
Problem statement Theoretical analysis Performance evaluation Conclusion

Two-level checkpointing and partial verifications
for linear task graphs

Anne Benoit, Aurélien Cavelan, Yves Robert and Hongyang Sun

ENS Lyon, France

Anne.Benoit@ens-lyon.fr

http://graal.ens-lyon.fr/˜abenoit

6th Int. Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS15) @ SC’15

November 15, 2015, Austin, TX

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 1/ 23

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit


Problem statement Theoretical analysis Performance evaluation Conclusion

Computing at Exascale

Exascale platform:
105 or 106 nodes, each equipped with 102 or 103 cores
Shorter Mean Time Between Failures (MTBF) µ

Theorem: µp = µind
p for arbitrary distributions

MTBF (individual node) 1 year 10 years 120 years
MTBF (platform of 106 nodes) 30 sec 5 mn 1 h

Need more reliable components!!
Need more resilient techniques!!!

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 2/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Computing at Exascale

Exascale platform:
105 or 106 nodes, each equipped with 102 or 103 cores
Shorter Mean Time Between Failures (MTBF) µ

Theorem: µp = µind
p for arbitrary distributions

MTBF (individual node) 1 year 10 years 120 years
MTBF (platform of 106 nodes) 30 sec 5 mn 1 h

Need more reliable components!!
Need more resilient techniques!!!

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 2/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Two main sources of errors

Fail-stop errors: instantaneous error detection,
e.g., resource crash
Silent errors (aka silent data corruptions),
e.g., soft faults in L1 cache, ALU, double bit flip

Silent error is detected only when corrupted data is activated,
which could happen long after its occurrence /
Detection latency is problematic

Before each checkpoint, run some verification mechanism
(checksum, ECC, coherence tests, TMR, etc)
Silent error is detected by verification
⇒ checkpoint always valid ,

Verified checkpoints, rollback and recovery

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 3/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

One step further and partial verifications

Perform several verifications before each checkpoint:
Pro: silent error is detected earlier in the pattern ,
Con: additional overhead in error-free executions /

0 1 V ∗ 2 i V ∗C i+1 j V ∗C

Guaranteed/perfect verifications (V ∗) can be very expensive!
Partial verifications (V ) are available for many HPC
applications!

Lower accuracy: recall r = #detected errors
#total errors < 1 /

Much lower cost, i.e., V < V ∗ ,

How many intermediate verifications to use and the positions?

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 4/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

One step further and partial verifications

Perform several verifications before each checkpoint:
Pro: silent error is detected earlier in the pattern ,
Con: additional overhead in error-free executions /

0 1 V ∗ 2 i V ∗C i+1 j V ∗C

Guaranteed/perfect verifications (V ∗) can be very expensive!
Partial verifications (V ) are available for many HPC
applications!

Lower accuracy: recall r = #detected errors
#total errors < 1 /

Much lower cost, i.e., V < V ∗ ,

How many intermediate verifications to use and the positions?

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 4/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Two-level checkpointing

Silent errors: use of a lightweight mechanism of in-memory
checkpoints CM

Local copies lost in case of fail-stop errors: use (less frequent)
copies on stable storage (classical disk checkpoints) CD

Always CM before CD : little overhead, enforced in practice
Always V ∗ before CM : all checkpoints are valid
Verifications, memory copies and I/O transfers protected from errors

0 1 V 2 i V ∗CM i+1 j V ∗CMCD

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 5/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Outline

1 Problem statement

2 Theoretical analysis

3 Performance evaluation

4 Conclusion

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 6/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Application and errors

Linear chain of tasks T1,T2, . . . ,Tn

Each task Ti has a weight wi (computational load)
Wi ,j =

∑j
k=i+1 wk : time to execute tasks Ti+1 to Tj

Subject to fail-stop and silent errors, independent and
following a Poisson process with arrival rates λf and λs

pf
i ,j = 1− e−λf Wi,j : probability of having at least a fail-stop

error while executing Ti+1 to Tj

ps
i ,j = 1− e−λsWi,j : idem for silent errors

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 7/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Resilience parameters and objective

Cost of disk checkpointing CD , cost of disk recovery RD

Cost of memory checkpointing CM , cost of memory recovery RM

For simplicity, RM included in RD

Cost V ∗ for guaranteed verification

V for partial verification, with recall r , and g = 1− r is the
proportion of undetected errors

⇒ Decide where to place disk checkpoints, memory checkpoints,
guaranteed verifications and partial verifications, in order to minimize

the expected execution time (or makespan) of the application

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 8/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Outline

1 Problem statement

2 Theoretical analysis

3 Performance evaluation

4 Conclusion

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 9/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Dynamic programming algorithm
Several dynamic programming levels:

First decide where to place disk checkpoints
Then memory checkpoints between any two disk checkpoints
And finally, guaranteed or partial verifications between any
two memory checkpoints

Compute the expected execution time between any two
verifications

Edisk (d2)

Emem(d1, m2)

Everif (d1, m1, v2)

E(d1, m1, v1, v2)

d0 d1 d2m1 m2v1 v2

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 10/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Without partial verifications
Placing disk checkpoints:

Edisk (d2)

Emem(d1, d2)Edisk (d1)

d0 d1 d2

Edisk(d2): expected time needed to successfully execute tasks
T1 to Td2 , where Td2 is followed by V ∗CMCD:

Edisk(d2) = min
0≤d1<d2

{Edisk(d1) + Emem(d1, d2) + CD}

Objective: Edisk(n)
Initialization: Edisk(0) = 0

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 11/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Without partial verifications
Placing memory checkpoints:

Emem(d1, d2)
Emem(d1, m2)

Everif (d1, m1, m2)Emem(d1, m1)

d0 d1 d2m1 m2

Emem(d1,m2): expected time needed to successfully execute
tasks Td1+1 to Tm2 , where Td1 is followed by V ∗CMCD and
Tm2 is followed by V ∗CM :

Emem(d1,m2) = min
d1≤m1<m2

{Emem(d1,m1)+Everif (d1,m1,m2)+CM}

Initialization: Emem(d1, d1) = 0

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 12/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Without partial verifications
Placing additional guaranteed verifications:

Everif (d1, m1, m2)
Everif (d1, m1, v2)

Everif (d1, m1, v1) E(d1, m1, v1, v2)

d1 m1 m2v1 v2

Everif (d1,m1, v2): expected time needed to successfully
execute tasks Tm1+1 to Tv2 , where Td1 is followed by
V ∗CMCD, Tm1 is followed by V ∗CM , Tv2 is followed by V ∗:

Everif (d1,m1, v2) = min
m1≤v1<v2

{Everif (d1,m1, v1)+E (d1,m1, v1, v2)}

Initialization: Everif (d1,m1,m1) = 0

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 13/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Without partial verifications

Expected execution time between two verifications E (d1,m1, v1, v2),
knowing positions of last CD and last CM :

If pf
v1,v2

, recover from CD

Otherwise, if ps
v1,v2

, detect error at v2 and recover from CM

E (d1,m1, v1, v2) =
pf

v1,v2

(
T lost

v1,v2
+ RD + Emem(d1,m1) + Everif (d1,m1, v1) + E (d1,m1, v1, v2)

)
+
(
1− pf

v1,v2

)(
Wv1,v2 + V ∗

+ ps
v1,v2

(
RM + Everif (d1,m1, v1) + E (d1,m1, v1, v2)

))

Compute T lost
v1,v2

= 1
λf
− Wv1,v2

eλf Wv1,v2 −1
and simplify

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 14/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

And with partial verifications?

Probability g that error remains undetected after partial verification
Need to account fo time lost executing following tasks until error is
detected: compute first values at the right of the current interval
Epartial (d1,m1, v1, p1, v2): expected time needed to execute all tasks
Tp1+1 to Tv2 , tries all positions p2 for next partial verification
Epartial (d1,m1, v1, p1, v2) calls recursively Epartial (d1,m1, v1, p2, v2)
To compute E−(d1,m1, v1, p1, p2, v2), need to know Eleft(v1, p1)
and Eright(d1,m1, v1, p2, v2); Eright can be computed, and Eleft
accounted for separately (independent on nb of partial verifs)

Edisk (d2)

Emem(d1, m2)

Everif (d1, m1, v2)

Epartial (d1, m1, v1, p1, v2)
E−(d1, m1, v1, p1, p2, v2)Eleft (v1, p1) Eright (d1, m1, v1, p2, v2)

d0 d1 d2m1 m2v1 v2p1 p2

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 15/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Outline

1 Problem statement

2 Theoretical analysis

3 Performance evaluation

4 Conclusion

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 16/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Simulation settings

Identical recovery and checkpoint costs: RD = CD and RM = CM

V ∗ = CM (check all data in memory), V = V ∗

100 and r = 0.8

Work W = 25000 seconds, distributed between up to n = 50 tasks:
Uniform: all tasks share the same cost W

n
(matrix multiplication, iterative stencil kernels)
Decrease: task Ti has cost α(n + 1− i)2, where α ≈ 3W

n3

(dense matrix solvers)
HighLow: set of identical tasks with large costs followed by
tasks with small costs

Platforms used to evaluate Scalable Checkpoint/Restart (SCR)
library (Moody et al.):

platform #nodes λf λs CD CM
Hera 256 9.46e-7 3.38e-6 300s 15.4s
Atlas 512 5.19e-7 7.78e-6 439s 9.1s

Coastal 1024 4.02e-7 2.01e-6 1051s 4.5s
Coastal SSD 1024 4.02e-7 2.01e-6 2500s 180.0s

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 17/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1.02

1.04

1.06

1.08

1.1

1.12
Platform Hera

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DV* on Hera

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV* on Hera

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Hera

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1

1.1

1.2

Platform Atlas

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DV* on Atlas

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV* on Atlas

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Atlas

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1.06

1.08

1.1
Platform Coastal

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DV* on Coastal

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV* on Coastal

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Coastal

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1.13

1.14

1.15

1.16

1.17
Platform Coastal SSD

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DV* on Coastal SSD

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV* on Coastal SSD

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Coastal SSD

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications

Figure: Performance of the three algorithms with uniform distribution
Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 18/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1

1.1

1.2

1.3

1.4
Platform Hera

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV* on Hera

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Hera

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications Disk ckpts

Memory ckpts

Verifications

Partials

Platform Hera with A
DMV

 and N=10

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1

1.2

1.4

1.6
Platform Atlas

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns
0

10

20

30

40

Algorithm A
DMV* on Atlas

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Atlas

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications Disk ckpts

Memory ckpts

Verifications

Partials

Platform Atlas with A
DMV

 and N=10

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1

1.1

1.2

1.3

1.4
Platform Coastal

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV* on Coastal

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Coastal

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications Disk ckpts

Memory ckpts

Verifications

Partials

Platform Coastal with A
DMV

 and N=10

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1.1

1.2

1.3

1.4
Platform Coastal SSD

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV* on Coastal SSD

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Coastal SSD

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications Disk ckpts

Memory ckpts

Verifications

Partials

Platform Coastal SSD with A
DMV

 and N=10

Figure: Performance of the three algorithms with decrease distribution
Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 19/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1.02

1.04

1.06

1.08

1.1

1.12
Platform Hera

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV* on Hera

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Hera

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications Disk ckpts

Memory ckpts

Verifications

Partials

Platform Hera with A
DMV

 and N=10

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1

1.1

1.2

Platform Atlas

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns
0

10

20

30

40

Algorithm A
DMV* on Atlas

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Atlas

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications Disk ckpts

Memory ckpts

Verifications

Partials

Platform Atlas with A
DMV

 and N=10

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1.06

1.08

1.1
Platform Coastal

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV* on Coastal

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Coastal

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications Disk ckpts

Memory ckpts

Verifications

Partials

Platform Coastal with A
DMV

 and N=10

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1.13

1.14

1.15

1.16

1.17
Platform Coastal SSD

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV* on Coastal SSD

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50# 

C
he

ck
po

in
ts

 / 
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Coastal SSD

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications Disk ckpts

Memory ckpts

Verifications

Partials

Platform Coastal SSD with A
DMV

 and N=10

Figure: Performance of the three algorithms with highlow distribution
Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 20/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Summary of simulations

More tasks → better performance
Single-level algorithm: Guaranteed verifications everywhere,
except with too many tasks (n = 50 on Hera) or cost of
verification too high (Coastal SSD)
Two-level algorithms: Use of memory checkpoints drastically
reduces makespan
With partial verifications: Need to use a lot of them (smaller
recall): useful only when enough tasks; limited impact, except
for Coastal SSD with higher checkpointing and verification
costs

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 21/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Outline

1 Problem statement

2 Theoretical analysis

3 Performance evaluation

4 Conclusion

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 22/ 23



Problem statement Theoretical analysis Performance evaluation Conclusion

Conclusion

Two-level checkpointing scheme to cope with fail-stop and
silent errors
Combines disk/memory checkpoints with guaranteed/partial
verifications
Theoretically: multi-level polynomial-time dynamic
programming algorithm for linear chains (O(n6))
Practically: benefit of combined approach with realistic
parameters, fast in practice

Future directions
Usefulness of the approach on general application workflows
Need of efficient polynomial-time heuristics

Research report RR-8794 available at graal.ens-lyon.fr/˜abenoit

Anne.Benoit@ens-lyon.fr PMBS’15 Two-level checkpointing and partial verifications 23/ 23

graal.ens-lyon.fr/~abenoit

	Problem statement
	Theoretical analysis
	Performance evaluation
	Conclusion

