\lambda W}{\sigma_{1}\sigma_{2}}(\kappa\sigma_{2}^{3} + P_{\text{idle}})$$

$$+ \frac{\lambda R}{\sigma_{1}}(P_{\text{io}} + P_{\text{idle}}) + \frac{\lambda V}{\sigma_{1}\sigma_{2}}(\kappa\sigma_{1}^{3} + P_{\text{idle}})$$

$$+ \frac{C(P_{\text{io}} + P_{\text{idle}}) + V(\kappa\sigma_{1}^{3} + P_{\text{idle}})/\sigma_{1}}{W} + O(\lambda^{2}W) \quad (2)$$

Theorem 1

Given σ_1, σ_2 and ρ , consider the equation $aW^2 + bW + c = 0$, where $a = \frac{\lambda}{\sigma_1 \sigma_2}$, $b = \frac{1}{\sigma_1} + \lambda \left(\frac{R}{\sigma_1} + \frac{V}{\sigma_1 \sigma_2}\right) - \rho$ and $c = C + \frac{V}{\sigma_1}$.

- If there is no positive solution to the equation, i.e., $b > -2\sqrt{ac}$, then BICRIT has no solution.
- Otherwise, let W_1 and W_2 be the two solutions of the equation with $W_1 \leq W_2$ (at least W_2 is positive and possibly $W_1 = W_2$). Then, the optimal pattern size is

$$W_{\rm opt} = \min(\max(W_1, W_e), W_2), \tag{3}$$

where
$$W_e = \sqrt{\frac{C(P_{io} + P_{idle}) + \frac{V}{\sigma_1}(\kappa \sigma_1^3 + P_{idle})}{\frac{\lambda}{\sigma_1 \sigma_2}(\kappa \sigma_2^3 + P_{idle})}}$$
. (4)

Proof.

Neglecting lower-order terms, Equation (2) is minimized when $W = W_e$ given by Equation (4).

Two cases:

- ρ is too small \Rightarrow no solution
- $W_2 > 0$:
 - $W_e < W_1$ • $W_1 \le W_e \le W_2$
 - $W_e > W_2$

Using that the energy overhead is a convex function, we get the result (W_{opt} is in the interval [W_1 , W_2])

- Speed pair (s_i, s_j) , with $1 \le i, j \le K$: $\rho_{i,j}$ is the minimum performance bound for which the BICRIT problem with $\sigma_1 = s_i$ and $\sigma_2 = s_j$ admits a solution
- For each speed pair, compute W₁, W₂ the roots of aW² + bW + c; discard pairs with ρ < ρ_{i,j}
- For each remaining speed pair (σ₁, σ₂), compute W_{opt} and associated energy overhead
- Select speed pair (σ_1^*, σ_2^*) that minimizes energy overhead
- Time $O(K^2)$, where K is the number of available speeds, usually a small constant

• Platform parameters, based on real platforms

Platform	λ	C = R	V	
Hera	3.38e-6	300 <i>s</i>	15.4	
Atlas	7.78e-6	439 <i>s</i>	9.1	
Coastal	2.01e-6	1051 <i>s</i>	4.5	
Coastal SSD	2.01e-6	2500 <i>s</i>	180.0	

• Power parameters, determined by the processor used

Processor	Normalized speeds	$P(\sigma) \text{ (mW)}$
Intel Xscale	0.15, 0.4, 0.6, 0.8, 1	$1550\sigma^{3} + 60$
Transmeta Crusoe	0.45, 0.6, 0.8, 0.9, 1	$5756\sigma^{3} + 4.4$

• Default values: $P_{\rm io}$ equivalent to power used when running at lowest speed; $\rho = 3$

Simulation results, using Hera/XScale configuration

A different re-execution speed does help!

And all speed pairs can be optimal solutions (depending on ρ)!

σ_1	Best σ_2	$W_{\rm opt}$	$\frac{\mathcal{E}(W_{opt},\sigma_1,\sigma_2)}{W_{opt}}$		σ_1	Best σ_2	$W_{\rm opt}$	$\frac{\mathcal{E}(W_{opt},\sigma_1,\sigma_2)}{W_{opt}}$
0.15	0.4	1711	466	-	0.15	-	-	-
0.4	0.4	2764	416		0.4	0.4	2764	416
0.6	0.4	3639	674		0.6	0.4	3639	674
0.8	0.4	4627	1082		0.8	0.4	4627	1082
1	0.4	5742	1625		1	0.4	5742	1625
$\rho = 8$					ho = 3			

σ_1	Best σ_2	$W_{\rm opt}$	$\frac{\mathcal{E}(W_{opt},\sigma_1,\sigma_2)}{W_{opt}}$	σ_1	Best σ_2	$W_{\rm opt}$	$\frac{\mathcal{E}(W_{opt},\sigma_1,\sigma_2)}{W_{opt}}$
0.15	-	-	-	0.15	-	-	-
0.4	-	-	-	0.4	-	-	-
0.6	0.8	4251	690	0.6	-	-	-
0.8	0.4	4627	1082	0.8	0.4	4627	1082
1	0.4	5742	1625	1	0.4	5742	1625
ho=1.775			ho=1.4				

Simulations - Impact of the parameters (1)

Figure: The optimal solution (speed pair, pattern size, and energy overhead) as a function of the checkpointing time c in Atlas/Crusoe configuration.

Figure: The optimal solution (speed pair, pattern size, and energy overhead) as a function of the verification time v in Atlas/Crusoe configuration.

Dotted line: one single speed; up to 35% improvement with two speeds

Anne.Benoit@ens-lyon.fr

A different re-execution speed can help

PASA'16 19 / 25

Simulations - Impact of the parameters (2)

Figure: The optimal solution (speed pair, pattern size, and energy overhead) as a function of the error rate λ in Atlas/Crusoe configuration.

Figure: The optimal solution (speed pair, pattern size, and energy overhead) as a function of the performance bound ρ in Atlas/Crusoe configuration.

Two speeds: checkpoint less frequently and provide energy savings

Anne.Benoit@ens-lyon.fr

PASA'16 20 / 25

Simulations - Impact of the parameters (3)

Figure: The optimal solution (speed pair, pattern size, and energy overhead) as a function of the idle power Pidla in Atlas/Crusoe configuration.

Figure: The optimal solution (speed pair, pattern size, and energy overhead) as a function of the I/O power Pio in Atlas/Crusoe configuration.

Increase of W and E with P_{idle} and Pio; P_{io} has no impact on speeds

Anne.Benoit@ens-lyon.fr

A different re-execution speed can help

PASA'16 21 / 25

- f: proportion of fail-stop errors
- s: proportion of silent errors

Proposition 4

With fail-stop and silent errors,

$$\frac{\mathcal{T}(W,\sigma_{1},\sigma_{2})}{W} = \dots + \left(\frac{(f+s)}{\sigma_{1}\sigma_{2}} - \frac{f}{2\sigma_{1}^{2}}\right)\lambda W + O(\lambda^{2}W).$$
(5)
$$\frac{\mathcal{E}(W,\sigma_{1},\sigma_{2})}{W} = \dots + \left(\frac{(f+s)(\kappa\sigma_{2}^{3} + P_{\mathsf{idle}})}{\sigma_{1}\sigma_{2}} - \frac{f(\kappa\sigma_{1}^{3} + P_{\mathsf{idle}})}{2\sigma_{1}^{2}}\right)\lambda W + O(\lambda^{2}W)$$
(6)

For BICRIT , the first-order approximation leads to a solution iff

$$\left(2\left(1+\frac{s}{f}\right)\right)^{-1/2} < \frac{\sigma_2}{\sigma_1} < 2\left(1+\frac{s}{f}\right)$$

Use second-order approximation? Open problem in the general case!

Theorem 2

When considering only fail-stop errors with rate λ , the optimal pattern size W to minimize the time overhead $\frac{\mathcal{T}(W,\sigma,2\sigma)}{W}$ is

$$W_{
m opt} = \sqrt[3]{rac{12C}{\lambda^2}\sigma}$$

- Young/Daly's formula: $W_{\rm opt} = \sqrt{2C/\lambda}\sigma = O(\lambda^{-1/2})$
- Here: $W_{\text{opt}} = O(\lambda^{-2/3})$

- A different re-execution speed indeed helps saving energy while satisfying a performance constraint
- Silent errors: extension of Young/Daly formula → general closed-form solution to get optimal speed pair and optimal checkpointing period (first-order)
- Extensive simulations: up to 35% energy savings, any speed pair can be optimal
- BICRIT still open for general case with both silent and fail-stop errors
- Interesting case with fail-stop errors and double re-execution speed: $O(\lambda^{-2/3})$ vs $O(\lambda^{-1/2})$
- New methods needed to capture the general case