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Motivation

Scheduling: Allocate resources to applications to optimize some
performance metrics

Resources: Large-scale distributed systems with millions of
components

Applications: Parallel applications, expressed as a set of tasks,
or divisible application with some work to complete

Performance metrics: Of course we are concerned with the
performance of the applications, but also with resilience and
energy consumption
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Classical scheduling problems

Tasks

Machines

P1

P2

Objectives:

Minimizing total execution time (Cmax)

Minimizing weighted sum of execution times
∑

i wiCi

Results: NP-completeness, algorithms, approximation algorithms,
(in-)approximation bounds
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Dealing with failures

Consider one processor (e.g. in your laptop)

Mean Time Between Failures (MTBF) = 100 years
(Almost) no failures in practice ,

Why bother about failures?

Theorem: The MTBF decreases linearly with the number of
processors! With 36500 processors:

MTBF = 1 day
A failure every day on average!

A large simulation can run for weeks, hence it will face
failures /
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Intuition

Time

p1

p2

p3

t

If three processors have around 20 faults during a time t (µ = t
20 )...

Time

p

t

...during the same time, the platform has around 60 faults (µp = t
60 )
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So, how to deal with failures?

Failures usually handled by adding redundancy:

Replicate the work (for instance, use only half of the
processors, and the other half is used to redo the same
computation)
Checkpoint the application: Periodically save the state of the
application on stable storage, so that we can restart in case of
failure without loosing everything
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Another crucial issue: Energy consumption

“The internet begins
with coal”

Nowadays: more than 90 billion kilowatt-hours of electricity a
year; requires 34 giant (500 megawatt) coal-powered plants,
and produces huge CO2 emissions

Explosion of artificial intelligence; AI is hungry for processing
power! Need to double data centers in next four years
→ how to get enough power?

Failures: Redundant work consumes even more energy

Energy and power awareness ; crucial for
both environmental and economical reasons
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Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal period
Optimal period when accounting for energy consumption

2 Combining checkpoint with replication
Replication analysis
Simulations

3 Back to task scheduling

4 A different re-execution speed can help
Model, optimization problem, optimal solution
Simulations
Extensions: both fail-stop and silent errors

5 Summary and need for trade-offs
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Introduction to resilience

Fail-stop errors:
Component failures (node, network, power, ...)
Application fails and data is lost

Silent data corruptions:
Bit flip (Disk, RAM, Cache, Bus, ...)
Detection is not immediate, and we may get wrong results

How often should we checkpoint
to minimize the waste, i.e., the
time lost because of resilience
techniques and failures?

Winter School, Feb. 5, 2019 Anne.Benoit@ens-lyon.fr Resilient and energy-aware scheduling algorithms 9/ 84



Introduction Checkpointing Replication Task scheduling Re-execution speed Conclusion

Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal period
Optimal period when accounting for energy consumption

2 Combining checkpoint with replication
Replication analysis
Simulations

3 Back to task scheduling

4 A different re-execution speed can help
Model, optimization problem, optimal solution
Simulations
Extensions: both fail-stop and silent errors

5 Summary and need for trade-offs

Winter School, Feb. 5, 2019 Anne.Benoit@ens-lyon.fr Resilient and energy-aware scheduling algorithms 10/ 84



Introduction Checkpointing Replication Task scheduling Re-execution speed Conclusion

Coping with fail-stop errors

Periodic checkpoint, rollback, and recovery:

Time

C T C T C (no error)

Time

Fail-stop error

C T C T C (error)

Time

C R T C T C

Fail-stop error

(error)

Coordinated checkpointing (the platform is a giant macro-processor)

Assume instantaneous interruption and detection.

Rollback to last checkpoint and re-execute.
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Coping with silent errors

Silent error = detection latency
Error is detected only when corrupted data is activated

Same approach?

C T C T C

Time

Detection
corrupted!

Silent error

corrupted?

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!
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Methods for detecting silent errors

General-purpose approaches

Replication [Fiala et al. 2012] or triple modular redundancy and voting
[Lyons and Vanderkulk 1962]

Application-specific approaches

Algorithm-based fault tolerance (ABFT): checksums in dense matrices
Limited to one error detection and/or correction in practice [Huang and
Abraham 1984]

Partial differential equations (PDE): use lower-order scheme as
verification mechanism [Benson, Schmit and Schreiber 2014]

Generalized minimal residual method (GMRES): inner-outer iterations
[Hoemmen and Heroux 2011]

Preconditioned conjugate gradients (PCG): orthogonalization check every
k iterations, re-orthogonalization if problem detected [Sao and Vuduc
2013, Chen 2013]

Data-analytics approaches

Dynamic monitoring of HPC datasets based on physical laws (e.g.,
temperature limit, speed limit) and space or temporal proximity
[Bautista-Gomez and Cappello 2014]

Time-series prediction, spatial multivariate interpolation [Di et al. 2014]
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Coping with fail-stop and silent errors

Time

V C T V C T V C (no error)

Time

V C R T V C T V C

Fail-stop error

(fail-stop error)

Time

V C T V R T V C T V C

Silent error
Detection

(silent error)

What is the optimal checkpointing period?
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Outline
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Optimization objective (1/2)

Time

C T C T C

T is the pattern length (time without failures)

C is the checkpoint cost

E(T ) is the expected execution time of the pattern

By definition, the overhead of the pattern is defined as:

H(T ) = E(T )
T − 1

The overhead measures the fraction of extra time due to:

Checkpoints

Recoveries and re-executions (failures)

The goal is to minimize the quantity: H(T )
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Optimization objective (2/2)

Goal: Find the optimal pattern length T ∗,
so that the overhead is minimized

Overhead: H(T ) = E(T )
T − 1

1. Compute expected execution time E(T ) (exact formula)

2. Compute overhead H(T ) (first-order approximation)

3. Derive optimal T ∗: fail-stop errors

4. Derive optimal T ∗: silent errors

5. Derive optimal T ∗: both
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1. Expected execution time E(T )

T : Pattern length

C : Checkpoint time

R: Recovery time

λf = 1
µf

: Fail-stop error rate

Time

C T C T C (no error)

Time

C R T C T C

Fail-stop error

(recovery)︸︷︷︸
Elost

E(T ) = Pno−error (T + C )

+

Perror

(
Elost + R + E(T )

)
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1. Expected execution time E(T )

Assume that failures follow an exponential distribution Exp(λf )

Independent errors (memoryless property)

There is at least one error before time t with probability:

P(X ≤ t) = 1− e−λ
f t

(cdf)

Probability of failure / no-failure

Perror = 1− e−λ
f T

Pno−error = e−λ
f T
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1. Expected execution time E(T )

Time

C T C T C (no error)

Time

C R T C T C

Fail-stop error

(recovery)︸︷︷︸
Elost

E(T ) = e−λ
f T (T + C ) + (1− e−λ

f T )
(
Elost + R + E(T )

)
= T + C + (eλ

f T − 1)
(
Elost + R

)
Elost is the time lost when the failure strikes:

Elost =

∫ ∞
0

tP(X = t|X <T )dt =
1

λf
− T

eλf T − 1
=

T

2
+ o(λf T )

We lose half the pattern upon failure (in expectation)!
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2. Compute overhead H(T )

Time

C T C T C (no error)

Time

C R T C T C

Fail-stop error

(recovery)︸︷︷︸
Elost

We use Taylor series to approximate e−λ
f T up to first-order terms:

e−λ
f T = 1− λf T + o(λf T )

Works well provided that λf << T ,C ,R

E(T ) = T + C + λf T

(
T

2
+ R

)
+ o(λf T )

Finally, we get the overhead of the pattern:

H(T ) =
C

T
+ λf

T

2
+ o(λf T )
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3. Derive optimal T ∗: Fail-stop errors

Time

C T C T C (no error)

Time

C R T C T C

Fail-stop error

(recovery)︸︷︷︸
Elost

H(T ) =
C

T
+ λf

T

2
+ o(λf T )

We solve:

∂H(T )

∂T
= − C

T 2
+
λf

2
= 0

Finally, we retrieve:

T ∗ =

√
2C

λf
=
√

2µf C
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4. Derive optimal T ∗: Silent errors

Time

V C T V R T V C T V C

Silent error
Detection

(silent error)

Similar to fail-stop except:

λf → λs

Elost = T

V : verification time

Using the same approach:

H(T ) =
C + V

T
+ λsT︸︷︷︸

silent

+o(λsT )
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5. Derive optimal T ∗: Both errors

H(T ) =
C + V

T
+ λf

T

2︸︷︷︸
fail−stop

+λsT︸︷︷︸
silent

+o(λT )

First-order approximations [Young 1974, Daly 2006, AB et al.
2016]

Fail-stop errors Silent errors Both errors
Pattern T + C T + V + C T + V + C

Optimal T ∗
√

C
λf

2

√
V+C
λs

√
V+C

λs+ λf

2

Overhead H∗ 2
√

λf

2 C 2
√
λs(V + C ) 2

√(
λs + λf

2

)
(V + C )

Is this optimal for energy consumption?
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Energy model (1/2)

Modern processors equipped with dynamic voltage and
frequency scaling (DVFS) capability

Power consumption of processing unit is Pidle + κσ3,
where κ > 0 and σ is the processing speed

Error rate: May also depend on processing speed

λ(σ) follows a U-shaped curve
increases exponentially with decreased processing speed σ
increases also with increased speed because of high
temperature
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Energy model (2/2)

Total power consumption depends on:
Pidle : static power dissipated when platform is on (even idle)
Pcpu(σ): dynamic power spent by operating CPU at speed σ
Pio : dynamic power spent by I/O transfers (checkpoints and
recoveries)

Computation and verification: power depends upon σ (total
time Tcpu(σ))

Checkpointing and recovering: I/O transfers (total time Tio)

Total energy consumption:

Energy(σ) = Tcpu(σ)(Pidle + Pcpu(σ)) + Tio(Pidle + Pio)

Checkpoint: EC = C (Pidle + Pio)
Recover: ER = R(Pidle + Pio)
Verify at speed σ: EV (σ) = V (σ)(Pidle + Pcpu(σ))
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Bi-criteria problem

Linear combination of execution time and energy consumption:

a · Time + b · Energy

Theorem

Application subject to both fail-stop and silent errors
Minimize a · Time + b · Energy

The optimal checkpointing period is T ∗(σ) =
√

2(V (σ)+Ce(σ))
λf (σ)+2λs(σ)

,

where Ce(σ) = a+b(Pidle+Pio)
a+b(Pidle+Pcpu(σ)) C

Similar optimal period as without energy,
but account for new parameters!

T ∗ =
√

2(V+C)
λf +2λs

Winter School, Feb. 5, 2019 Anne.Benoit@ens-lyon.fr Resilient and energy-aware scheduling algorithms 28/ 84



Introduction Checkpointing Replication Task scheduling Re-execution speed Conclusion

Bi-criteria problem

Linear combination of execution time and energy consumption:

a · Time + b · Energy

Theorem

Application subject to both fail-stop and silent errors
Minimize a · Time + b · Energy

The optimal checkpointing period is T ∗(σ) =
√

2(V (σ)+Ce(σ))
λf (σ)+2λs(σ)

,

where Ce(σ) = a+b(Pidle+Pio)
a+b(Pidle+Pcpu(σ)) C

Similar optimal period as without energy,
but account for new parameters!

T ∗ =
√

2(V+C)
λf +2λs

Winter School, Feb. 5, 2019 Anne.Benoit@ens-lyon.fr Resilient and energy-aware scheduling algorithms 28/ 84



Introduction Checkpointing Replication Task scheduling Re-execution speed Conclusion

Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal period
Optimal period when accounting for energy consumption

2 Combining checkpoint with replication
Replication analysis
Simulations

3 Back to task scheduling

4 A different re-execution speed can help
Model, optimization problem, optimal solution
Simulations
Extensions: both fail-stop and silent errors

5 Summary and need for trade-offs
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When Amdahl meets Young/Daly

Error-free speedup with P processors and α sequential fraction:

Amdahl’s Law: S(P) = 1
α+ 1−α

P

Bounded above by 1/α

Strictly increasing function of P

Allocating more processors on an error-prone platform?

Higher error-free speedup ,
More errors/faults /

More frequent checkpointing /
More resilience overhead /

We can compute optimal processor allocation
and checkpointing interval!
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How is replication used?

On a Q-processor platform, application is replicated n times:

Duplication: each replica has P = Q/2 processors

Triplication: each replica has P = Q/3 processors

General case: each replica has P = Q/n processors

Having more replicas on an error-prone platform?

Lower error-free speedup /
More resilient ,

Smaller checkpointing frequency ,
Less resilience overhead ,

Optimal replication level, processor allocation per replica,
and checkpointing interval?

Winter School, Feb. 5, 2019 Anne.Benoit@ens-lyon.fr Resilient and energy-aware scheduling algorithms 31/ 84



Introduction Checkpointing Replication Task scheduling Re-execution speed Conclusion

How is replication used?

On a Q-processor platform, application is replicated n times:

Duplication: each replica has P = Q/2 processors

Triplication: each replica has P = Q/3 processors

General case: each replica has P = Q/n processors

Having more replicas on an error-prone platform?

Lower error-free speedup /
More resilient ,

Smaller checkpointing frequency ,
Less resilience overhead ,

Optimal replication level, processor allocation per replica,
and checkpointing interval?

Winter School, Feb. 5, 2019 Anne.Benoit@ens-lyon.fr Resilient and energy-aware scheduling algorithms 31/ 84



Introduction Checkpointing Replication Task scheduling Re-execution speed Conclusion

How is replication used?

On a Q-processor platform, application is replicated n times:

Duplication: each replica has P = Q/2 processors

Triplication: each replica has P = Q/3 processors

General case: each replica has P = Q/n processors

Having more replicas on an error-prone platform?

Lower error-free speedup /
More resilient ,

Smaller checkpointing frequency ,
Less resilience overhead ,

Optimal replication level, processor allocation per replica,
and checkpointing interval?

Winter School, Feb. 5, 2019 Anne.Benoit@ens-lyon.fr Resilient and energy-aware scheduling algorithms 31/ 84



Introduction Checkpointing Replication Task scheduling Re-execution speed Conclusion

Why is replication useful?

Error detection (duplication):

Error correction (triplication):
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Two replication modes

Process replication:

Group replication:
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Probability of failure

Independent process error distribution:

Exponential Exp(λ), λ = 1/µ (Memoryless)

Error probability of one process during T time of computation:

P(T ) = 1− e−λT

Process triplication:

Failure probability of any triplicated process:

Pprc
3 (T , 1) =

(
3

2

)(
1− P(T )

)
P(T )2 + P(T )3

= 3e−λT (1− e−λT )2
+
(
1− e−λT )3

= 1− 3e−2λT + 2e−3λT

Failure probability of P-process application:

Pprc
3 (T ,P) = 1− P(“No process fails”)

= 1− (1− Pprc
3 (T , 1))

P
= 1−

(
3e−2λT − 2e−3λT

)P
Winter School, Feb. 5, 2019 Anne.Benoit@ens-lyon.fr Resilient and energy-aware scheduling algorithms 35/ 84



Introduction Checkpointing Replication Task scheduling Re-execution speed Conclusion

Probability of failure

Independent process error distribution:

Exponential Exp(λ), λ = 1/µ (Memoryless)

Error probability of one process during T time of computation:

P(T ) = 1− e−λT

Process triplication:

Failure probability of any triplicated process:

Pprc
3 (T , 1) =

(
3

2

)(
1− P(T )

)
P(T )2 + P(T )3

= 3e−λT (1− e−λT )2
+
(
1− e−λT )3

= 1− 3e−2λT + 2e−3λT

Failure probability of P-process application:

Pprc
3 (T ,P) = 1− P(“No process fails”)

= 1− (1− Pprc
3 (T , 1))

P
= 1−

(
3e−2λT − 2e−3λT

)P
Winter School, Feb. 5, 2019 Anne.Benoit@ens-lyon.fr Resilient and energy-aware scheduling algorithms 35/ 84



Introduction Checkpointing Replication Task scheduling Re-execution speed Conclusion

Probability of failure

Independent process error distribution:

Exponential Exp(λ), λ = 1/µ (Memoryless)

Error probability of one process during T time of computation:

P(T ) = 1− e−λT

Process triplication:

Failure probability of any triplicated process:

Pprc
3 (T , 1) =

(
3

2

)(
1− P(T )

)
P(T )2 + P(T )3

= 3e−λT (1− e−λT )2
+
(
1− e−λT )3

= 1− 3e−2λT + 2e−3λT

Failure probability of P-process application:

Pprc
3 (T ,P) = 1− P(“No process fails”)

= 1− (1− Pprc
3 (T , 1))

P
= 1−

(
3e−2λT − 2e−3λT

)P
Winter School, Feb. 5, 2019 Anne.Benoit@ens-lyon.fr Resilient and energy-aware scheduling algorithms 35/ 84



Introduction Checkpointing Replication Task scheduling Re-execution speed Conclusion

Probability of failure

Group triplication:

Failure probability of any P-process group:

Pgrp
1 (T ,P) = 1− P(“No process in group fails”)

= 1−
(
1− P(T )

)P
= 1− e−λPT

Failure probability of three-group application:

Pgrp
3 (T ,P) =

(
3

2

)
(1− Pgrp

1 (T , 1))Pgrp
1 (T , 1)2 + Pgrp

1 (T , 1)3

= 3e−λPT (1− e−λPT )2
+
(
1− e−λPT )3

= 1− 3e−2λPT + 2e−3λPT

> 1−
(
3e−2λT − 2e−3λT

)P
= Pprc

3 (T ,P)

What about duplication? (any error kills both cases)

Pprc
2 (T ,P) = Pgrp

2 (T ,P) = 1− e−2λPT
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Two observations

Observation 1 (Implementation)

Process replication is more resilient than group replication
(assuming same overhead)

Group replication is easier to implement by treating an application
as a blackbox

Observation 2 (Analysis)

Following two scenarios are equivalent w.r.t. failure probability:

Group replication with n replicas, where each replica has P
processes and each process has error rate λ

Process replication with one process, which has error rate λP
and which is replicated n times

Benefit of analysis: Group(n,P, λ) → Process(n, 1, λP)
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Analysis steps

Maximize error-aware speedup

Sn(T ,P) =
S(P)

En(T ,P)/T

1. Derive failure probability Pprc
n (T ,P) or Pgrp

n (T ,P) — exact

2. Compute expected execution time En(T ,P) — exact

3. Compute first-order approx. of error-aware speedup Sn(T ,P)

4. Derive optimal Topt, Popt and get Sn(Topt,Popt)

5. Choose right replication level n
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Analytical results

Duplication:
On a platform with Q processors and checkpointing cost C , the optimal
resilience parameters for process/group duplication are:

Popt = min

Q

2
,

(
1

2

(
1− α
α

)2
1

Cλ

) 1
3


Topt =

(
C

2λPopt

) 1
2

Sopt =
S(Popt)

1 + 2
(
2λCPopt

) 1
2

Triplication & (n, k)-replication (k-out-of-n replica consensus):
similar results but different for process and group, less practical for n > 3

For α > 0, not necessarily use up all available Q processors

Checkpointing interval Topt nicely extends Young/Daly’s result

Error-aware speedup Sopt minimally affected for small λ
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Results comparison

For fully parallel jobs, i.e., α = 0 (similar for α > 0)

Duplication v.s. Process triplication

Popt =
Q

2
Popt =

Q

3
(Processors ↓)

Topt =

√
C

λQ
Topt = 3

√
C

2λ2Q
(Chkpt interval ↑)

Sopt =
Q/2

1 + 2
√
λCQ

Sopt =
Q/3

1 + 3 3

√(
λC
2

)2
Q

(Exp. speedup??)

Process triplication v.s. Group triplication

Popt =
Q

3
Popt =

Q

3
(Processors =)

Topt = 3

√
C

2λ2Q
Topt = 3

√
3C

2(λQ)2
(Chkpt interval ↓)

Sopt =
Q/3

1 + 3 3

√(
λC
2

)2
Q

Sopt =
Q/3

1 + 3 3

√
1
3

(
λCQ

2

)2
(Exp. speedup ↓)
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Choosing right mode & level of replication

Based on analytical results, app. output structure and
system/language support
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Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal period
Optimal period when accounting for energy consumption

2 Combining checkpoint with replication
Replication analysis
Simulations

3 Back to task scheduling

4 A different re-execution speed can help
Model, optimization problem, optimal solution
Simulations
Extensions: both fail-stop and silent errors

5 Summary and need for trade-offs
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Simulations

Consider a platform with Q = 106, and study

Efficiency =
Sopt

Q

Impact of MTBE and checkpointing cost C

Impact of sequential fraction α

Impact of number of processes P
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Impact of MTBE and checkpointing cost

α = 10−6

106 105 104 103 102

System MTBE

0.0

0.1

0.2
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E
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(a) C = 1800s
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Duplication Th.
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(b) C = 60s

First-order accurate except for duplication (where P is larger)
and with small MTBE

Duplication can be sufficient for large MTBE, especially for
small checkpointing cost
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Impact of sequential fraction

C = 1800s
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(c) α = 10−7
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(d) α = 10−6
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(e) α = 10−5

Increased α reduces efficiency

Increased α increases minimum MTBE for which duplication
is sufficient
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Impact of number of processes

α = 10−5,C = 1800s

(f) MTBE = 104 (g) MTBE = 103

Efficiency/speedup not strictly increasing with P

First-order Popt close to actual optimum
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What to remember

“Replication + checkpointing” as a general-purpose fault-
tolerance protocol for detecting/correcting silent errors in HPC

Process replication is more resilient than group replication,
but group replication is easier to implement

Analytical solution for Popt,Topt, and Sopt and for choosing
right replication mode and level
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Chains of tasks

High-performance computing (HPC) application:
chain of tasks T1 → T2 → · · · → Tn

Parallel tasks executed on the whole platform

For instance: tightly-coupled computational kernels, image
processing applications, ...

Goal: efficient execution, i.e., minimize total execution time

Checkpoints can only be done after a task has completed
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Checkpoints can only be done after a task has completed
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Dynamic programming algorithm without replication

Possibility to add verification, memory checkpoint and disk
checkpoint at the end of a task

T0 V M D T1
. . . Td1 V M D Td1+1 . . . Td2 V M D . . .

Edisk (d1) E(d1, d2)

Edisk (d2)

Edisk(d2) = min
0≤d1<d2

{Edisk(d1) + E(d1, d2) + CD}

Initialization: Edisk(0) = 0

Objective: Compute Edisk(n)

Compute Edisk(0),Edisk(1),Edisk(2), . . . ,Edisk(n) in that order

Complexity: O(n2)
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Coping with fail-stop errors with replication

T1( p
2 ) C1 T2(p) T3(p) C3 T4( p

2 ) T5(p) C5

T1( p
2 ) C1 T4( p

2 )

T1( p
2 ) C1 T2(p) T3(p) C3 T4( p

2 ) T5(p) C5

Fail-stop error

T1( p
2 ) C1 T4( p

2 )

T1( p
2 ) C1 T2(p) T3(p) C3 T4( p

2 ) T5(p) C5

Fail-stop error

T1( p
2 ) C1 T4( p

2 )

The whole platform is used at all time, some tasks are replicated

If failure hits a replicated task, no need to rollback

Otherwise, rollback to last checkpoint and re-execute
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Dynamic programming algorithm with replication

Recursively computes expectation of optimal time required to
execute tasks T1 to Ti and then checkpoint Ti

Distinguish whether Ti is replicated or not

T rep
opt (i): knowing that Ti is replicated

T norep
opt (i): knowing that Ti is not replicated

Solution: min
{

T rep
opt (n) + C rep

n ,T norep
opt (n) + C norep

n

}
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Computing T rep
opt (j): j is replicated

T rep
opt (j)= min

1≤i<j



T rep
opt (i) + C rep

i + T rep,rep
NC (i + 1, j),

T rep
opt (i) + C rep

i + T norep,rep
NC (i + 1, j),

T norep
opt (i) + C norep

i + T rep,rep
NC (i + 1, j),

T norep
opt (i)+C norep

i +T norep,rep
NC (i + 1, j),

R rep
1 + T rep,rep

NC (1, j),
Rnorep

1 + T norep,rep
NC (1, j)


Ti : last checkpointed task before Tj

Ti can be replicated or not, Ti+1 can be replicated or not

TA,B
NC : no intermediate checkpoint, first/last task replicated or not,

previous task checkpointed: complicated formula but done in
constant time

Similar equation for T norep
opt (j)

Overall complexity: O(n2)
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Comparison to checkpoint only

With identical tasks

Reports occ. of checkpoints and replicas in optimal solution

Checkpointing cost ≤ task length ⇒ no replication
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Summary

Goal: Minimize execution time of linear workflows

Decide which task to checkpoint and/or replicate

Sophisticated dynamic programming algorithms: optimal solutions

Even when accounting for energy: decide at which speed to execute
each task

Even with k different levels of checkpoints and partial verifications:
algorithm in O(nk+5)

Simulations: With replication, gain over checkpoint-only approach is
quite significant, when checkpoint is costly and error rate is high
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Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal period
Optimal period when accounting for energy consumption

2 Combining checkpoint with replication
Replication analysis
Simulations

3 Back to task scheduling

4 A different re-execution speed can help
Model, optimization problem, optimal solution
Simulations
Extensions: both fail-stop and silent errors

5 Summary and need for trade-offs
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Silent vs fail-stop errors

C : time to checkpoint; V : time to verify; R: time to recover;
λ: error rate (platform MTBF µ = 1/λ)

Optimal checkpointing period W for fail-stop errors
(Young/Daly): W =

√
2Cµ (V = 0)

Time

V C ? R W V C W V C

Fail-stop error

Silent errors: W =
√

(V + C )µ
(C → V + C ; missing factor 2)

Time

V C W V R W V C W V C

Silent error Detection
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Back to energy consumption

Need to reduce energy consumption of future platforms

Popular technique: dynamic voltage and frequency scaling
(DVFS)

Lower speed → energy savings: when computing at speed σ,
power proportional to σ3 and execution time proportional to
1/σ → (dynamic) energy proportional to σ2

Also account for static energy: trade-offs to be found

Realistic approach: minimize energy consumption while
guaranteeing a performance bound

⇒ At which speed should we execute the workload?
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Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal period
Optimal period when accounting for energy consumption

2 Combining checkpoint with replication
Replication analysis
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3 Back to task scheduling

4 A different re-execution speed can help
Model, optimization problem, optimal solution
Simulations
Extensions: both fail-stop and silent errors

5 Summary and need for trade-offs
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Framework

Divisible-load applications

Subject to silent data corruption

Checkpoint/restart strategy: periodic patterns that repeat
over time

Verified checkpoints

Is it better to use two different speeds rather than only one?
What are the optimal checkpointing period and optimal
execution speeds?

Winter School, Feb. 5, 2019 Anne.Benoit@ens-lyon.fr Resilient and energy-aware scheduling algorithms 60/ 84



Introduction Checkpointing Replication Task scheduling Re-execution speed Conclusion

Model

Set of speeds S = {s1, . . . , sK}: σ1 ∈ S speed for first
execution, σ2 ∈ S speed for re-executions

Silent errors: exponential distribution of rate λ

Verification: V units of work; Checkpointing: time C ;
Recovery: time R

Pidle and Pio constant; and Pcpu(σ) = κσ3

Energy for W units of work at speed σ: W
σ (Pidle + κσ3)

Energy of a verification at speed σ: V
σ (Pidle + κσ3)

Energy of a checkpoint: C (Pidle + Pio)
Energy of a recovery: R(Pidle + Pio)

Time

V C T (p, n) V R T (p, n) V C T (p, n) V C

Silent error Detection

With a silent error
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Problem

Optimization problem BiCrit:

Minimize
E(W , σ1, σ2)

W
s.t.

T (W , σ1, σ2)

W
≤ ρ,

E(W , σ1, σ2) is the expected energy consumed to execute W
units of work at speed σ1, with eventual re-executions at
speed σ2

T (W , σ1, σ2) is the expected execution time to execute W
units of work at speed σ1, with eventual re-executions at
speed σ2

ρ is a performance bound, or admissible degradation factor
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Computing expected execution time

Proposition (1)

For the BiCrit problem with a single speed,

T (W , σ, σ) = C + e
λW
σ

(
W + V

σ

)
+
(

e
λW
σ − 1

)
R

Proposition (2)

For the BiCrit problem,

T (W , σ1, σ2) = C +
W + V

σ1
+
(

1− e
−λW
σ1

)
e
λW
σ2

(
R +

W + V

σ2

)
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Proof of Proposition 1

Proof.

The recursive equation to compute T (W , σ, σ) writes:

T (W , σ, σ) =
W + V

σ
+ p(W /σ) (R + T (W , σ, σ))

+ (1− p(W /σ))C ,

where p(W /σ) = 1− e−
λW
σ . The reasoning is as follows:

We always execute W units of work followed by the
verification, in time W+V

σ ;

With probability p(W /σ), a silent error occurred and is
detected, in which case we recover and start anew;

Otherwise, with probability 1− p(W /σ), we simply
checkpoint after a successful execution.

Solving this equation leads to the expected execution time.
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Proof of Proposition 2

Proof.

The recursive equation to compute T (W , σ1, σ2) writes:

T (W , σ1, σ2) =
W + V

σ1
+ p(W /σ1) (R + T (W , σ2, σ2))

+ (1− p(W /σ1))C ,

where p(W /σ1) = 1− e
−λW
σ1 . The reasoning is as follows:

We always execute W units of work followed by the
verification, in time W+V

σ1
;

With probability p(W /σ1), a silent error occurred and is
detected, in which case we recover and start anew at speed σ2;

Otherwise, with probability 1− p(W /σ1), we simply
checkpoint after a successful execution.

Solving this equation leads to the expected execution time.
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Computing expected energy consumption

Proposition

For the BiCrit problem,

E(W , σ1, σ2) =
(

C +
(

1− e
−λW
σ1

)
e
λW
σ2 R

)
(Pio + Pidle)

+
W + V

σ1
(κσ3

1 + Pidle)

+
W + V

σ2
(1− e

−λW
σ1 )e

λW
σ2 (κσ3

2 + Pidle)

Power spent during checkpoint or recovery: Pio + Pidle; power
spent during computation and verification at speed σ:
Pcpu(σ) + Pidle = κσ3 + Pidle. From Proposition 2, we get the
expression of E(W , σ1, σ2).
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Finding optimal pattern length (1)

To get closed-form expression for optimal value of W , use of
first-order approximations, using Taylor expansion
eλW = 1 + λW + O(λ2W 2):

T (W , σ1, σ2)

W
=

1

σ1
+
λW

σ1σ2
+
λR

σ1
+

λV

σ1σ2
+

C + V /σ1

W
+ O(λ2W )

(1)

E(W , σ1, σ2)

W
=
κσ3

1 + Pidle

σ1
+
λW

σ1σ2
(κσ3

2 + Pidle)

+
λR

σ1
(Pio + Pidle) +

λV

σ1σ2
(κσ3

1 + Pidle)

+
C (Pio + Pidle) + V (κσ3

1 + Pidle)/σ1

W
+ O(λ2W )

(2)
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Finding optimal pattern length (2)

Theorem

Given σ1, σ2 and ρ, consider the equation aW 2 + bW + c = 0,

where a = λ
σ1σ2

, b = 1
σ1

+ λ
(

R
σ1

+ V
σ1σ2

)
− ρ and c = C + V

σ1
.

If there is no positive solution to the equation, i.e.,
b > −2

√
ac, then BiCrit has no solution.

Otherwise, let W1 and W2 be the two solutions of the
equation with W1 ≤W2 (at least W2 is positive and possibly
W1 = W2). Then, the optimal pattern size is

Wopt = min(max(W1,We),W2), (3)

where We =

√√√√C (Pio + Pidle) + V
σ1

(κσ3
1 + Pidle)

λ
σ1σ2

(κσ3
2 + Pidle)

. (4)
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Finding optimal pattern length (3)

Proof.

Neglecting lower-order terms, Equation (2) is minimized when
W = We given by Equation (4).

Two cases:

ρ is too small ⇒ no solution

W2 > 0:

We < W1

W1 ≤We ≤W2

We > W2

Using that the energy overhead is a convex function, we get the
result (Wopt is in the interval [W1,W2])
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Finding optimal speed pair

Speed pair (si , sj), with 1 ≤ i , j ≤ K : ρi ,j is the minimum
performance bound for which the BiCrit problem with
σ1 = si and σ2 = sj admits a solution

For each speed pair, compute W1,W2 the roots of
aW 2 + bW + c ; discard pairs with ρ < ρi ,j

For each remaining speed pair (σ1, σ2), compute Wopt and
associated energy overhead

Select speed pair (σ∗1, σ
∗
2) that minimizes energy overhead

Time O(K 2), where K is the number of available speeds,
usually a small constant

Winter School, Feb. 5, 2019 Anne.Benoit@ens-lyon.fr Resilient and energy-aware scheduling algorithms 70/ 84



Introduction Checkpointing Replication Task scheduling Re-execution speed Conclusion

Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal period
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2 Combining checkpoint with replication
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Simulations
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4 A different re-execution speed can help
Model, optimization problem, optimal solution
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5 Summary and need for trade-offs
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Simulation setup

Platform parameters, based on real platforms

Platform λ C = R V

Hera 3.38e-6 300s 15.4
Atlas 7.78e-6 439s 9.1

Coastal 2.01e-6 1051s 4.5
Coastal SSD 2.01e-6 2500s 180.0

Power parameters, determined by the processor used

Processor Normalized speeds P(σ) (mW)

Intel Xscale 0.15, 0.4, 0.6, 0.8, 1 1550σ3 + 60
Transmeta Crusoe 0.45, 0.6, 0.8, 0.9, 1 5756σ3 + 4.4

Default values: Pio equivalent to power used when running at
lowest speed; ρ = 3

Winter School, Feb. 5, 2019 Anne.Benoit@ens-lyon.fr Resilient and energy-aware scheduling algorithms 72/ 84



Introduction Checkpointing Replication Task scheduling Re-execution speed Conclusion

Simulation results, using Hera/XScale configuration

A different re-execution speed does help!
And all speed pairs can be optimal solutions (depending on ρ)!

σ1 Best σ2 Wopt
E(Wopt,σ1,σ2)

Wopt

0.15 0.4 1711 466
0.4 0.4 2764 416
0.6 0.4 3639 674
0.8 0.4 4627 1082
1 0.4 5742 1625

ρ = 8

σ1 Best σ2 Wopt
E(Wopt,σ1,σ2)

Wopt

0.15 - - -
0.4 0.4 2764 416
0.6 0.4 3639 674
0.8 0.4 4627 1082
1 0.4 5742 1625

ρ = 3

σ1 Best σ2 Wopt
E(Wopt,σ1,σ2)

Wopt

0.15 - - -
0.4 - - -
0.6 0.8 4251 690
0.8 0.4 4627 1082
1 0.4 5742 1625

ρ = 1.775

σ1 Best σ2 Wopt
E(Wopt,σ1,σ2)

Wopt

0.15 - - -
0.4 - - -
0.6 - - -
0.8 0.4 4627 1082
1 0.4 5742 1625

ρ = 1.4
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Simulations - Impact of the parameters (1)
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Opt. solution (speed pair, pattern size, and energy overhead) as a function of the checkpointing time C in Atlas/Crusoe configuration.
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Dotted line: one single speed; up to 35% improvement with two speeds
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Simulations - Impact of the parameters (2)
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Opt. solution (speed pair, pattern size, and energy overhead) as a function of the error rate λ in Atlas/Crusoe configuration.
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Two speeds: checkpoint less frequently and provide energy savings
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Simulations - Impact of the parameters (3)
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Optimal solution (speed pair, pattern size, and energy overhead) as a function of the idle power Pidle in Atlas/Crusoe configuration.
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Increase of W and E with Pidle and Pio; Pio has no impact on speeds
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1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal period
Optimal period when accounting for energy consumption

2 Combining checkpoint with replication
Replication analysis
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5 Summary and need for trade-offs
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Extensions: With fail-stop errors

f : proportion of fail-stop errors

s: proportion of silent errors

Proposition (3)

With fail-stop and silent errors,

T (W , σ1, σ2)

W
= · · ·+

(
(f + s)

σ1σ2
− f

2σ2
1

)
λW + O(λ2W ). (5)

E(W , σ1, σ2)

W
= · · ·+

(
(f + s)(κσ3

2 + Pidle)

σ1σ2
− f (κσ3

1 + Pidle)

2σ2
1

)
λW

+ O(λ2W ) (6)
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Limit of the first-order approximation

For BiCrit, the first-order approximation leads to a solution iff

(
2
(

1 +
s

f

))−1/2
<
σ2

σ1
< 2

(
1 +

s

f

)

Use second-order approximation? Open problem in the general case!
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Interesting case

Theorem

When considering only fail-stop errors with rate λ, the optimal
pattern size W to minimize the time overhead T (W ,σ,2σ)

W is

Wopt =
3

√
12C

λ2
σ

Young/Daly’s formula: Wopt =
√

2C/λσ = O(λ−1/2)

Here: Wopt = O(λ−2/3)
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Conclusion

A different re-execution speed indeed helps saving energy
while satisfying a performance constraint

Silent errors: extension of Young/Daly formula → general
closed-form solution to get optimal speed pair and optimal
checkpointing period (first-order)

Extensive simulations: up to 35% energy savings, any speed
pair can be optimal

BiCrit still open for general case with both silent and
fail-stop errors

Interesting case with fail-stop errors and double re-execution
speed: O(λ−2/3) vs O(λ−1/2)

New methods needed to capture the general case
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Summary and need for trade-offs

Two major challenges for Exascale systems:

Resilience: need to handle failures
Energy: need to reduce energy consumption

The main objective is often performance, such as execution time,
but other criteria must be accounted for

Many models for which we have the answer:

Optimal checkpointing period, with fail-stop / silent errors
Use of replication to detect and correct silent errors
When to checkpoint, replicate and verify for a chain of tasks?
Use a different re-execution speed after a failure

Still a lot of challenges to address, and techniques to be developed
for many kinds of high-performance applications, making trade-offs
between performance, reliability, and energy consumption
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