Mapping pipelined applications with replication to increase throughput and reliability

Anne Benoit^{1,2}, Loris Marchal², Yves Robert^{1,2}, Oliver Sinnen³

1. Institut Universitaire de France

2. LIP, École Normale Supérieure de Lyon, France

3. University of Auckland, New Zealand

SBAC-PAD, Petropolis, Rio de Janeiro, Brazil October 27-30, 2010

• Mapping pipelined applications onto parallel platforms: practical applications, but difficult challenge

- Both performance (throughput) and reliability objectives: even more difficult!
- Use of replication: mapping an application stage onto more than one processor
 - redundant computations: increase reliability
 - round-robin computations (over consecutive data sets): increase throughput
 - bi-criteria problem: need to trade-off between two kinds of replication

A (1) > A (2) > A

- Mapping pipelined applications onto parallel platforms: practical applications, but difficult challenge
- Both performance (throughput) and reliability objectives: even more difficult!
- Use of replication: mapping an application stage onto more than one processor
 - redundant computations: increase reliability
 - round-robin computations (over consecutive data sets): increase throughput
 - bi-criteria problem: need to trade-off between two kinds of replication

- 4 回 ト - 4 回 ト

- Mapping pipelined applications onto parallel platforms: practical applications, but difficult challenge
- Both performance (throughput) and reliability objectives: even more difficult!
- Use of replication: mapping an application stage onto more than one processor
 - redundant computations: increase reliability
 - round-robin computations (over consecutive data sets): increase throughput
 - bi-criteria problem: need to trade-off between two kinds of replication

< 回 ト < 三 ト < 三 ト

- Mapping pipelined applications onto parallel platforms: practical applications, but difficult challenge
- Both performance (throughput) and reliability objectives: even more difficult!
- Use of replication: mapping an application stage onto more than one processor
 - redundant computations: increase reliability
 - round-robin computations (over consecutive data sets): increase throughput
 - bi-criteria problem: need to trade-off between two kinds of replication

< 回 ト < 三 ト < 三 ト

- Mapping pipelined applications onto parallel platforms: practical applications, but difficult challenge
- Both performance (throughput) and reliability objectives: even more difficult!
- Use of replication: mapping an application stage onto more than one processor
 - redundant computations: increase reliability
 - round-robin computations (over consecutive data sets): increase throughput
 - bi-criteria problem: need to trade-off between two kinds of replication

A D A D A D A

- Mapping pipelined applications onto parallel platforms: practical applications, but difficult challenge
- Both performance (throughput) and reliability objectives: even more difficult!
- Use of replication: mapping an application stage onto more than one processor
 - redundant computations: increase reliability
 - round-robin computations (over consecutive data sets): increase throughput
 - bi-criteria problem: need to trade-off between two kinds of replication

Main contributions

• Theoretical side:

assess problem hardness with different mapping rules and platform characteristics

• Practical side:

heuristics on most general (NP-complete) case, exact algorithm based on A*, experiments to assess heuristics performance

3/28

Main contributions

• Theoretical side:

assess problem hardness with different mapping rules and platform characteristics

• Practical side:

heuristics on most general (NP-complete) case, exact algorithm based on A*, experiments to assess heuristics performance

Outline of the talk

Framework

- Application
- Platform
- Mapping
- Objective
- 2 Complexity results
 - Mono-criterion
 - Bi-criteria
 - Approximation results

3 Practical side

- Heuristics
- Optimal algorithm using A*
- Evaluation results

4 Conclusion

Applicative framework

- Pipeline of *n* stages S_1, \ldots, S_n
- Stage S_i performs a number w_i of computations
- Communication costs are negligible in comparison with computation costs

Target platform

- Platform with *p* processors P_1, \ldots, P_p , fully interconnected as a (virtual) clique
- For 1 ≤ u ≤ p, processor P_u has speed s_u and failure probability 0 < f_u < 1
- Failure probability: independent of the duration of the application, meant to run for a long time (cycle-stealing scenario)
- SpeedHom platform: identical speeds s_u = s for 1 ≤ u ≤ p (as opposed to SpeedHet)
- *FailureHom* platform: identical failure probabilities (as opposed to *FailureHet*)

< 回 ト < 三 ト < 三 ト

Target platform

- Platform with *p* processors P_1, \ldots, P_p , fully interconnected as a (virtual) clique
- For 1 ≤ u ≤ p, processor P_u has speed s_u and failure probability 0 < f_u < 1
- Failure probability: independent of the duration of the application, meant to run for a long time (cycle-stealing scenario)
- SpeedHom platform: identical speeds s_u = s for 1 ≤ u ≤ p (as opposed to SpeedHet)
- *FailureHom* platform: identical failure probabilities (as opposed to *FailureHet*)

< 同 ト く ヨ ト く ヨ ト

 Interval mapping: consecutive stages mapped together: partition of [1..n] into m ≤ p intervals l_j

- I_j mapped onto set of processors A_j , organized into ℓ_j teams
 - processors within a team perform redundant computations (replication for reliability)
 - different teams assigned to same interval execute distinct data sets in a round-robin fashion (replication for performance)
- A processor cannot participate in two different teams
- $l = \sum_{j=1}^{m} l_j$ is the total number of teams

くほと くほと くほと

- Interval mapping: consecutive stages mapped together: partition of [1..n] into m ≤ p intervals l_j
- I_j mapped onto set of processors A_j , organized into ℓ_j teams
 - processors within a team perform redundant computations (replication for reliability)
 - different teams assigned to same interval execute distinct data sets in a round-robin fashion (replication for performance)
- A processor cannot participate in two different teams

•
$$\ell = \sum_{j=1}^m \ell_j$$
 is the total number of teams

< 回 ト < 三 ト < 三 ト

- Interval mapping: consecutive stages mapped together: partition of [1..n] into m ≤ p intervals l_j
- I_j mapped onto set of processors A_j , organized into ℓ_j teams
 - processors within a team perform redundant computations (replication for reliability)
 - different teams assigned to same interval execute distinct data sets in a round-robin fashion (replication for performance)
- A processor cannot participate in two different teams
- $l = \sum_{j=1}^{m} l_j$ is the total number of teams

- 4 週 ト - 4 三 ト - 4 三 ト

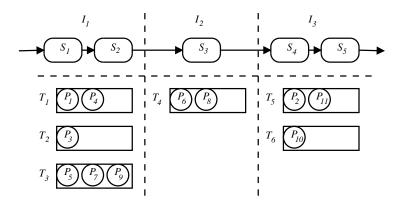
- Interval mapping: consecutive stages mapped together: partition of [1..n] into m ≤ p intervals l_j
- I_j mapped onto set of processors A_j , organized into ℓ_j teams
 - processors within a team perform redundant computations (replication for reliability)
 - different teams assigned to same interval execute distinct data sets in a round-robin fashion (replication for performance)
- A processor cannot participate in two different teams
- $l = \sum_{j=1}^{m} l_j$ is the total number of teams

- Interval mapping: consecutive stages mapped together: partition of [1..n] into m ≤ p intervals l_j
- I_j mapped onto set of processors A_j , organized into ℓ_j teams
 - processors within a team perform redundant computations (replication for reliability)
 - different teams assigned to same interval execute distinct data sets in a round-robin fashion (replication for performance)
- A processor cannot participate in two different teams
- $l = \sum_{j=1}^{m} l_j$ is the total number of teams

- Interval mapping: consecutive stages mapped together: partition of [1..n] into m ≤ p intervals l_j
- I_j mapped onto set of processors A_j , organized into ℓ_j teams
 - processors within a team perform redundant computations (replication for reliability)
 - different teams assigned to same interval execute distinct data sets in a round-robin fashion (replication for performance)
- A processor cannot participate in two different teams

•
$$\ell = \sum_{j=1}^{m} \ell_j$$
 is the total number of teams

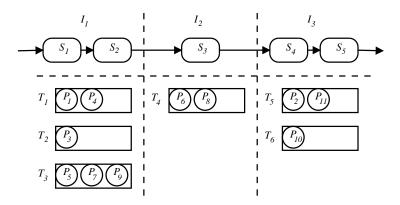
Example of mapping



n = 5 stages divided into m = 3 intervals p = 11 processors organized in $\ell = 6$ teams $\ell_1 = 3, \ell_2 = 1, \ell_3 = 2$

э

Example of mapping



n = 5 stages divided into m = 3 intervals p = 11 processors organized in $\ell = 6$ teams $\ell_1 = 3, \ell_2 = 1, \ell_3 = 2$

A (1) > A (2) > A

• Period of the application:

$$\mathcal{P} = \max_{1 \le j \le m} \left\{ \frac{\sum_{i \in I_j} w_i}{\ell_j \times \min_{P_u \in A_j} s_u} \right\}$$

Round-robin distribution: each team compute one data set every other ℓ_j ones, computation slowed down by slowest processor for interval

• Failure probability:

$$\mathcal{F} = 1 - \prod_{1 \leq k \leq \ell} (1 - \prod_{P_u \in T_k} f_u)$$

Computation successful if at least one surviving processor per team

→ Ξ →

• Period of the application:

$$\mathcal{P} = \max_{1 \le j \le m} \left\{ \frac{\sum_{i \in I_j} w_i}{\ell_j \times \min_{P_u \in A_j} s_u} \right\}$$

Round-robin distribution: each team compute one data set every other ℓ_j ones, computation slowed down by slowest processor for interval

• Failure probability:

$$\mathcal{F} = 1 - \prod_{1 \leq k \leq \ell} (1 - \prod_{P_u \in T_k} f_u)$$

Computation successful if at least one surviving processor per team

• Period of the application:

$$\mathcal{P} = \max_{1 \le j \le m} \left\{ \frac{\sum_{i \in I_j} w_i}{\ell_j \times \min_{P_u \in A_j} s_u} \right\}$$

Round-robin distribution: each team compute one data set every other ℓ_j ones, computation slowed down by slowest processor for interval

• Failure probability:

$$\mathcal{F} = 1 - \prod_{1 \leq k \leq \ell} (1 - \prod_{P_u \in T_k} f_u)$$

Computation successful if at least one surviving processor per team

• Period of the application:

$$\mathcal{P} = \max_{1 \le j \le m} \left\{ \frac{\sum_{i \in I_j} w_i}{\ell_j \times \min_{P_u \in A_j} s_u} \right\}$$

Round-robin distribution: each team compute one data set every other ℓ_j ones, computation slowed down by slowest processor for interval

• Failure probability:

$$\mathcal{F} = 1 - \prod_{1 \leq k \leq \ell} (1 - \prod_{P_u \in T_k} f_u)$$

Computation successful if at least one surviving processor per team

The problem

- Determine the best interval mapping, over all possible partitions into intervals and processor assignments
- Mono-criterion: minimize period or failure probability
- Bi-criteria: (i) given a threshold period, minimize failure probability or (ii) given a threshold failure probability, minimize period

The problem

- Determine the best interval mapping, over all possible partitions into intervals and processor assignments
- Mono-criterion: minimize period or failure probability
- Bi-criteria: (i) given a threshold period, minimize failure probability or (ii) given a threshold failure probability, minimize period

The problem

- Determine the best interval mapping, over all possible partitions into intervals and processor assignments
- Mono-criterion: minimize period or failure probability
- Bi-criteria: (i) given a threshold period, minimize failure probability or (ii) given a threshold failure probability, minimize period

Outline of the talk

Framework

- Application
- Platform
- Mapping
- Objective
- 2 Complexity results
 - Mono-criterion
 - Bi-criteria
 - Approximation results

3 Practical side

- Heuristics
- Optimal algorithm using A*
- Evaluation results

4 Conclusion

Mono-criterion complexity results

- Failure probability: easy on any kind of platforms: group all stages as a single interval, processed by one single team with all *p* processors
- Period: one processor per team
 - SpeedHom platform: one interval processed by p teams
 - SpeedHet platforms: NP-hard in the general case, polynomial if $w_i = w$ for $1 \le i \le n$ (see previous work [Algorithmica2010])

Mono-criterion complexity results

- Failure probability: easy on any kind of platforms: group all stages as a single interval, processed by one single team with all *p* processors
- Period: one processor per team
 - SpeedHom platform: one interval processed by p teams
 - SpeedHet platforms: NP-hard in the general case, polynomial if $w_i = w$ for $1 \le i \le n$ (see previous work [Algorithmica2010])

• Preliminary result: for *SpeedHom* platforms, there exists an optimal bi-criteria mapping with one single interval

- *Proof.* starting from an optimal solution with several intervals, merge intervals, and the single interval is processed by all teams of optimal solution
- Failure probability remains the same (same teams)
- New period cannot be greater than optimal period (*SpeedHom* platform)
- Not true on *SpeedHet* platforms: example with $w_1 = s_1 = 1$ and $w_2 = s_2 = 2$, $\mathcal{F}^* = 1$
 - period 1 with two intervals
 - period 3/2 with one single interval

→ Ξ →

- Preliminary result: for *SpeedHom* platforms, there exists an optimal bi-criteria mapping with one single interval
 - *Proof.* starting from an optimal solution with several intervals, merge intervals, and the single interval is processed by all teams of optimal solution
 - Failure probability remains the same (same teams)
 - New period cannot be greater than optimal period (*SpeedHom* platform)
- Not true on SpeedHet platforms: example with $w_1 = s_1 = 1$ and $w_2 = s_2 = 2$, $\mathcal{F}^* = 1$
 - period 1 with two intervals
 - period 3/2 with one single interval

- Preliminary result: for *SpeedHom* platforms, there exists an optimal bi-criteria mapping with one single interval
 - *Proof.* starting from an optimal solution with several intervals, merge intervals, and the single interval is processed by all teams of optimal solution
 - Failure probability remains the same (same teams)
 - New period cannot be greater than optimal period (*SpeedHom* platform)
- Not true on *SpeedHet* platforms: example with $w_1 = s_1 = 1$ and $w_2 = s_2 = 2$, $\mathcal{F}^* = 1$
 - period 1 with two intervals
 - period 3/2 with one single interval

- Preliminary result: for *SpeedHom* platforms, there exists an optimal bi-criteria mapping with one single interval
 - *Proof.* starting from an optimal solution with several intervals, merge intervals, and the single interval is processed by all teams of optimal solution
 - Failure probability remains the same (same teams)
 - New period cannot be greater than optimal period (*SpeedHom* platform)
- Not true on SpeedHet platforms: example with $w_1 = s_1 = 1$ and $w_2 = s_2 = 2$, $\mathcal{F}^* = 1$
 - period 1 with two intervals
 - period 3/2 with one single interval

- Preliminary result: for *SpeedHom* platforms, there exists an optimal bi-criteria mapping with one single interval
 - *Proof.* starting from an optimal solution with several intervals, merge intervals, and the single interval is processed by all teams of optimal solution
 - Failure probability remains the same (same teams)
 - New period cannot be greater than optimal period (*SpeedHom* platform)
- Not true on SpeedHet platforms: example with $w_1 = s_1 = 1$ and $w_2 = s_2 = 2$, $\mathcal{F}^* = 1$
 - period 1 with two intervals
 - period 3/2 with one single interval

- SpeedHom-FailureHom: Polynomial time algorithm
- Fixed period \mathcal{P}^*
 - one single interval with minimum number of teams

$$\ell_{min} = \left\lceil \frac{\sum_{i=1}^{n} w_i}{\mathcal{P}^* \times s} \right\rceil$$

- greedily assign processors to teams to have balanced teams
- algorithm in O(p)
- Converse problem: fixed \mathcal{F}^*
 - one single interval...
 - ...but must try all possible number of teams $1 \leq \ell \leq p$
 - algorithm in $O(p \log p)$

過 ト イヨト イヨト

- SpeedHom-FailureHom: Polynomial time algorithm
- \bullet Fixed period \mathcal{P}^*
 - one single interval with minimum number of teams

$$\ell_{min} = \left\lceil \frac{\sum_{i=1}^{n} w_i}{\mathcal{P}^* \times s} \right\rceil$$

- greedily assign processors to teams to have balanced teams
- algorithm in O(p)
- Converse problem: fixed \mathcal{F}^*
 - one single interval...
 - ...but must try all possible number of teams $1 \leq \ell \leq p$
 - algorithm in $O(p \log p)$

過 ト イヨト イヨト

- SpeedHom-FailureHom: Polynomial time algorithm
- \bullet Fixed period \mathcal{P}^*
 - one single interval with minimum number of teams

$$\ell_{min} = \left\lceil \frac{\sum_{i=1}^{n} w_i}{\mathcal{P}^* \times s} \right\rceil$$

- greedily assign processors to teams to have balanced teams
- algorithm in O(p)
- Converse problem: fixed \mathcal{F}^*
 - one single interval...
 - $\bullet\,$...but must try all possible number of teams $1\leq\ell\leq p$
 - algorithm in $O(p \log p)$

A B A A B A

- SpeedHom-FailureHom: Polynomial time algorithm
- Fixed period \mathcal{P}^{\ast}
 - one single interval with minimum number of teams

$$\ell_{min} = \left\lceil \frac{\sum_{i=1}^{n} w_i}{\mathcal{P}^* \times s} \right\rceil$$

- greedily assign processors to teams to have balanced teams
- algorithm in O(p)
- Converse problem: fixed \mathcal{F}^*
 - one single interval...
 - ...but must try all possible number of teams $1 \leq \ell \leq p$
 - algorithm in $O(p \log p)$

A B F A B F

- SpeedHom-FailureHom: Polynomial time algorithm
- Fixed period \mathcal{P}^{\ast}
 - one single interval with minimum number of teams

$$\ell_{min} = \left\lceil \frac{\sum_{i=1}^{n} w_i}{\mathcal{P}^* \times s} \right\rceil$$

- greedily assign processors to teams to have balanced teams
- algorithm in O(p)
- Converse problem: fixed \mathcal{F}^*
 - one single interval...
 - ...but must try all possible number of teams $1 \leq \ell \leq p$
 - algorithm in $O(p \log p)$

With heterogeneous platforms

• SpeedHet-FailureHom is NP-hard because SpeedHet is NP-hard for period minimization

- SpeedHom-FailureHet becomes NP-hard as well: balancing processors within teams is combinatorial; reduction from 3-PARTITION
- Intermediate result: best reliability always obtained by balancing failure probabilities of each team

With heterogeneous platforms

- SpeedHet-FailureHom is NP-hard because SpeedHet is NP-hard for period minimization
- SpeedHom-FailureHet becomes NP-hard as well: balancing processors within teams is combinatorial; reduction from 3-PARTITION
- Intermediate result: best reliability always obtained by balancing failure probabilities of each team

With heterogeneous platforms

- SpeedHet-FailureHom is NP-hard because SpeedHet is NP-hard for period minimization
- SpeedHom-FailureHet becomes NP-hard as well: balancing processors within teams is combinatorial; reduction from 3-PARTITION
- Intermediate result: best reliability always obtained by balancing failure probabilities of each team

- SpeedHom: always optimal with single interval
- *SpeedHet*: period minimization problem (NP-hard)
- The optimal single-interval mapping can be found:
 - sort processors by non-increasing speeds
 - for $1 \le i \le p$, compute period using *i* fastest processors
 - time $O(p \log p)$
- Theorem: single-interval mapping is a *n*-approximation algorithm for period minimization; this factor cannot be improved
- Proof sketch: start from an optimal solution, with m ≤ n intervals, and build a single interval solution, with period P₁ ≤ m × P_m

- SpeedHom: always optimal with single interval
- *SpeedHet*: period minimization problem (NP-hard)
- The optimal single-interval mapping can be found:
 - sort processors by non-increasing speeds
 - for $1 \le i \le p$, compute period using *i* fastest processors
 - time $O(p \log p)$
- Theorem: single-interval mapping is a *n*-approximation algorithm for period minimization; this factor cannot be improved
- Proof sketch: start from an optimal solution, with m ≤ n intervals, and build a single interval solution, with period P₁ ≤ m × P_m

16/28

- SpeedHom: always optimal with single interval
- *SpeedHet*: period minimization problem (NP-hard)
- The optimal single-interval mapping can be found:
 - sort processors by non-increasing speeds
 - for $1 \le i \le p$, compute period using *i* fastest processors
 - time $O(p \log p)$
- Theorem: single-interval mapping is a *n*-approximation algorithm for period minimization; this factor cannot be improved
- Proof sketch: start from an optimal solution, with m ≤ n intervals, and build a single interval solution, with period P₁ ≤ m × P_m

過 ト イヨ ト イヨト

- SpeedHom: always optimal with single interval
- *SpeedHet*: period minimization problem (NP-hard)
- The optimal single-interval mapping can be found:
 - sort processors by non-increasing speeds
 - for $1 \le i \le p$, compute period using *i* fastest processors
 - time $O(p \log p)$
- Theorem: single-interval mapping is a *n*-approximation algorithm for period minimization; this factor cannot be improved
- Proof sketch: start from an optimal solution, with m ≤ n intervals, and build a single interval solution, with period P₁ ≤ m × P_m

過 ト イヨ ト イヨト

Outline of the talk

Framework

- Application
- Platform
- Mapping
- Objective
- 2 Complexity results
 - Mono-criterion
 - Bi-criteria
 - Approximation results

3 Practical side

- Heuristics
- Optimal algorithm using A*
- Evaluation results

4 Conclusion

Heuristics

- SpeedHet-FailureHet platforms
- \bullet Minimize ${\mathcal F}$ under a fixed upper period ${\mathcal P}^*$
- Counterpart problem: binary search over \mathcal{P}^*
- Two heuristics:
 - ONEINTERVAL: stages grouped as a single interval (motivated by complexity results)
 - MULTIINTERVAL: solution with multiple intervals (recall that single interval may be far from optimal)

18/28

Heuristics

- SpeedHet-FailureHet platforms
- Minimize ${\mathcal F}$ under a fixed upper period ${\mathcal P}^*$
- Counterpart problem: binary search over \mathcal{P}^*
- Two heuristics:
 - ONEINTERVAL: stages grouped as a single interval (motivated by complexity results)
 - MULTIINTERVAL: solution with multiple intervals (recall that single interval may be far from optimal)

ONEINTERVAL

- One single interval
- Determine number of teams: try all values ℓ between 1 and p
- \bullet For a given $\ell,$ discard processors too slow for period
- Assign processors to teams to minimize failure probability
 - From complexity results: balance reliability across teams
 - NP-hard problem but efficient greedy heuristic: sort processors by non-decreasing failure probability and assign next processor to team with highest failure probability
- Time complexity: $O(p^2 \log p)$

ONEINTERVAL

- One single interval
- Determine number of teams: try all values ℓ between 1 and p
- For a given ℓ , discard processors too slow for period
- Assign processors to teams to minimize failure probability
 - From complexity results: balance reliability across teams
 - NP-hard problem but efficient greedy heuristic: sort processors by non-decreasing failure probability and assign next processor to team with highest failure probability
- Time complexity: $O(p^2 \log p)$

19/28

ONEINTERVAL

- One single interval
- Determine number of teams: try all values ℓ between 1 and p
- For a given ℓ , discard processors too slow for period
- Assign processors to teams to minimize failure probability
 - From complexity results: balance reliability across teams
 - NP-hard problem but efficient greedy heuristic: sort processors by non-decreasing failure probability and assign next processor to team with highest failure probability
- Time complexity: $O(p^2 \log p)$

- Step 1: create min(n, p) intervals (one stage per processor, or balance computational load across intervals)
- Step 2: greedily add processors to stages, to minimize maximum ratio of interval computation load to accumulated processor speed
- Step 3: for each interval, use ONEINTERVAL to form teams; use previously unallocated processors (too slow for period); increase bound on period for the interval until valid allocation returned
- Step 4: if period bound not achieved for at least one interval, merge interval with largest period with previous or next interval, until bound is achieved
- Step 5: merge intervals with highest failure probability as long as it is beneficial
- Note that **ONEINTERVAL** is called each time we tentatively merge two intervals (steps 4 and 5)
- Time complexity: $O(p^3 \log p)$

- Step 1: create min(n, p) intervals (one stage per processor, or balance computational load across intervals)
- Step 2: greedily add processors to stages, to minimize maximum ratio of interval computation load to accumulated processor speed
- Step 3: for each interval, use ONEINTERVAL to form teams; use previously unallocated processors (too slow for period); increase bound on period for the interval until valid allocation returned
- Step 4: if period bound not achieved for at least one interval, merge interval with largest period with previous or next interval, until bound is achieved
- Step 5: merge intervals with highest failure probability as long as it is beneficial
- Note that **ONEINTERVAL** is called each time we tentatively merge two intervals (steps 4 and 5)
- Time complexity: $O(p^3 \log p)$

- Step 1: create min(n, p) intervals (one stage per processor, or balance computational load across intervals)
- Step 2: greedily add processors to stages, to minimize maximum ratio of interval computation load to accumulated processor speed
- Step 3: for each interval, use ONEINTERVAL to form teams; use previously unallocated processors (too slow for period); increase bound on period for the interval until valid allocation returned
- Step 4: if period bound not achieved for at least one interval, merge interval with largest period with previous or next interval, until bound is achieved
- Step 5: merge intervals with highest failure probability as long as it is beneficial
- Note that **ONEINTERVAL** is called each time we tentatively merge two intervals (steps 4 and 5)
- Time complexity: $O(p^3 \log p)$

- Step 1: create min(n, p) intervals (one stage per processor, or balance computational load across intervals)
- Step 2: greedily add processors to stages, to minimize maximum ratio of interval computation load to accumulated processor speed
- Step 3: for each interval, use ONEINTERVAL to form teams; use previously unallocated processors (too slow for period); increase bound on period for the interval until valid allocation returned
- Step 4: if period bound not achieved for at least one interval, merge interval with largest period with previous or next interval, until bound is achieved
- Step 5: merge intervals with highest failure probability as long as it is beneficial
- Note that **ONEINTERVAL** is called each time we tentatively merge two intervals (steps 4 and 5)
- Time complexity: $O(p^3 \log p)$

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Step 1: create min(n, p) intervals (one stage per processor, or balance computational load across intervals)
- Step 2: greedily add processors to stages, to minimize maximum ratio of interval computation load to accumulated processor speed
- Step 3: for each interval, use ONEINTERVAL to form teams; use previously unallocated processors (too slow for period); increase bound on period for the interval until valid allocation returned
- Step 4: if period bound not achieved for at least one interval, merge interval with largest period with previous or next interval, until bound is achieved
- Step 5: merge intervals with highest failure probability as long as it is beneficial
- Note that **ONEINTERVAL** is called each time we tentatively merge two intervals (steps 4 and 5)
- Time complexity: $O(p^3 \log p)$

- Step 1: create min(n, p) intervals (one stage per processor, or balance computational load across intervals)
- Step 2: greedily add processors to stages, to minimize maximum ratio of interval computation load to accumulated processor speed
- Step 3: for each interval, use ONEINTERVAL to form teams; use previously unallocated processors (too slow for period); increase bound on period for the interval until valid allocation returned
- Step 4: if period bound not achieved for at least one interval, merge interval with largest period with previous or next interval, until bound is achieved
- Step 5: merge intervals with highest failure probability as long as it is beneficial
- Note that **ONEINTERVAL** is called each time we tentatively merge two intervals (steps 4 and 5)
- Time complexity: $O(p^3 \log p)$

- Step 1: create min(n, p) intervals (one stage per processor, or balance computational load across intervals)
- Step 2: greedily add processors to stages, to minimize maximum ratio of interval computation load to accumulated processor speed
- Step 3: for each interval, use ONEINTERVAL to form teams; use previously unallocated processors (too slow for period); increase bound on period for the interval until valid allocation returned
- Step 4: if period bound not achieved for at least one interval, merge interval with largest period with previous or next interval, until bound is achieved
- Step 5: merge intervals with highest failure probability as long as it is beneficial
- Note that **ONEINTERVAL** is called each time we tentatively merge two intervals (steps 4 and 5)
- Time complexity: $O(p^3 \log p)$

- A* best-first state space search algorithm for small problem instances
- Non-linearity of failure probability: rules out the use of integer linear programming
- Search space: state *s* is a partial solution (i.e., partial mapping), with underestimated cost value *c*(*s*)
- Expansion of a partial solution with lowest c(s) value, with a stage or a processor
- Complete mapping obtained: optimal solution (best-first strategy)

- A* best-first state space search algorithm for small problem instances
- Non-linearity of failure probability: rules out the use of integer linear programming
- Search space: state *s* is a partial solution (i.e., partial mapping), with underestimated cost value *c*(*s*)
- Expansion of a partial solution with lowest c(s) value, with a stage or a processor
- Complete mapping obtained: optimal solution (best-first strategy)

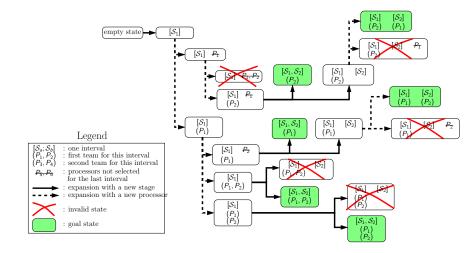
- A* best-first state space search algorithm for small problem instances
- Non-linearity of failure probability: rules out the use of integer linear programming
- Search space: state s is a partial solution (i.e., partial mapping), with underestimated cost value c(s)
- Expansion of a partial solution with lowest c(s) value, with a stage or a processor
- Complete mapping obtained: optimal solution (best-first strategy)

- A* best-first state space search algorithm for small problem instances
- Non-linearity of failure probability: rules out the use of integer linear programming
- Search space: state s is a partial solution (i.e., partial mapping), with underestimated cost value c(s)
- Expansion of a partial solution with lowest c(s) value, with a stage or a processor
- Complete mapping obtained: optimal solution (best-first strategy)

- A* best-first state space search algorithm for small problem instances
- Non-linearity of failure probability: rules out the use of integer linear programming
- Search space: state s is a partial solution (i.e., partial mapping), with underestimated cost value c(s)
- Expansion of a partial solution with lowest c(s) value, with a stage or a processor
- Complete mapping obtained: optimal solution (best-first strategy)

Heuristics A* Evaluation

State tree for two stages on two processors



Underestimate cost functions

\bullet Failure probability ${\cal F}$

- Partial mapping: adding team increases failure probability
- Underestimate: add remaining processors to existing teams
- NP-hard problem: consider amount of reliability available and distribute it to the existing teams to balance their reliability

• Period \mathcal{P}

- Need to check that partial solution does not exceed the bound: can be computed exactly
- Second underestimate: optimal period achieved by remaining processors on remaining stages
- NP-hard problem: consider perfect load balance: $\mathcal{P} \leq \frac{\sum w_i}{\sum s_i}$

Underestimate cost functions

\bullet Failure probability ${\cal F}$

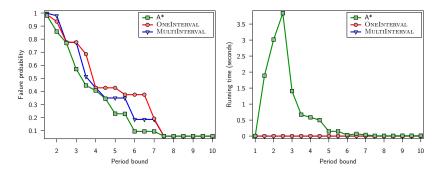
- Partial mapping: adding team increases failure probability
- Underestimate: add remaining processors to existing teams
- NP-hard problem: consider amount of reliability available and distribute it to the existing teams to balance their reliability

• Period \mathcal{P}

- Need to check that partial solution does not exceed the bound: can be computed exactly
- Second underestimate: optimal period achieved by remaining processors on remaining stages
- NP-hard problem: consider perfect load balance: $\mathcal{P} \leq \frac{\sum w_i}{\sum s_{ij}}$

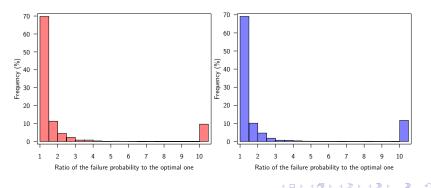
Heuristics vs A*

- Randomly generated workload scenarios
- Both heuristics close to optimal solution
- ONEINTERVAL is better than MULTIINTERVAL in a few cases
- A* much slower, but main limitation is memory



Performance of heuristics

- Distribution of ratio between failure probability obtained by a heuristic (ONEINTERVAL in red, MULTIINTERVAL in blue) and optimal failure probability (A*) (optimal: ratio 1)
- On average, heuristics 20% above optimal
- Ratio 10: cases in which heuristics find no solution ($\approx 10\%$)



Larger scenarios

- \bullet <code>OneInterval</code> better in 61% of the cases
- $\bullet~{\rm MultiInterval}$ better in 20% of the cases
- On average, failure probability of ONEINTERVAL 2% above MULTIINTERVAL
- Comparison of ONEINTERVAL with optimal single-interval solution (easy to compute with A*): in average, 0.05% above optimal, and 5% in the worst case

Larger scenarios

- ONEINTERVAL better in 61% of the cases
- $\bullet~{\rm MultiInterval}$ better in 20% of the cases
- On average, failure probability of ONEINTERVAL 2% above MULTIINTERVAL
- Comparison of ONEINTERVAL with optimal single-interval solution (easy to compute with A*): in average, 0.05% above optimal, and 5% in the worst case

Larger scenarios

- ONEINTERVAL better in 61% of the cases
- $\bullet~{\rm MultiInterval}$ better in 20% of the cases
- On average, failure probability of ONEINTERVAL 2% above MULTIINTERVAL
- Comparison of ONEINTERVAL with optimal single-interval solution (easy to compute with A*): in average, 0.05% above optimal, and 5% in the worst case

Outline of the talk

Framework

- Application
- Platform
- Mapping
- Objective
- 2 Complexity results
 - Mono-criterion
 - Bi-criteria
 - Approximation results

3 Practical side

- Heuristics
- Optimal algorithm using A*
- Evaluation results

4 Conclusion

Conclusion and future work

- Exhaustive complexity study
 - polynomial time algorithm for *SpeedHom-FailureHom* platforms
 - NP-completeness with one level of heterogeneity
 - approximation results to compare single interval solution with any other solution
- Practical solution to the problem
 - efficient heuristics (inspired by theoretical study) for *SpeedHet-FailureHet* platforms
 - A* algorithm with non-trivial underestimate functions
 - experimental results: very good behaviour of heuristics

• Future work

- further approximation results
- enhanced multiple interval heuristics
- improved A* techniques

→ Ξ →

28/28

Conclusion and future work

- Exhaustive complexity study
 - polynomial time algorithm for *SpeedHom-FailureHom* platforms
 - NP-completeness with one level of heterogeneity
 - approximation results to compare single interval solution with any other solution
- Practical solution to the problem
 - efficient heuristics (inspired by theoretical study) for *SpeedHet-FailureHet* platforms
 - A* algorithm with non-trivial underestimate functions
 - experimental results: very good behaviour of heuristics

• Future work

- further approximation results
- enhanced multiple interval heuristics
- improved A* techniques

→ Ξ →

Conclusion and future work

- Exhaustive complexity study
 - polynomial time algorithm for *SpeedHom-FailureHom* platforms
 - NP-completeness with one level of heterogeneity
 - approximation results to compare single interval solution with any other solution
- Practical solution to the problem
 - efficient heuristics (inspired by theoretical study) for *SpeedHet-FailureHet* platforms
 - A* algorithm with non-trivial underestimate functions
 - experimental results: very good behaviour of heuristics
- Future work
 - further approximation results
 - enhanced multiple interval heuristics
 - improved A* techniques