
Framework Complexity Practical Conclusion

Mapping pipelined applications with replication
to increase throughput and reliability

Anne Benoit1,2, Loris Marchal2, Yves Robert1,2, Oliver Sinnen3

1. Institut Universitaire de France

2. LIP, École Normale Supérieure de Lyon, France

3. University of Auckland, New Zealand

SBAC-PAD, Petropolis, Rio de Janeiro, Brazil
October 27-30, 2010

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 1/ 28



Framework Complexity Practical Conclusion

Motivations

Mapping pipelined applications onto parallel platforms:
practical applications, but difficult challenge

Both performance (throughput) and reliability objectives:
even more difficult!

Use of replication: mapping an application stage onto more
than one processor

redundant computations: increase reliability
round-robin computations (over consecutive data sets):
increase throughput
bi-criteria problem: need to trade-off between two kinds of
replication

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 2/ 28



Framework Complexity Practical Conclusion

Motivations

Mapping pipelined applications onto parallel platforms:
practical applications, but difficult challenge

Both performance (throughput) and reliability objectives:
even more difficult!

Use of replication: mapping an application stage onto more
than one processor

redundant computations: increase reliability
round-robin computations (over consecutive data sets):
increase throughput
bi-criteria problem: need to trade-off between two kinds of
replication

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 2/ 28



Framework Complexity Practical Conclusion

Motivations

Mapping pipelined applications onto parallel platforms:
practical applications, but difficult challenge

Both performance (throughput) and reliability objectives:
even more difficult!

Use of replication: mapping an application stage onto more
than one processor

redundant computations: increase reliability
round-robin computations (over consecutive data sets):
increase throughput
bi-criteria problem: need to trade-off between two kinds of
replication

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 2/ 28



Framework Complexity Practical Conclusion

Motivations

Mapping pipelined applications onto parallel platforms:
practical applications, but difficult challenge

Both performance (throughput) and reliability objectives:
even more difficult!

Use of replication: mapping an application stage onto more
than one processor

redundant computations: increase reliability
round-robin computations (over consecutive data sets):
increase throughput
bi-criteria problem: need to trade-off between two kinds of
replication

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 2/ 28



Framework Complexity Practical Conclusion

Motivations

Mapping pipelined applications onto parallel platforms:
practical applications, but difficult challenge

Both performance (throughput) and reliability objectives:
even more difficult!

Use of replication: mapping an application stage onto more
than one processor

redundant computations: increase reliability
round-robin computations (over consecutive data sets):
increase throughput
bi-criteria problem: need to trade-off between two kinds of
replication

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 2/ 28



Framework Complexity Practical Conclusion

Motivations

Mapping pipelined applications onto parallel platforms:
practical applications, but difficult challenge

Both performance (throughput) and reliability objectives:
even more difficult!

Use of replication: mapping an application stage onto more
than one processor

redundant computations: increase reliability
round-robin computations (over consecutive data sets):
increase throughput
bi-criteria problem: need to trade-off between two kinds of
replication

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 2/ 28



Framework Complexity Practical Conclusion

Main contributions

Theoretical side:
assess problem hardness with different mapping rules and
platform characteristics

Practical side:
heuristics on most general (NP-complete) case,
exact algorithm based on A*,
experiments to assess heuristics performance

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 3/ 28



Framework Complexity Practical Conclusion

Main contributions

Theoretical side:
assess problem hardness with different mapping rules and
platform characteristics

Practical side:
heuristics on most general (NP-complete) case,
exact algorithm based on A*,
experiments to assess heuristics performance

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 3/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Outline of the talk

1 Framework
Application
Platform
Mapping
Objective

2 Complexity results
Mono-criterion
Bi-criteria
Approximation results

3 Practical side
Heuristics
Optimal algorithm using A*
Evaluation results

4 Conclusion

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 4/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Applicative framework

Sn... ...
w1 w2 wn

S1 S2 Si
wi

Pipeline of n stages S1, . . . ,Sn
Stage Si performs a number wi of computations

Communication costs are negligible in comparison with
computation costs

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 5/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Target platform

Platform with p processors P1, . . . ,Pp, fully interconnected as
a (virtual) clique

For 1 ≤ u ≤ p, processor Pu has speed su and failure
probability 0 < fu < 1

Failure probability: independent of the duration of the
application, meant to run for a long time (cycle-stealing
scenario)

SpeedHom platform: identical speeds su = s for 1 ≤ u ≤ p
(as opposed to SpeedHet)

FailureHom platform: identical failure probabilities
(as opposed to FailureHet)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 6/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Target platform

Platform with p processors P1, . . . ,Pp, fully interconnected as
a (virtual) clique

For 1 ≤ u ≤ p, processor Pu has speed su and failure
probability 0 < fu < 1

Failure probability: independent of the duration of the
application, meant to run for a long time (cycle-stealing
scenario)

SpeedHom platform: identical speeds su = s for 1 ≤ u ≤ p
(as opposed to SpeedHet)

FailureHom platform: identical failure probabilities
(as opposed to FailureHet)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 6/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Mapping problem

Interval mapping: consecutive stages mapped together:
partition of [1..n] into m ≤ p intervals Ij

Ij mapped onto set of processors Aj , organized into `j teams

processors within a team perform redundant computations
(replication for reliability)
different teams assigned to same interval execute distinct data
sets in a round-robin fashion (replication for performance)

A processor cannot participate in two different teams

` =
∑m

j=1 `j is the total number of teams

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 7/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Mapping problem

Interval mapping: consecutive stages mapped together:
partition of [1..n] into m ≤ p intervals Ij

Ij mapped onto set of processors Aj , organized into `j teams

processors within a team perform redundant computations
(replication for reliability)
different teams assigned to same interval execute distinct data
sets in a round-robin fashion (replication for performance)

A processor cannot participate in two different teams

` =
∑m

j=1 `j is the total number of teams

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 7/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Mapping problem

Interval mapping: consecutive stages mapped together:
partition of [1..n] into m ≤ p intervals Ij

Ij mapped onto set of processors Aj , organized into `j teams

processors within a team perform redundant computations
(replication for reliability)
different teams assigned to same interval execute distinct data
sets in a round-robin fashion (replication for performance)

A processor cannot participate in two different teams

` =
∑m

j=1 `j is the total number of teams

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 7/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Mapping problem

Interval mapping: consecutive stages mapped together:
partition of [1..n] into m ≤ p intervals Ij

Ij mapped onto set of processors Aj , organized into `j teams

processors within a team perform redundant computations
(replication for reliability)
different teams assigned to same interval execute distinct data
sets in a round-robin fashion (replication for performance)

A processor cannot participate in two different teams

` =
∑m

j=1 `j is the total number of teams

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 7/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Mapping problem

Interval mapping: consecutive stages mapped together:
partition of [1..n] into m ≤ p intervals Ij

Ij mapped onto set of processors Aj , organized into `j teams

processors within a team perform redundant computations
(replication for reliability)
different teams assigned to same interval execute distinct data
sets in a round-robin fashion (replication for performance)

A processor cannot participate in two different teams

` =
∑m

j=1 `j is the total number of teams

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 7/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Mapping problem

Interval mapping: consecutive stages mapped together:
partition of [1..n] into m ≤ p intervals Ij

Ij mapped onto set of processors Aj , organized into `j teams

processors within a team perform redundant computations
(replication for reliability)
different teams assigned to same interval execute distinct data
sets in a round-robin fashion (replication for performance)

A processor cannot participate in two different teams

` =
∑m

j=1 `j is the total number of teams

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 7/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Example of mapping

S S S S S

T

T

T

T T

T

I I I1 2 3

1 2 3 4 5

1

2

3

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
114 5

6

n = 5 stages divided into m = 3 intervals
p = 11 processors organized in ` = 6 teams

`1 = 3, `2 = 1, `3 = 2

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 8/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Example of mapping

S S S S S

T

T

T

T T

T

I I I1 2 3

1 2 3 4 5

1

2

3

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
114 5

6

n = 5 stages divided into m = 3 intervals
p = 11 processors organized in ` = 6 teams

`1 = 3, `2 = 1, `3 = 2

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 8/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Objective functions

Period of the application:

P = max
1≤j≤m

{ ∑
i∈Ij wi

`j ×minPu∈Aj
su

}

Round-robin distribution: each team compute one data set every

other `j ones, computation slowed down by slowest processor for

interval

Failure probability:

F = 1−
∏

1≤k≤`
(1−

∏
Pu∈Tk

fu)

Computation successful if at least one surviving processor per team

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 9/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Objective functions

Period of the application:

P = max
1≤j≤m

{ ∑
i∈Ij wi

`j ×minPu∈Aj
su

}

Round-robin distribution: each team compute one data set every

other `j ones, computation slowed down by slowest processor for

interval

Failure probability:

F = 1−
∏

1≤k≤`
(1−

∏
Pu∈Tk

fu)

Computation successful if at least one surviving processor per team

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 9/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Objective functions

Period of the application:

P = max
1≤j≤m

{ ∑
i∈Ij wi

`j ×minPu∈Aj
su

}

Round-robin distribution: each team compute one data set every

other `j ones, computation slowed down by slowest processor for

interval

Failure probability:

F = 1−
∏

1≤k≤`
(1−

∏
Pu∈Tk

fu)

Computation successful if at least one surviving processor per team

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 9/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

Objective functions

Period of the application:

P = max
1≤j≤m

{ ∑
i∈Ij wi

`j ×minPu∈Aj
su

}

Round-robin distribution: each team compute one data set every

other `j ones, computation slowed down by slowest processor for

interval

Failure probability:

F = 1−
∏

1≤k≤`
(1−

∏
Pu∈Tk

fu)

Computation successful if at least one surviving processor per team

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 9/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

The problem

Determine the best interval mapping, over all possible
partitions into intervals and processor assignments

Mono-criterion: minimize period or failure probability

Bi-criteria: (i) given a threshold period, minimize failure
probability or (ii) given a threshold failure probability,
minimize period

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 10/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

The problem

Determine the best interval mapping, over all possible
partitions into intervals and processor assignments

Mono-criterion: minimize period or failure probability

Bi-criteria: (i) given a threshold period, minimize failure
probability or (ii) given a threshold failure probability,
minimize period

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 10/ 28



Framework Complexity Practical Conclusion Application Platform Mapping Objective

The problem

Determine the best interval mapping, over all possible
partitions into intervals and processor assignments

Mono-criterion: minimize period or failure probability

Bi-criteria: (i) given a threshold period, minimize failure
probability or (ii) given a threshold failure probability,
minimize period

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 10/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

Outline of the talk

1 Framework
Application
Platform
Mapping
Objective

2 Complexity results
Mono-criterion
Bi-criteria
Approximation results

3 Practical side
Heuristics
Optimal algorithm using A*
Evaluation results

4 Conclusion

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 11/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

Mono-criterion complexity results

Failure probability: easy on any kind of platforms: group all
stages as a single interval, processed by one single team with
all p processors

Period: one processor per team

SpeedHom platform: one interval processed by p teams

SpeedHet platforms: NP-hard in the general case, polynomial
if wi = w for 1 ≤ i ≤ n (see previous work [Algorithmica2010])

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 12/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

Mono-criterion complexity results

Failure probability: easy on any kind of platforms: group all
stages as a single interval, processed by one single team with
all p processors

Period: one processor per team

SpeedHom platform: one interval processed by p teams

SpeedHet platforms: NP-hard in the general case, polynomial
if wi = w for 1 ≤ i ≤ n (see previous work [Algorithmica2010])

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 12/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

Bi-criteria complexity results

Preliminary result: for SpeedHom platforms, there exists an
optimal bi-criteria mapping with one single interval

Proof: starting from an optimal solution with several intervals,
merge intervals, and the single interval is processed by all
teams of optimal solution
Failure probability remains the same (same teams)
New period cannot be greater than optimal period
(SpeedHom platform)

Not true on SpeedHet platforms:
example with w1 = s1 = 1 and w2 = s2 = 2, F∗ = 1

period 1 with two intervals
period 3/2 with one single interval

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 13/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

Bi-criteria complexity results

Preliminary result: for SpeedHom platforms, there exists an
optimal bi-criteria mapping with one single interval

Proof: starting from an optimal solution with several intervals,
merge intervals, and the single interval is processed by all
teams of optimal solution
Failure probability remains the same (same teams)
New period cannot be greater than optimal period
(SpeedHom platform)

Not true on SpeedHet platforms:
example with w1 = s1 = 1 and w2 = s2 = 2, F∗ = 1

period 1 with two intervals
period 3/2 with one single interval

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 13/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

Bi-criteria complexity results

Preliminary result: for SpeedHom platforms, there exists an
optimal bi-criteria mapping with one single interval

Proof: starting from an optimal solution with several intervals,
merge intervals, and the single interval is processed by all
teams of optimal solution
Failure probability remains the same (same teams)
New period cannot be greater than optimal period
(SpeedHom platform)

Not true on SpeedHet platforms:
example with w1 = s1 = 1 and w2 = s2 = 2, F∗ = 1

period 1 with two intervals
period 3/2 with one single interval

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 13/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

Bi-criteria complexity results

Preliminary result: for SpeedHom platforms, there exists an
optimal bi-criteria mapping with one single interval

Proof: starting from an optimal solution with several intervals,
merge intervals, and the single interval is processed by all
teams of optimal solution
Failure probability remains the same (same teams)
New period cannot be greater than optimal period
(SpeedHom platform)

Not true on SpeedHet platforms:
example with w1 = s1 = 1 and w2 = s2 = 2, F∗ = 1

period 1 with two intervals
period 3/2 with one single interval

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 13/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

Bi-criteria complexity results

Preliminary result: for SpeedHom platforms, there exists an
optimal bi-criteria mapping with one single interval

Proof: starting from an optimal solution with several intervals,
merge intervals, and the single interval is processed by all
teams of optimal solution
Failure probability remains the same (same teams)
New period cannot be greater than optimal period
(SpeedHom platform)

Not true on SpeedHet platforms:
example with w1 = s1 = 1 and w2 = s2 = 2, F∗ = 1

period 1 with two intervals
period 3/2 with one single interval

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 13/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

SpeedHom-FailureHom platforms

SpeedHom-FailureHom: Polynomial time algorithm

Fixed period P∗
one single interval with minimum number of teams

`min =

⌈∑n
i=1 wi

P∗ × s

⌉
greedily assign processors to teams to have balanced teams
algorithm in O(p)

Converse problem: fixed F∗
one single interval...
...but must try all possible number of teams 1 ≤ ` ≤ p
algorithm in O(p log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 14/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

SpeedHom-FailureHom platforms

SpeedHom-FailureHom: Polynomial time algorithm

Fixed period P∗
one single interval with minimum number of teams

`min =

⌈∑n
i=1 wi

P∗ × s

⌉
greedily assign processors to teams to have balanced teams
algorithm in O(p)

Converse problem: fixed F∗
one single interval...
...but must try all possible number of teams 1 ≤ ` ≤ p
algorithm in O(p log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 14/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

SpeedHom-FailureHom platforms

SpeedHom-FailureHom: Polynomial time algorithm

Fixed period P∗
one single interval with minimum number of teams

`min =

⌈∑n
i=1 wi

P∗ × s

⌉
greedily assign processors to teams to have balanced teams
algorithm in O(p)

Converse problem: fixed F∗
one single interval...
...but must try all possible number of teams 1 ≤ ` ≤ p
algorithm in O(p log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 14/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

SpeedHom-FailureHom platforms

SpeedHom-FailureHom: Polynomial time algorithm

Fixed period P∗
one single interval with minimum number of teams

`min =

⌈∑n
i=1 wi

P∗ × s

⌉
greedily assign processors to teams to have balanced teams
algorithm in O(p)

Converse problem: fixed F∗
one single interval...
...but must try all possible number of teams 1 ≤ ` ≤ p
algorithm in O(p log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 14/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

SpeedHom-FailureHom platforms

SpeedHom-FailureHom: Polynomial time algorithm

Fixed period P∗
one single interval with minimum number of teams

`min =

⌈∑n
i=1 wi

P∗ × s

⌉
greedily assign processors to teams to have balanced teams
algorithm in O(p)

Converse problem: fixed F∗
one single interval...
...but must try all possible number of teams 1 ≤ ` ≤ p
algorithm in O(p log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 14/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

With heterogeneous platforms

SpeedHet-FailureHom is NP-hard
because SpeedHet is NP-hard for period minimization

SpeedHom-FailureHet becomes NP-hard as well:
balancing processors within teams is combinatorial;
reduction from 3-PARTITION

Intermediate result: best reliability always obtained by
balancing failure probabilities of each team

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 15/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

With heterogeneous platforms

SpeedHet-FailureHom is NP-hard
because SpeedHet is NP-hard for period minimization

SpeedHom-FailureHet becomes NP-hard as well:
balancing processors within teams is combinatorial;
reduction from 3-PARTITION

Intermediate result: best reliability always obtained by
balancing failure probabilities of each team

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 15/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

With heterogeneous platforms

SpeedHet-FailureHom is NP-hard
because SpeedHet is NP-hard for period minimization

SpeedHom-FailureHet becomes NP-hard as well:
balancing processors within teams is combinatorial;
reduction from 3-PARTITION

Intermediate result: best reliability always obtained by
balancing failure probabilities of each team

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 15/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

Approximation results

SpeedHom: always optimal with single interval

SpeedHet: period minimization problem (NP-hard)

The optimal single-interval mapping can be found:

sort processors by non-increasing speeds
for 1 ≤ i ≤ p, compute period using i fastest processors
time O(p log p)

Theorem: single-interval mapping is a n-approximation
algorithm for period minimization; this factor cannot be
improved

Proof sketch: start from an optimal solution, with m ≤ n
intervals, and build a single interval solution, with period
P1 ≤ m × Pm

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 16/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

Approximation results

SpeedHom: always optimal with single interval

SpeedHet: period minimization problem (NP-hard)

The optimal single-interval mapping can be found:

sort processors by non-increasing speeds
for 1 ≤ i ≤ p, compute period using i fastest processors
time O(p log p)

Theorem: single-interval mapping is a n-approximation
algorithm for period minimization; this factor cannot be
improved

Proof sketch: start from an optimal solution, with m ≤ n
intervals, and build a single interval solution, with period
P1 ≤ m × Pm

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 16/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

Approximation results

SpeedHom: always optimal with single interval

SpeedHet: period minimization problem (NP-hard)

The optimal single-interval mapping can be found:

sort processors by non-increasing speeds
for 1 ≤ i ≤ p, compute period using i fastest processors
time O(p log p)

Theorem: single-interval mapping is a n-approximation
algorithm for period minimization; this factor cannot be
improved

Proof sketch: start from an optimal solution, with m ≤ n
intervals, and build a single interval solution, with period
P1 ≤ m × Pm

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 16/ 28



Framework Complexity Practical Conclusion Mono-criterion Bi-criteria Approximation

Approximation results

SpeedHom: always optimal with single interval

SpeedHet: period minimization problem (NP-hard)

The optimal single-interval mapping can be found:

sort processors by non-increasing speeds
for 1 ≤ i ≤ p, compute period using i fastest processors
time O(p log p)

Theorem: single-interval mapping is a n-approximation
algorithm for period minimization; this factor cannot be
improved

Proof sketch: start from an optimal solution, with m ≤ n
intervals, and build a single interval solution, with period
P1 ≤ m × Pm

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 16/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

Outline of the talk

1 Framework
Application
Platform
Mapping
Objective

2 Complexity results
Mono-criterion
Bi-criteria
Approximation results

3 Practical side
Heuristics
Optimal algorithm using A*
Evaluation results

4 Conclusion

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 17/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

Heuristics

SpeedHet-FailureHet platforms

Minimize F under a fixed upper period P∗

Counterpart problem: binary search over P∗

Two heuristics:

OneInterval: stages grouped as a single interval (motivated
by complexity results)
MultiInterval: solution with multiple intervals (recall that
single interval may be far from optimal)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 18/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

Heuristics

SpeedHet-FailureHet platforms

Minimize F under a fixed upper period P∗

Counterpart problem: binary search over P∗

Two heuristics:

OneInterval: stages grouped as a single interval (motivated
by complexity results)
MultiInterval: solution with multiple intervals (recall that
single interval may be far from optimal)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 18/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

OneInterval

One single interval

Determine number of teams: try all values ` between 1 and p

For a given `, discard processors too slow for period

Assign processors to teams to minimize failure probability

From complexity results: balance reliability across teams
NP-hard problem but efficient greedy heuristic: sort processors
by non-decreasing failure probability and assign next processor
to team with highest failure probability

Time complexity: O(p2 log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 19/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

OneInterval

One single interval

Determine number of teams: try all values ` between 1 and p

For a given `, discard processors too slow for period

Assign processors to teams to minimize failure probability

From complexity results: balance reliability across teams
NP-hard problem but efficient greedy heuristic: sort processors
by non-decreasing failure probability and assign next processor
to team with highest failure probability

Time complexity: O(p2 log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 19/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

OneInterval

One single interval

Determine number of teams: try all values ` between 1 and p

For a given `, discard processors too slow for period

Assign processors to teams to minimize failure probability

From complexity results: balance reliability across teams
NP-hard problem but efficient greedy heuristic: sort processors
by non-decreasing failure probability and assign next processor
to team with highest failure probability

Time complexity: O(p2 log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 19/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

MultiInterval

Step 1: create min(n, p) intervals (one stage per processor, or
balance computational load across intervals)

Step 2: greedily add processors to stages, to minimize maximum
ratio of interval computation load to accumulated processor speed

Step 3: for each interval, use OneInterval to form teams; use
previously unallocated processors (too slow for period); increase
bound on period for the interval until valid allocation returned

Step 4: if period bound not achieved for at least one interval, merge
interval with largest period with previous or next interval, until
bound is achieved

Step 5: merge intervals with highest failure probability as long as it
is beneficial

Note that OneInterval is called each time we tentatively merge
two intervals (steps 4 and 5)

Time complexity: O(p3 log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 20/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

MultiInterval

Step 1: create min(n, p) intervals (one stage per processor, or
balance computational load across intervals)

Step 2: greedily add processors to stages, to minimize maximum
ratio of interval computation load to accumulated processor speed

Step 3: for each interval, use OneInterval to form teams; use
previously unallocated processors (too slow for period); increase
bound on period for the interval until valid allocation returned

Step 4: if period bound not achieved for at least one interval, merge
interval with largest period with previous or next interval, until
bound is achieved

Step 5: merge intervals with highest failure probability as long as it
is beneficial

Note that OneInterval is called each time we tentatively merge
two intervals (steps 4 and 5)

Time complexity: O(p3 log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 20/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

MultiInterval

Step 1: create min(n, p) intervals (one stage per processor, or
balance computational load across intervals)

Step 2: greedily add processors to stages, to minimize maximum
ratio of interval computation load to accumulated processor speed

Step 3: for each interval, use OneInterval to form teams; use
previously unallocated processors (too slow for period); increase
bound on period for the interval until valid allocation returned

Step 4: if period bound not achieved for at least one interval, merge
interval with largest period with previous or next interval, until
bound is achieved

Step 5: merge intervals with highest failure probability as long as it
is beneficial

Note that OneInterval is called each time we tentatively merge
two intervals (steps 4 and 5)

Time complexity: O(p3 log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 20/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

MultiInterval

Step 1: create min(n, p) intervals (one stage per processor, or
balance computational load across intervals)

Step 2: greedily add processors to stages, to minimize maximum
ratio of interval computation load to accumulated processor speed

Step 3: for each interval, use OneInterval to form teams; use
previously unallocated processors (too slow for period); increase
bound on period for the interval until valid allocation returned

Step 4: if period bound not achieved for at least one interval, merge
interval with largest period with previous or next interval, until
bound is achieved

Step 5: merge intervals with highest failure probability as long as it
is beneficial

Note that OneInterval is called each time we tentatively merge
two intervals (steps 4 and 5)

Time complexity: O(p3 log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 20/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

MultiInterval

Step 1: create min(n, p) intervals (one stage per processor, or
balance computational load across intervals)

Step 2: greedily add processors to stages, to minimize maximum
ratio of interval computation load to accumulated processor speed

Step 3: for each interval, use OneInterval to form teams; use
previously unallocated processors (too slow for period); increase
bound on period for the interval until valid allocation returned

Step 4: if period bound not achieved for at least one interval, merge
interval with largest period with previous or next interval, until
bound is achieved

Step 5: merge intervals with highest failure probability as long as it
is beneficial

Note that OneInterval is called each time we tentatively merge
two intervals (steps 4 and 5)

Time complexity: O(p3 log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 20/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

MultiInterval

Step 1: create min(n, p) intervals (one stage per processor, or
balance computational load across intervals)

Step 2: greedily add processors to stages, to minimize maximum
ratio of interval computation load to accumulated processor speed

Step 3: for each interval, use OneInterval to form teams; use
previously unallocated processors (too slow for period); increase
bound on period for the interval until valid allocation returned

Step 4: if period bound not achieved for at least one interval, merge
interval with largest period with previous or next interval, until
bound is achieved

Step 5: merge intervals with highest failure probability as long as it
is beneficial

Note that OneInterval is called each time we tentatively merge
two intervals (steps 4 and 5)

Time complexity: O(p3 log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 20/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

MultiInterval

Step 1: create min(n, p) intervals (one stage per processor, or
balance computational load across intervals)

Step 2: greedily add processors to stages, to minimize maximum
ratio of interval computation load to accumulated processor speed

Step 3: for each interval, use OneInterval to form teams; use
previously unallocated processors (too slow for period); increase
bound on period for the interval until valid allocation returned

Step 4: if period bound not achieved for at least one interval, merge
interval with largest period with previous or next interval, until
bound is achieved

Step 5: merge intervals with highest failure probability as long as it
is beneficial

Note that OneInterval is called each time we tentatively merge
two intervals (steps 4 and 5)

Time complexity: O(p3 log p)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 20/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

A* algorithm

A* best-first state space search algorithm
for small problem instances

Non-linearity of failure probability:
rules out the use of integer linear programming

Search space: state s is a partial solution (i.e., partial
mapping), with underestimated cost value c(s)

Expansion of a partial solution with lowest c(s) value,
with a stage or a processor

Complete mapping obtained: optimal solution
(best-first strategy)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 21/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

A* algorithm

A* best-first state space search algorithm
for small problem instances

Non-linearity of failure probability:
rules out the use of integer linear programming

Search space: state s is a partial solution (i.e., partial
mapping), with underestimated cost value c(s)

Expansion of a partial solution with lowest c(s) value,
with a stage or a processor

Complete mapping obtained: optimal solution
(best-first strategy)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 21/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

A* algorithm

A* best-first state space search algorithm
for small problem instances

Non-linearity of failure probability:
rules out the use of integer linear programming

Search space: state s is a partial solution (i.e., partial
mapping), with underestimated cost value c(s)

Expansion of a partial solution with lowest c(s) value,
with a stage or a processor

Complete mapping obtained: optimal solution
(best-first strategy)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 21/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

A* algorithm

A* best-first state space search algorithm
for small problem instances

Non-linearity of failure probability:
rules out the use of integer linear programming

Search space: state s is a partial solution (i.e., partial
mapping), with underestimated cost value c(s)

Expansion of a partial solution with lowest c(s) value,
with a stage or a processor

Complete mapping obtained: optimal solution
(best-first strategy)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 21/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

A* algorithm

A* best-first state space search algorithm
for small problem instances

Non-linearity of failure probability:
rules out the use of integer linear programming

Search space: state s is a partial solution (i.e., partial
mapping), with underestimated cost value c(s)

Expansion of a partial solution with lowest c(s) value,
with a stage or a processor

Complete mapping obtained: optimal solution
(best-first strategy)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 21/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

State tree for two stages on two processors

[Sa;Sb]
(P1,P2)
(P3,P4)

P5,P6

: first team for this interval
: second team for this interval
: processors not selected

: expansion with a new stage
: expansion with a new processor

: invalid state

: goal state

for the last interval

: one interval

Legend

[S1]

[S1] P1

[S1] P1,P2

[S1]
(P1)

[S1,S2]
(P1)

[S1] [S2]
(P1)

[S1]
(P1,P2)

[S2]

[S1]
(P1)
(P2)

[S2]

[S1,S2]
(P1)
(P2)

[S1]
(P1)
(P2)

(P1,P2)
[S1,S2]

[S1,S2] [S2][S1]

[S2][S1] P1

[S2][S1]

[S1]
(P1,P2)

[S1] P2

(P1)

[S2][S1] P2

[S2][S1]

empty state

[S1]
(P2)

P1

(P1)

(P1) (P2)

(P2)

(P2) (P1)

(P2)(P2)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 22/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

Underestimate cost functions

Failure probability F
Partial mapping: adding team increases failure probability
Underestimate: add remaining processors to existing teams
NP-hard problem: consider amount of reliability available and
distribute it to the existing teams to balance their reliability

Period P
Need to check that partial solution does not exceed the bound:
can be computed exactly
Second underestimate: optimal period achieved by remaining
processors on remaining stages

NP-hard problem: consider perfect load balance: P ≤
∑

wi∑
su

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 23/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

Underestimate cost functions

Failure probability F
Partial mapping: adding team increases failure probability
Underestimate: add remaining processors to existing teams
NP-hard problem: consider amount of reliability available and
distribute it to the existing teams to balance their reliability

Period P
Need to check that partial solution does not exceed the bound:
can be computed exactly
Second underestimate: optimal period achieved by remaining
processors on remaining stages

NP-hard problem: consider perfect load balance: P ≤
∑

wi∑
su

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 23/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

Heuristics vs A*

Randomly generated workload scenarios

Both heuristics close to optimal solution

OneInterval is better than MultiInterval in a few cases

A* much slower, but main limitation is memory

2 3 4 5 6 7 8 9 10

Period bound

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ai
lu
re

pr
ob
ab
ili
ty

MultiInterval
OneInterval
A*

1 2 3 4 5 6 7 8 9 10

Period bound

0

0.5

1

1.5

2

2.5

3

3.5

R
un

ni
ng

ti
m
e
(s
ec
on
ds
)

MultiInterval
OneInterval
A*

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 24/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

Performance of heuristics

Distribution of ratio between failure probability obtained by a
heuristic (OneInterval in red, MultiInterval in blue) and
optimal failure probability (A*) (optimal: ratio 1)

On average, heuristics 20% above optimal

Ratio 10: cases in which heuristics find no solution (≈ 10%)

1 2 3 4 5 6 7 8 9 10

Ratio of the failure probability to the optimal one

0

10

20

30

40

50

60

70

F
re
qu

en
cy

(%
)

1 2 3 4 5 6 7 8 9 10

Ratio of the failure probability to the optimal one

0

10

20

30

40

50

60

70

F
re
qu

en
cy

(%
)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 25/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

Larger scenarios

OneInterval better in 61% of the cases

MultiInterval better in 20% of the cases

On average, failure probability of OneInterval 2% above
MultiInterval

Comparison of OneInterval with optimal single-interval
solution (easy to compute with A*): in average, 0.05% above
optimal, and 5% in the worst case

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 26/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

Larger scenarios

OneInterval better in 61% of the cases

MultiInterval better in 20% of the cases

On average, failure probability of OneInterval 2% above
MultiInterval

Comparison of OneInterval with optimal single-interval
solution (easy to compute with A*): in average, 0.05% above
optimal, and 5% in the worst case

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 26/ 28



Framework Complexity Practical Conclusion Heuristics A* Evaluation

Larger scenarios

OneInterval better in 61% of the cases

MultiInterval better in 20% of the cases

On average, failure probability of OneInterval 2% above
MultiInterval

Comparison of OneInterval with optimal single-interval
solution (easy to compute with A*): in average, 0.05% above
optimal, and 5% in the worst case

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 26/ 28



Framework Complexity Practical Conclusion

Outline of the talk

1 Framework
Application
Platform
Mapping
Objective

2 Complexity results
Mono-criterion
Bi-criteria
Approximation results

3 Practical side
Heuristics
Optimal algorithm using A*
Evaluation results

4 Conclusion

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 27/ 28



Framework Complexity Practical Conclusion

Conclusion and future work

Exhaustive complexity study

polynomial time algorithm for SpeedHom-FailureHom
platforms
NP-completeness with one level of heterogeneity
approximation results to compare single interval solution with
any other solution

Practical solution to the problem

efficient heuristics (inspired by theoretical study) for
SpeedHet-FailureHet platforms
A* algorithm with non-trivial underestimate functions
experimental results: very good behaviour of heuristics

Future work

further approximation results
enhanced multiple interval heuristics
improved A* techniques

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 28/ 28



Framework Complexity Practical Conclusion

Conclusion and future work

Exhaustive complexity study

polynomial time algorithm for SpeedHom-FailureHom
platforms
NP-completeness with one level of heterogeneity
approximation results to compare single interval solution with
any other solution

Practical solution to the problem

efficient heuristics (inspired by theoretical study) for
SpeedHet-FailureHet platforms
A* algorithm with non-trivial underestimate functions
experimental results: very good behaviour of heuristics

Future work

further approximation results
enhanced multiple interval heuristics
improved A* techniques

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 28/ 28



Framework Complexity Practical Conclusion

Conclusion and future work

Exhaustive complexity study

polynomial time algorithm for SpeedHom-FailureHom
platforms
NP-completeness with one level of heterogeneity
approximation results to compare single interval solution with
any other solution

Practical solution to the problem

efficient heuristics (inspired by theoretical study) for
SpeedHet-FailureHet platforms
A* algorithm with non-trivial underestimate functions
experimental results: very good behaviour of heuristics

Future work

further approximation results
enhanced multiple interval heuristics
improved A* techniques

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 28/ 28


	Framework
	Application
	Platform
	Mapping
	Objective

	Complexity results
	Mono-criterion
	Bi-criteria
	Approximation results

	Practical side
	Heuristics
	Optimal algorithm using A*
	Evaluation results

	Conclusion

