# Improving Locality-Aware Scheduling with Acyclic Directed Graph Partitioning

M. Yusuf Özkaya<sup>1</sup>, **Anne Benoit**<sup>1,2</sup>, Ümit V. Çatalyürek<sup>1</sup>

<sup>1</sup>School of Computational Science and Engineering, Georgia Institute of Technology, GA, USA <sup>2</sup>LIP. ENS Lyon, France

PPAM 2019 September 8-11, 2019 – Bialystok, Poland





### Complexity of computations vs data movements

```
for (i=1; i<N-1; i++)

for (j=1;j<N-1; j++)

A[i][j] = A[i][j-1] + A[i-1][j];

Untiled version
```

```
for(it = 1; it<N-1; it +=B)

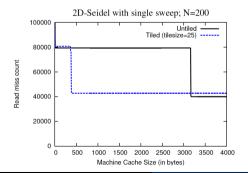
for(jt = 1; jt<N-1; jt +=B)

for(i = it; i < min(it+B, N-1); i++)

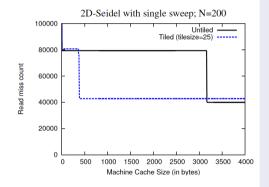
for(j = jt; j < min(jt+B, N-1); j++)

A[i][j] = A[i-1][j] + A[i][j-1];
```

Tiled Version



# Complexity of computations vs data movements



- Both have comp. complexity  $(N-1)^2$  OPs
  - Data movement cost different for two versions
  - Also depends on cache size
- Question: Can we achieve lower cache misses than this tiled version? How can we know when much further improvement is not possible?
- Question: What is the lowest achievable data movement cost among all possible equivalent versions of a #computation?
- Current performance tools and methodologies do not address this

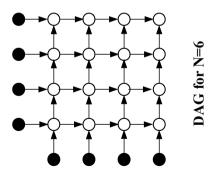




### Modeling data move complexity: DAG

```
for (i=1; i<N-1; i++)
for (j=1;j<N-1; j++)
A[i][j] = A[i][j-1] + A[i-1][j];
```

#### Untiled version



```
for(it = 1; it<N-1; it +=B)
for(jt = 1; jt<N-1; jt +=B)
for(i = it; i < min(it+B, N-1); i++)
for(j = jt; j < min(jt+B, N-1); j++)
A[i][j] = A[i-1][j] + A[i][j-1];
Tiled Version
```

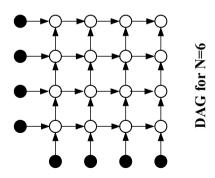
- DAG abstraction: Vertex = operation, Edges = data dep.
- 2-level memory hierarchy with *C* fast mem. locations and infinite slow mem. locations
  - To compute a vertex, predecessor must hold values in fast memory
  - Limited fast memory ⇒ computed values may need to be temporarily stored in slow memory and reloaded
- Data movement complexity of DAG:
   Min. #loads+#stores among all possible valid schedules

# Modeling data move complexity: DAG

Anne.Benoit@ens-lvon.fr

```
for (i=1; i<N-1; i++)
 for (j=1;j< N-1; j++)
  A[i][i] = A[i][i-1] + A[i-1][i];
```

Untiled version



for(it = 1: it<N-1: it +=B) for(it = 1; it<N-1; it +=B) for(i = it; i < min(it+B, N-1); i++) for(j = jt; j < min(jt+B, N-1); j++)A[i][i] = A[i-1][i] + A[i][i-1];Tiled Version

**Develop upper bounds on min-cost** 

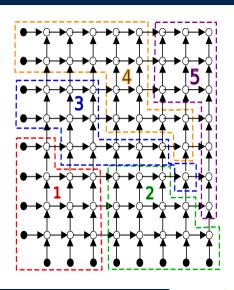
Minimum possible data movement cost?

No known effective solution to problem

**Develop lower bounds on min-cost** 

# Data movement upper bounds

- Perform acyclic partitioning of the DAG
- Assign each node in a single acyclic part
- Acyclic partitioning of a DAG  $\approx$  Tiling the iteration space
- Each part is acyclic
  - Can be executed atomically
  - No cyclic data dependence among parts
- Topologically sorted order of the acyclic parts
  - $\Rightarrow$  a valid execution order
- Rely on Acyclic DAG Partitioner



### Outline

- Model
- Scheduling strategies and experiments
- Conclusion





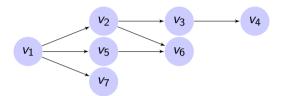
### Problem

#### Model

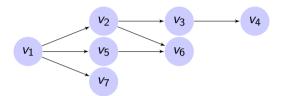
- Directed acyclic task graph: G = (V, E)
- For  $v_i \in V$ ,
  - predecessors:  $pred_i = \{v_i \mid (v_i, v_i) \in E\}$ ; cannot start until all predecessors have completed
  - successors:  $succ_i = \{v_j \mid (v_i, v_j) \in E\}$
  - size of (scratch) memory:  $w_i$
  - produces a data of size out; that will be communicated to all of its successors
  - total size of input:  $in_i = |pred_i|$  if  $out_i = 1$  for all tasks
- Fast memory of size C, and slow memory large enough
- Compute  $v_i \in V$ : must access  $in_i + w_i + out_i$  fast memory locations
- Limited fast memory → some computed values may need to be temporarily stored in slow memory and reloaded later → cache misses

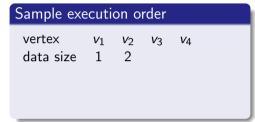


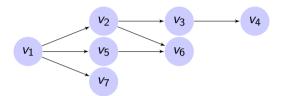


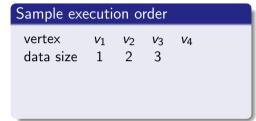


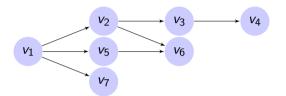






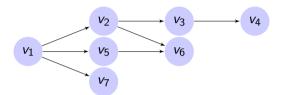








For simplicity in the presentation:  $w_i = 0$  and  $out_i = 1$ 

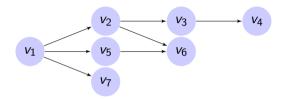


### Sample execution order

vertex  $v_1$   $v_2$   $v_3$   $v_4$  data size 1 2 3 4

If C=3, one will need to evict a data from the cache, hence resulting in a **cache miss** 

For simplicity in the presentation:  $w_i = 0$  and  $out_i = 1$ 



### Sample execution order

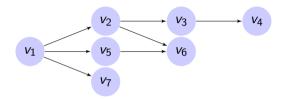
vertex  $v_1$   $v_2$   $v_3$   $v_4$  data size 1 2 3 4

If C=3, one will need to evict a data from the cache, hence resulting in a **cache miss** 

#### Livesize and traversals

- Livesize (live set size): minimum cache size so that there are no cache misses
- Traversal  $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5 \rightarrow v_6 \rightarrow v_7$ , livesize = 4

For simplicity in the presentation:  $w_i = 0$  and  $out_i = 1$ 



### Sample execution order

vertex  $v_1$   $v_2$   $v_3$   $v_4$  data size 1 2 3 4

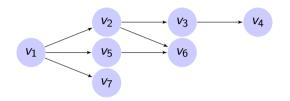
If C = 3, one will need to evict a data from the cache, hence resulting in a **cache miss** 

#### Livesize and traversals

- Livesize (live set size): minimum cache size so that there are no cache misses
- Traversal  $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5 \rightarrow v_6 \rightarrow v_7$ , livesize = 4
- For another traversal,  $v_1 \rightarrow v_7 \rightarrow v_2 \rightarrow v_5 \rightarrow v_6 \rightarrow v_3 \rightarrow v_4$ , livesize = 3



For simplicity in the presentation:  $w_i = 0$  and  $out_i = 1$ 



### Sample execution order

vertex  $v_1$   $v_2$   $v_3$   $v_4$  data size 1 2 3 4 If C=3, one will need to evict a data from the cache, hence resulting in a **cache miss** 

### Livesize and traversals

- Livesize (live set size): minimum cache size so that there are no cache misses
- Traversal  $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5 \rightarrow v_6 \rightarrow v_7$ , livesize = 4
- For another traversal,  $v_1 \rightarrow v_7 \rightarrow v_2 \rightarrow v_5 \rightarrow v_6 \rightarrow v_3 \rightarrow v_4$ , livesize = 3
- Task  $v_6$  requires 3 cache locations  $\rightarrow$  3 = minimum cache size to execute this DAG



# Cache eviction and optimization problem

#### Cache eviction

- During execution, if livesize > C, data transferred from cache back into slow memory
- The data that will be evicted may affect the number of cache misses
- Given a traversal, the optimal strategy (OPT) consists in evicting the data whose next use will occur farthest in the future during execution [Belady IBM SysJ'66]

#### MINCACHEMISS

- Given a DAG G, a cache of size C, find a **traversal of** G (topological order) that minimizes the number of cache misses when using the OPT strategy
- Finding the optimal traversal to minimize the livesize is an NP-complete problem [Sethi STOC'73], even though it is polynomial on trees [Jacquelin et al. IPDPS'11]





### Outline

- Model
- Scheduling strategies and experiments
- Conclusion





# DAG-partitioning assisted locality-aware scheduling

### A novel approach

- Solution to MINCACHEMISS = *traversal* of the graph
- Instead of looking for a global traversal of the whole graph, we propose to partition the DAG in an acyclic way: V divided in k disjoint subsets, or parts
- Key: have all parts executable without cache misses, hence the only cache misses can be incurred by data on the cut between parts
- Hence: minimize edge cut of the partition (cut edge: endpoints in different parts)

#### Livesize

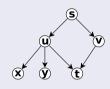
- Livesize for the traversal of a part: memory required to execute whole part, assuming inputs and outputs of the part are evicted if no longer required inside the part
- Partition such that, for each part, the livesize fits in cache



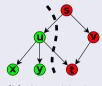


# Acycling DAG partitioner

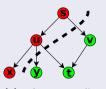
- Minimize number of cache misses: rely on acyclic DAG partitioner
- Input: maximum livesize of a part L<sub>m</sub>







(b) A partitioning ignoring the directions; it is cyclic



(c) An acyclic partitioning

### Multilevel acyclic DAG partitioning

- Recursive bisection until livesize of part  $\leq L_m$
- Multilevel: coarsening, initial partitioning, refinement all acyclic

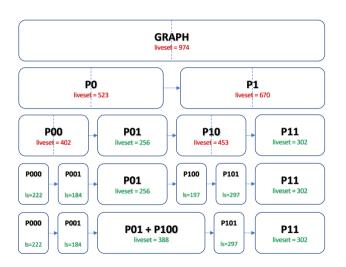
[SISC'19]: Herrmann, Özkaya, Uçar, Kaya, Çatalyürek, "Multilevel Algorithms for Acyclic Partitioning of Directed Acyclic Graphs", SIAM Journal on Scientific Computing, 41(4):A2117-A2145, 2019.





### Recursive bisection with target liveset size

Target liveset size  $L_m = 400$ 





#### **Traversals**

- Return total order on tasks
- Must respect precedence constraints

### Three classical approaches

- Natural ordering (nat) treats the node id's as the priority of the node, where the lower id has a higher priority, hence the traversal is  $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n$ , except if node id's do not follow precedence constraints (schedule ready task of highest priority first)
- DFS traversal ordering (dfs) follows a depth-first traversal strategy among ready tasks
- BFS traversal ordering (bfs) follows a breadth-first traversal strategy among ready tasks





#### Traversals

- Return total order on tasks
- Must respect precedence constraints

### Three classical approaches

- Natural ordering (nat) treats the node id's as the priority of the node, where the lower id has a higher priority, hence the traversal is  $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n$ , except if node id's do not follow precedence constraints (schedule ready task of highest priority first)
- DFS traversal ordering (dfs) follows a depth-first traversal strategy among ready tasks
- BFS traversal ordering (bfs) follows a breadth-first traversal strategy among ready tasks
- May be applied on whole DAG or on a part
- Can be extended to schedule parts (each part is a macro-task)
- We use same algorithm for parts and tasks within parts
  - → Three novel strategies DAGP-NAT, DAGP-DFS, and DAGP-BFS





# Graph instances

Instances from the SuiteSparse Matrix Collection (formerly know as UFL):

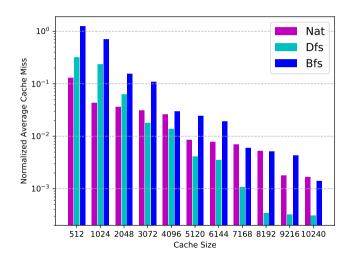
| Graph           | V       | <i>E</i>  | ma× <sub>in.deg</sub> | max <sub>out.deg</sub> | $L_{nat}$ | $L_{dfs}$ | $L_{bfs}$ |
|-----------------|---------|-----------|-----------------------|------------------------|-----------|-----------|-----------|
| 144             | 144,649 | 1,074,393 | 21                    | 22                     | 74,689    | 31,293    | 29,333    |
| 598a            | 110,971 | 741,934   | 18                    | 22                     | 81,801    | 41,304    | 26,250    |
| caidaRouterLev. | 192,244 | 609,066   | 321                   | 1040                   | 56,197    | 34,007    | 35,935    |
| coAuthorsCites. | 227,320 | 814,134   | 95                    | 1367                   | 34,587    | 26,308    | 27,415    |
| delaunay-n17    | 131,072 | 393,176   | 12                    | 14                     | 32,752    | 39,839    | 52,882    |
| email-EuAll     | 265,214 | 305,539   | 7,630                 | 478                    | 196,072   | 177,720   | 205,826   |
| fe-ocean        | 143,437 | 409,593   | 4                     | 4                      | 8,322     | 7,099     | 3,716     |
| ford2           | 100,196 | 222,246   | 29                    | 27                     | 26,153    | 4,468     | 25,001    |
| halfb           | 224,617 | 6,081,602 | 89                    | 119                    | 66,973    | 25,371    | 38,743    |
| luxembourg-osm  | 114,599 | 119,666   | 4                     | 5                      | 4,686     | 2,768     | 6,544     |
| rgg-n-2-17-s0   | 131,072 | 728,753   | 18                    | 19                     | 759       | 1,484     | 1,544     |
| usroads         | 129,164 | 165,435   | 4                     | 5                      | 297       | 8,024     | 9,789     |
| vsp-finan512.   | 139,752 | 552,020   | 119                   | 666                    | 25,830    | 24,714    | 38,647    |
| vsp-mod2-pgp2.  | 101,364 | 389,368   | 949                   | 1726                   | 41,191    | 36,902    | 36,672    |
| wave            | 156,317 | 1,059,331 | 41                    | 38                     | 13,988    | 22,546    | 19,875    |

Note that when reporting the cache miss counts, we do not include **compulsory** (cold, first reference) misses, the misses that occur at the first reference to a memory block, as these misses cannot be avoided.



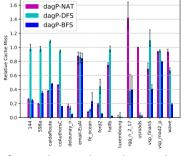
# Performance of the three baseline traversal algorithms

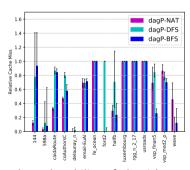
- Geometric mean of cache misses, normalized by number of nodes
- Smaller cache sizes: nat is best
- Cache size  $\geq$  3072: *dfs* is best



# Relative cache misses of new algorithms

- Relative cache misses (geomean of average of 50 runs) for each graph separately
- DAG-partitioning assisted algorithm vs baseline with same traversal
- Left cache size 512; right cache size 10240;  $L_m = C$



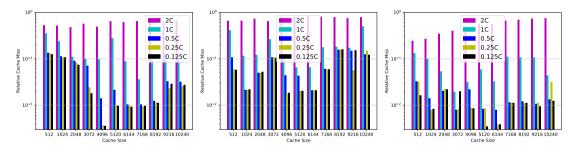


- $\bullet$  DAGP-\* performs almost always better than \*, and good stability of algorithms
- With larger caches, may not need to partition



# Effect of $L_m$ and C on cache miss improvement

- Relative cache misses of DAGP-\* with the given partition livesize
- Traversals *nat* (left), *dfs* (middle), and *bfs* (right)



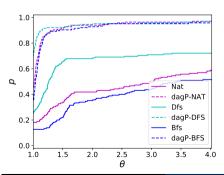
- $L_m \leq C$  is better: part fits in cache
- Further partitioning may help, but increases complexity of partitioning phase
- DAGP-DFS improves less than others... Indeed, baseline is better, less room for improvement!

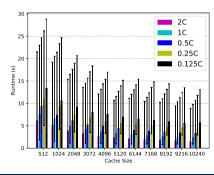




# Overall comparison of heuristics

- Left: Performance profile comparing baselines and heuristics with  $L_m = 0.5 \times C$ 
  - Ratio of instances in which algo obtains cache miss count no larger than  $\theta$  times the best CMC found by any algo for that instance
  - DAGP-DFS best 75% of the time; DAGP-\* all very good
- Right: Average runtime of all graphs for DAGP-DFS partitioning









### Outline

- Model
- Scheduling strategies and experiments
- Conclusion





### Conclusion and future work

#### Conclusion

- A DAG-partitioning assisted approach for improving data locality
- Experimental evaluation shows significant reduction in the number of cache misses

#### Future work

- Study the effect of a customized DAG-partitioner specifically for cache optimization purposes
- Design traversal algorithms to optimize cache misses
- Use a better fitting directed hypergraph representation for the model



