
Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Handling failures on High Performance Computing
platforms: Checkpointing and scheduling techniques

Anne Benoit

LIP, Ecole Normale Supérieure de Lyon, France

Anne.Benoit@ens-lyon.fr

http://graal.ens-lyon.fr/~abenoit/

SBAC-PAD Keynote, November 2-4, 2022

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 1/ 60

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Motivation: Dealing with failures

Consider one processor (e.g. in your laptop)

Mean Time Between Failures (MTBF) = 100 years
(Almost) no failures in practice,

Why bother about failures?

Theorem: The MTBF decreases linearly with the number of
processors! With 36500 processors:

MTBF = 1 day
A failure every day on average!

A large simulation can run for weeks, hence it will face
failures /

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 2/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Motivation: Dealing with failures

Consider one processor (e.g. in your laptop)

Mean Time Between Failures (MTBF) = 100 years
(Almost) no failures in practice,

Why bother about failures?

Theorem: The MTBF decreases linearly with the number of
processors! With 36500 processors:

MTBF = 1 day
A failure every day on average!

A large simulation can run for weeks, hence it will face
failures /

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 2/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Intuition

Time

p1

p2

p3

t

If three processors have around 20 faults during a time t (µ = t
20)...

Time

p

t

...during the same time, the platform has around 60 faults (µp = t
60)

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 3/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Different kind of failures to handle

Fail-stop errors:

Component failures (node, network, power, ...)
Application fails and data is lost

Silent data corruptions:

Bit flip (Disk, RAM, Cache, Bus, ...)
Detection is not immediate, and we may get wrong results

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 4/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Impact of failures

“The internet begins
with coal”

Nowadays: more than 90 billion kilowatt-hours of electricity a
year; requires 34 giant (500 megawatt) coal-powered plants,
and produces huge CO2 emissions

Explosion of artificial intelligence; AI is hungry for processing
power! Need to double data centers in next four years
→ how to get enough power?

Failures: Redundant work consumes even more energy

Energy and power awareness ; crucial for
both environmental and economical reasons

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 5/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

So, how to deal with failures?

Failures usually handled by adding redundancy:

Re-execute when a failure strikes (we will come back to this
approach in the second part of the talk)

Replicate the work (for instance, use only half of the processors, and
the other half is used to redo the same computation)

Checkpoint the application: Periodically save the state of the
application on stable storage, so that we can restart in case of
failure without loosing everything

Time

C R W C W C

Fail-stop error

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 6/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

When should we checkpoint?

How often should we checkpoint to minimize the waste, i.e., the
time lost because of resilience techniques and failures?

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 7/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
Derivation for Poisson processes
Other failure distributions
Workflows

2 Resilient scheduling with re-execution
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 8/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

The famous Young/Daly formula

Periodic checkpointing with period T = W + C

C : Checkpoint time; R: Recovery time

µp = µ
p : Application MTBF with p processors

Time

C R W C W C

Fail-stop error

Optimal period WYD =
√

2µpC (Young 1974, Daly 2006)

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 9/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
Derivation for Poisson processes
Other failure distributions
Workflows

2 Resilient scheduling with re-execution
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 10/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Framework: Poisson processes

Application with one processor and infinite duration

P1

. . .

Failures inter-arrival times: indep. and identically distributed
(IID) random variables obeying distribution D ∼ Exp(λ)

MTBF E(D) = µ = 1
λ application/processor MTBF

Checkpoint, recovery, downtime: cost C ,R,D

Periodic checkpointing with period T = W + C

Time

W C W C W C · · ·

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 11/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Periodic?

Time

W C W C W C · · ·

Periodic is optimal when D ∼ Exp(λ) (memoryless property)

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 12/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Optimal period

E(W): Expected time to complete a period (of length W +C)

E(W) = Psucc×(W +C)+Pfail×(E(Tlost)+D+E(R)+E(W))

E(W) =
(

1
λ + D

)
eλR

(
eλ(W+C) − 1

)
Find Wopt to minimize slowdown E(W)

W

Wopt = 1
λ(L(−e−λC−1) + 1) with Lambert function L(z) = x ⇔ z = xex

When z → −1
e , L(z) = −1 +

√
2y − 2

3y
2 + . . . , with y =

√
1 + ez

Workopt =

√
2C

λ
+ o(λ−

1
2) ≈

√
2µC

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 13/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Now with 2 processors

P1
X1 �

P2
X2 �

(Spare)P3
X3 �

t

Two processors, each with failures X ∼ Exp(λ)

Platform failures:

First failure at time t = min(X1,X2) ∼ Exp(2λ)
Replace P1 by fresh spare P3 (rejuvenate)
Second failure still ∼ Exp(2λ):
the different history on P2 and P3 at time t does not matter
(memoryless!)

Platform failures are IID Exp(2λ)

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 14/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Now with p processors

Replace λ by λp = pλ (and µ by µp = µ
p), and done ,

Why?

First application failure: minimum of p IID Exp(λ) ∼ Exp(pλ)

When failed processor is replaced (rejuvenation),
the history of the other processors does not matter (memoryless!)

Platform failures are IID Exp(pλ)

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 15/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Now with p processors and a job of finite length Wjob

Job of length Wjob

Partition into k chunks of length Wi and checkpoint them all
(
∑k

i=1 Wi = Wjob)

Minimize

E(Wjob) = eλR
(

1

λ
+ D

) k∑
i=1

(eλ(Wi+C) − 1)

Solution

Same-size chunks by convexity: Wi = W =
Wjob

k
Differentiate and solve for k with Lambert, find kopt ∈ R
Use either max(1, bkoptc) or dkopte chunks (whichever leads to
minimum)

First-order approximation gives
Wjob

kopt
≈
√

2µC

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 16/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Now with p processors and a job of finite length Wjob

Optimal solution well-understood

Easy extension when no recovery for first chunk or no checkpoint for
last chunk

Young-Daly is only a first-order approximation

B Young-Daly can significantly differ from optimal for short jobs

Example: Wjob = 61, WYD =
√

2µpC = 60, C = 5, final checkpoint

YD W=60 C 1 C

Opt W=61 C

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 17/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
Derivation for Poisson processes
Other failure distributions
Workflows

2 Resilient scheduling with re-execution
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 18/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Framework

What happens if D is no longer memoryless?

Processor failures have been shown to obey Weibull or
LogNormal distributions...

Non-constant instantaneous failure rate! /

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 19/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Weibull distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a
ilu

re
 P

ro
b
a
b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

Weibull(k , λ): Weibull distribution law of shape parameter k
and scale parameter λ:

PDF: f (t) = kλ(tλ)k−1e−(λt)kdt for t ≥ 0

CDF: F (t) = 1− e−(λt)k

Mean = 1
λΓ(1 + 1

k)

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 20/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Weibull distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a
ilu

re
 P

ro
b
a
b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

X random variable for Weibull(k , λ) failure inter-arrival times:

If k < 1: failure rate decreases with time
”infant mortality”: defective items fail early

If k = 1: Weibull(1, λ) = Exp(λ) constant failure time

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 20/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Weibull with 1 processor

Periodic checkpointing is not optimal:
if the instantaneous failure rate decreases with time, the
length of work chunks (before taking a checkpoint) should
increase

Some dynamic policies have been designed but no closed-form
formula /
At least platform failures are IID with 1 processor ,

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 21/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Weibull with 2 processors

P1
X1 �

P2
X2 �

(Spare)P3
X3 �

t

Two processors, each with failures X ∼Weibull(k , λ)

Platform:

First failure at time t = min(X1,X2) is Weibull(k , 2λ)
Replace P1 by fresh spare P3 (rejuvenate)
Second failure is not Weibull because of different history on P2

and P3 at time t
Platform failures are not IID
. . . unless we rejuvenate P2 together with P1 after first failure

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 22/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Weibull with 2 processors

P1
X1 �

P2
X2 �

(Spare)P3
X3 �

t

Two processors, each with failures X ∼Weibull(k , λ)

Platform:

First failure at time t = min(X1,X2) is Weibull(k , 2λ)
Replace P1 by fresh spare P3 (rejuvenate)
Second failure is not Weibull because of different history on P2

and P3 at time t
Platform failures are not IID
. . . unless we rejuvenate P2 together with P1 after first failure

Nobody will rejuvenate
100K processors after
each failure

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 22/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Platform MTBF?

Rebooting only faulty processor

Processor failures: IID, obey D with mean µ

Platform failures:
⇒ superposition of p IID processor distributions
⇒ IID only for Exponential

Define µp by

lim
F→+∞

F

n(F)
= µp

n(F) = number of platform failures until time F is exceeded

Theorem: This limit exists and µp =
µ

p
for arbitrary (regular) distributions

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 23/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Back to Young/Daly

Time

p1

p2

p3

t

If three processors have around 20 faults during a time t (µ = t
20)...

Time

p

t

...during the same time, the platform has around 60 faults (µp = t
60)

Since µp = µ
p for arbitrary (regular) distributions . . .

. . . why not use periodic checkpointing à la Young/Daly WYD =
√

2µpC
. . . and hope for the best?

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 24/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Accuracy

Not much known

Approximations based on computing the waste

Monte-Carlo simulations (brute force) to compare with
optimal period (which is unknown, so binary search all)

Distance between periodic and optimal?

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 25/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

State-of-the-art

Assume constant instantaneous fault rate (after infant
mortality and before aging . . .)

Pretend to rejuvenate all processors at each failure

Assume that platform failures are Weibull (what are they on
each processor?)

Ignore problem and use Young/Daly (with confidence?)

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 26/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

A solution

Checkpoint parallel jobs under any failure probability
distribution

Dynamic checkpointing strategy

From one failure to the next!

After each failure, maximize expected efficiency before the
next failure or the end of the job (jobs of finite length)

Efficiency = Work done until next failure
Time to next failure

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 27/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Technicalities

Discretization with time quantum

From one failure to the next, processors keep the same
difference in history
⇒ NEXT heuristic to optimize efficiency
⇒ Dynamic programming in O(pW 4), where W is expressed
in quanta

Asymptotically optimal ,

At last, a statement about the optimality of the approach for
general distributions! , , ,

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 28/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Aggregated results

Ratio of execution time YoungDaly / NEXT (geom. mean, geom. stdev)

NEXT always adapts to actual instantaneous failure rate: accounts
for the failure history of processors

Better strategy in all cases

More significant differences for the realistic distribution laws
(LogNormal 2.51 and Weibull 0.5)

Parameters to vary: platform age, job duration, job size, checkpoint
duration, individual MTBF

See [Benoit, Perotin, Robert, Vivien. Checkpointing strategies to protect
parallel jobs from non-memoryless fail-stop errors. Inria RR-9465]

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 29/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
Derivation for Poisson processes
Other failure distributions
Workflows

2 Resilient scheduling with re-execution
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 30/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Framework

Back to memoryless failures ,
So far, we have dealt with a tightly-coupled application

What about a workflow made of several (parallel) tasks?

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 31/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Fork-join graph

F

T1 T2 TN

J

· · ·

N identical parallel tasks

T1:
W C W C W C · · ·

T2:
W C W C W C · · ·

· · ·
TN :

W C W C W C · · ·

Optimal Young/Daly period Wopt for each task...
Is it good enough?

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 32/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Parallel tasks

Intuition

Multiple tasks execute simultaneously

Higher risk that one of them is severely delayed
⇒ Take more checkpoints to mitigate this risk

Solution

The number of failures of each task follows the
Negative Binomial Distribution.

The maximum of n such identical variables is known
⇒ Estimation of the number of checkpoints to take

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 33/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

General workflow graphs

Algorithm: CheckMore strategy

Start with a failure-free schedule S
Partition it into virtual slices with equal-length tasks

Use previous result on parallel tasks

Schedule tasks ASAP but keep the initial ordering of S

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 34/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

General workflow graphs

See [Benoit, Perotin, Robert, Sun. Checkpointing Workflows à la Young/Daly

Is Not Good Enough. ACM TOPC 2022] for evaluation of new strategies

Models needed to assess techniques at scale
without bias ,

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 35/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
Derivation for Poisson processes
Other failure distributions
Workflows

2 Resilient scheduling with re-execution
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 36/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Motivation

On large-scale HPC platforms:

Scheduling parallel jobs is important to improve application
performance and system utilization

Handling job failures is critical as failure/error rates increase
dramatically with size of system

We combine job scheduling and failure handling for moldable parallel jobs
running on large HPC platforms that are prone to failures

Cmax

t

Tasks

Machines

P1

P2

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 37/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Parallel job models

In the scheduling literature:

Rigid jobs: Processor allocation is fixed by the user and cannot be
changed by the system (i.e., fixed, static allocation)

Moldable jobs: Processor allocation is decided by the system but
cannot be changed once jobs start execution (i.e., fixed, dynamic
allocation)

Malleable jobs: Processor allocation can be dynamically changed
by the system during runtime (i.e., variable, dynamic allocation)

We focus on moldable jobs, because:

They can easily adapt to the amount of available resources
(contrarily to rigid jobs)

They are easy to design/implement (contrarily to malleable jobs)

Many computational kernels in scientific libraries are provided as
moldable jobs

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 38/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Scheduling model

n moldable jobs to be scheduled on P identical processors

Job j (1 ≤ j ≤ n): Choose processor allocation pj (1 ≤ pj ≤ P)

Execution time tj(pj) of each job j is a function of pj

Area is aj(pj) = pj × tj(pj)

Jobs are subject to arbitrary failure scenarios, which are unknown
ahead of time (i.e., semi-online)

Minimize the makespan (successful completion time of all jobs)

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 39/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Speedup models

Roofline model: tj(pj) =
wj

max(pj ,p̄j)
, for some 1 ≤ p̄j ≤ P

Communication model: tj(pj) =
wj

pj
+ (pj − 1)cj ,

where cj is the communication overhead

Amdahl’s model: tj(pj) = wj

(1−γj
pj

+ γj
)
,

where γj is the inherently sequential fraction

Monotonic model: tj(pj) ≥ tj(pj + 1) and aj(pj) ≤ aj(pj + 1),
i.e., execution time non-increasing and area is non-decreasing

Arbitrary model: tj(pj) is an arbitrary function of pj

Rigid jobs: pj is fixed and hence execution time is tj

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 40/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Failure model
Jobs can fail due to silent errors (or silent data corruptions)

A lightweight silent error detector (of negligible cost) is available to
flag errors at the end of each job’s execution

If a job is hit by silent errors, it must be re-executed (possibly
multiple times) till successful completion

A failure scenario f = (f1, f2, . . . , fn) describes the number of failures each
job experiences during a particular execution

Example: f = (2, 1, 0, 0, 0) for an execution of 5 jobs

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 41/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Problem complexity

Scheduling problem clearly NP-hard (failure-free is a special case)

A scheduling algorithm Alg is said to be a c-approximation if its
makespan is at most c times that of an optimal scheduler for all
possible sets of jobs, and for all possible failure scenarios, i.e.,

TAlg(f, s) ≤ c × Topt(f, s∗)

Topt(f, s∗) denotes the optimal makespan with scheduling
decision s∗ under failure scenario f

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 42/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
Derivation for Poisson processes
Other failure distributions
Workflows

2 Resilient scheduling with re-execution
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 43/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Lower bounds

Rigid jobs: pj is fixed and job j has execution time tj

Optimal makespan has two lower bounds:

Topt(f, s∗) ≥ tmax(f)

Topt(f, s∗) ≥ A(f)

P

tmax(f) = maxj=1...n(fj + 1)× tj : maximum cumulative execution
time of any job under f

A(f) =
∑n

j=1(fj + 1)× aj : total cumulative area

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 44/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

List-based algorithm

Resilient list-based scheduling algorithm, and O(1)-approximations for
any failure scenario:

Extends classical batch scheduler that combines reservation and
backfilling strategies

Organizes all jobs in a list (or queue) based on some priority rule

When a job completes: processors released; if error, inserted back in
the queue; remaining jobs scheduled

Approximation results:

2-approximation using Greedy heuristic without reservation

3-approximation using Large Job First priority with reservation

The results nicely extend the ones without job failures [TWY’92: Turek,

Wolf, Yu. Approximate algorithms scheduling parallelizable tasks. SPAA’92]

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 45/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Shelf-based algorithm

Resilient shelf-based scheduling heuristic, but Ω(logP)-approx. for any
shelf-based solution in some failure scenario, e.g.:

The result defies the O(1)-approx. result without failures [TWY’92]

Why not re-execute failed jobs within a same shelf?

Optimal on this example!

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 46/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Shelf-based algorithm

Resilient shelf-based scheduling heuristic, but Ω(logP)-approx. for any
shelf-based solution in some failure scenario, e.g.:

The result defies the O(1)-approx. result without failures [TWY’92]

Why not re-execute failed jobs within a same shelf?

Optimal on this example!

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 46/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Shelf-fill variant: Fill shelfs when error detected

However, there exists a job instance and a failure scenario such that
Shelf-fill with the LPT priority rule has an approximation ratio of Ω(P)!

time

time

1

: 1+ε
P

(P−1 jobs)

P − 1 failures

1
P

: 1+ε
P2 ((P−1)P jobs)

P2 − 1 failures

1
P2

: 1+ε
P3 ((P−1)P2 jobs)

1
1
P

1
P2

+ Extensive simulation results of all heuristics using both synthetic jobs and job traces
from the Mira supercomputer, see [Benoit, Le Fèvre, Raghavan, Robert, Sun.
Resilient scheduling heuristics for rigid parallel jobs. IJNC 2021]

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 47/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
Derivation for Poisson processes
Other failure distributions
Workflows

2 Resilient scheduling with re-execution
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 48/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Main results for moldable jobs

Two resilient scheduling algorithms with analysis of approximation ratios
and simulation results

1 A list-based scheduling algorithm, called Lpa-List, and
approximation results for several speedup models

2 A batch-based scheduling algorithm, called Batch-List, and
approximation result for the arbitrary speedup model

3 Extensive simulations to evaluate and compare (average and
worst-case) performance of both algorithms against baseline
heuristics

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 49/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

(1) Lpa-List scheduling algorithm

Two-phase scheduling approach:

Phase 1: Allocate processors to jobs using the Local Processor
Allocation (Lpa) strategy

Minimize a local ratio individually for each job as guided by
the property of the List scheduling (next slide)
The processor allocation pj will remain unchanged for different
execution attempts of the same job j

Phase 2: Schedule jobs with fixed processor allocations using the
List Scheduling (List) strategy (as in rigid case)

Organize all jobs in a list according to any priority order
Schedule the jobs one by one at the earliest possible time (with
backfilling whenever possible)
If a job fails after an execution, insert it back into the queue for
rescheduling; Repeat this until the job completes successfully

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 50/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

(1) Lpa-List scheduling algorithm

Given a processor allocation p = (p1, p2, . . . , pn) and a failure scenario
f = (f1, f2, . . . , fn):

A(f,p) =
∑

j aj(pj): total area of all jobs

tmax(f,p) = maxj tj(pj): maximum execution time of any job

Property of List Scheduling

For any failure scenario f, if the processor allocation p satisfies:

A(f,p) ≤ α · A(f,p∗) ,

tmax(f,p) ≤ β · tmax(f,p∗) ,

where p∗ is the processor allocation of an optimal schedule, then a List
schedule using processor allocation p is r(α, β)-approximation:

r(α, β) =

{
2α, if α ≥ β
P

P−1α + P−2
P−1β, if α < β

(1)

Eq. (1) is used to guide the local processor allocation (Lpa) for each job

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 51/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

(1) Lpa-List scheduling algorithm

Approximation results of Lpa-List for some speedup models:

Speedup Model Approximation Ratio

Roofline 2
Communication 31

Amdahl 4

Monotonic Θ(
√
P)

Advantages and disadvantages of Lpa-List:

Pros: Simple to implement, and constant approximation for some
common speedup models

Cons: Uncoordinated processor allocation, and high approximation
for monotonic/arbitrary model

1For the communication model, our approx. ratio (3) improves upon the
best ratio to date (4), which was obtained without any resilience considerations:
[Havill and Mao. Competitive online scheduling of perfectly malleable jobs with setup

times, European Journal of Operational Research, 187:1126–1142, 2008]
SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 52/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

(2) Batch-List scheduling algorithm

Batched scheduling approach:

Different execution attempts of the jobs are organized in batches
that are executed one after another

In each batch k (= 1, 2, . . .), all pending jobs are executed a
maximum of 2k−1 times

Uncompleted jobs in each batch will be processed in the next batch

Example: an execution of 5 jobs under a failure scenario f = (0, 1, 2, 4, 7)

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 53/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

(2) Batch-List scheduling algorithm

Within each batch k :

Processor allocations are done for pending jobs using the
Mt-Allotment algorithm2, which guarantees near optimal
allocation (within a factor of 1 + ε)

The maximum of 2k−1 execution attempts of the pending jobs are
scheduling using the List strategy

Approximation Result of Batch-List

The Batch-List algorithm is Θ((1 + ε) log2(fmax))-approximation for
arbitrary speedup model, where fmax = maxj fj is the maximum number
of failures of any job in a failure scenario

2The algorithm has runtime polynomial in 1/ε and works for jobs in
SP-graphs/trees (of which a set of independent linear chains is a special case)
[Lepère, Trystram, and Woeginger. Approximation algorithms for scheduling malleable

tasks under precedence constraints. European Symposium on Algorithms, 2001]
SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 54/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
Derivation for Poisson processes
Other failure distributions
Workflows

2 Resilient scheduling with re-execution
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 55/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Performance evaluation

We evaluate the performance of our algorithms using simulations

Synthetic jobs under three speedup models (Roofline,
Communication, Amdahl) and different parameter settings

Job failures follow exponential distribution with varying error rate λ

Baseline algorithm for comparison:

MinTime: allocate processors to minimize execution time of
each job and schedule jobs using List

Priority rules used in List:

LPT (Longest Processing Time)

Results normalized by a lower bound (minimum possible total
execution time of a job, minimum possible total area)

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 56/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Simulation results — with varying number of processors P

In Roofline model, Lpa (and MinTime) has better performance,
thanks to it simple and effective local processor allocation strategy

In Communication model, Batch catches up with Lpa and
performs better than MinTime

In Amdahl’s model (where parallelizing a job becomes less efficient
due to extra communication overhead), Batch has the best
performance, thanks to its coordinated processor allocation

5000 10000 15000
P

1.00

1.05

1.10

1.15

1.20

1.25

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(a) Roofline model

5000 10000 15000
P

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(b) Communication model

5000 10000 15000
P

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

(c) Amdahl’s model

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 57/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Simulations — Summary of perf of three algos (over loose bound)

Both algorithms (Lpa and Batch) perform significantly better
than the baseline MinTime

Over the whole set of simulations, our best algorithm (Lpa or
Batch) is within a factor of 1.47 of the lower bound on average,
and within a factor of 1.8 of the lower bound in the worst case

Speedup model Roofline Communication Amdahl

Lpa
Expected 1.055 1.310 1.960
Maximum 1.148 1.379 2.059

Batch
Expected 1.154 1.430 1.465
Maximum 1.280 1.897 1.799

MinTime
Expected 1.055 2.040 14.412
Maximum 1.148 2.184 24.813

See [Benoit, Le Fèvre, Perotin, Raghavan, Robert, Sun. Resilient scheduling of
moldable jobs on failure-prone platforms. Cluster 2020] and [Benoit, Le Fèvre,
Perotin, Raghavan, Robert, Sun. Resilient scheduling of moldable parallel jobs
to cope with silent errors. IEEE TC 2021] for detailed results.

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 58/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
Derivation for Poisson processes
Other failure distributions
Workflows

2 Resilient scheduling with re-execution
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 59/ 60

Introduction Checkpointing: Young/Daly revisited Resilient scheduling with re-execution Conclusion

Conclusion

Take-aways:
Future HPC platforms demand simultaneous resource scheduling
and resilience considerations for parallel applications

Young/Daly formula commonly used to determine the optimal
checkpointing period, but it is not always the best strategy

Resilient scheduling algorithms for rigid and moldable parallel jobs
with provable performance guarantees and good performance

Future work:
Still a lot of challenges to address, and techniques to be developed
for many kinds of high-performance applications, in order to handle
failures, using checkpointing, re-execution, and also replication

In particular, life is more complicated with non-memoryless failure
distributions and general workflow applications!

Thanks!!! And have a great time in Bordeaux!

SBAC-PAD, Nov. 2, 2022 Anne.Benoit@ens-lyon.fr Handling failures on HPC platforms 60/ 60

	When checkpointing à la Young/Daly is not enough
	Derivation for Poisson processes
	Other failure distributions
	Workflows

	Resilient scheduling with re-execution
	Main results for rigid jobs
	Main results for moldable jobs
	Simulation results

	Conclusion

