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Introduction

Chords have been omnipresent in Western music since the Renaissance. From classical music to pop

music, going through blues, jazz and rock’n’roll, they have been used in many different ways. Their role is

predominant in determining the style of a tune: its “mood” isn’t contained in the melody line but mostly

in the chord progression.

Two parameters are to be taken into account when finding chords for a melody: style and harmony rules.

These rules are based on a mechanical analysis of the melody, and fitting a style of chord progressions

is obtained by mimicking what has been done in this style of music. These considerations led us toward

the possibility of automatising, given a melody line and a style, the writing of the chord progression: the

project LazyChords was born.

In the field of automatic generating chord progressions, LazyChords is not a pioneer; SongSmith by

Microsoft and Band-in-a-Box by PG-Music were created before with the same objective. SongSmith

was proven to be a failure due to its poor performance, while Band-in-a-Box has been always considered

as a right-hand man for musicians. However, Band-in-a-box is very complicated and aims only at experts,

who are accustomed with musical concepts.

Our new software was designed to be immuned from these flaws. LazyChords not only possesses sharp

algorithms, which ensure effective work, but also has a user-friendly interface. The main purposes of Lazy-

Chords are giving insights of the power of harmony to beginners, and providing a tool for experimented

musicians to get quickly and painlessly a chord accompaniment of quality for any melody.

Our algorithm relies on two orthogonal approaches: an empirical one, using Machine learning, and a

theoretical one, using Music rules. The former allows to imitate existing chord accompaniments, while the

latter guarantees good-sounding results.

In this report, we will first present our software; then explain the algorithm we use, through its three parts:

Machine learning, Music rules, and integration of these; then describe all the side-work we produced; and

finally evoke the improvements we plan to do.
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1 The software

LazyChords takes a score as input, written in an ABC file, and outputs a chord progression that fits the

melody. A sound player is provided in order to let the user listen to the melody he provides together with the

resulting chord progression, in order to know immediately if it sounds well. To create this accompaniment,

we chose to put one chord per measure, and to optimize on the chord associated to each measure

This optimization is done through music rules, that can be defined by the user. Trying to deal with the

style properly is done by a machine learning part, which is also considered as a rule. Figure 1. gives a

better view of the overall software architecture.

The core of the software is the Music part, which optimizes according to the rules. The chord progression

output by the software is mainly decided by this part. The machine learning part is based on Hidden

Markov Models. The database to learn from has been conceived, and filled by our team.

The software is written in C++, and multi-platform. We chose to use the following libraries, that are

available on the three main Operating Systems (Unix, Mac, Windows):

- Boost: http://www.boost.org/

- Qt 5 for the graphic user interface: http://qt-project.org/

- abcMIDI to convert abc file into midi file to play them: http://abc.sourceforge.net/abcMIDI/

- abcjsto have a score rendering: https://github.com/paulrosen/abcjs

- the noun project icon set: http://thenounproject.com/
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Figure 1: Architecture of LazyChords
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2 Musical Background

In this section, we will introduce some basic notions of music essential to understand the whole project. We

largely restrict the global musical definitions of such notions to the simple fragment considered throughout

this project.

A note is a continuous sound played on an instrument or sung by someone. It has a length (its duration)

which is a rational number, and a height (the frequency of the sound wave). A melody is a finite sequence

of notes or silences. We consider indeed only monophonic melodies (at most one note at a time). The

corresponding sound thereafter is the sequence of notes/silences played one after each other with respect

to their height, duration and the sequence order. A melody is divided into regular measures which are all

of size 4, counted in number of beats.

A chord is a finite ordered set of notes with the same duration, but those ones are played at the same time.

We only consider chords of size 3 in this project (the most popular), though our data structure allows

chords of size 4 also. We consider a fragment of this large set of “chords” containing only “classical ones”,

that sound well (triads and seventh chords). A chord progression is a finite sequence of chords. We only

consider regular chord progressions: all the chords have the same length, which is length of a measure, so

4 beats.

(Most) musics are composed of (at least) two parts: a melody and a chord progression. The melody is

usually what people remembers, but it’s the chord progression that gives the colour of the music.

The goal of our software, formalized with those definitions, is the following: Given a melody, what is the

chord progression that sounds “the best” with it ? The whole point of this project is to understand how

quantify this.
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Figure 2: A Hidden Markod Model

3 Machine Learning

First, let us recall that Machine learning is ”a scientific discipline that explores the construction and study

of algorithms that can learn from data”1. Here, our purpose is to use Machine learning paradigm so as to

be able to propose, given an input melody, a sequence of chords that statistically fits a Database.

We will first give a bibliographical overview of the the use of Machine learning for similar purposes, then

the model we chose (Hidden Markov Model), and how we implemented it, alongside with the complexity

of our algorithms.

3.1 Hidden Markov Models

Hidden Markov Models are a statistical tool widely used in machine learning problems that involve sequen-

tial data, such as text or music for example. The figure 2 shows an example of a HMM. It is composed of

hidden states (in the example, x1, x2, and x3), that form a Markov Chain, which means that they are linked

by edges weighted by a probability. The other part of the HMM are the observations (in the example, y1,

y2, y3 and y4). For each state, we have a probability distribution that indicates the probability to output

each of the observations.

At the beginning of the process, the computation starts in one of the hidden states, according to some

probability distribution π, called the initial probability distribution. Then, at each time step, one state is

1http://en.wikipedia.org/wiki/Machine learning

7



chosen among the neighbours of the current state, according to the distribution induced by the weights

of the edges, and this state becomes the new active state. After that, an observation is chosen randomly

according to the distribution of the state, and is emitted.

From the user point of view, the current active hidden state is not known, the only information he has is

the sequence of observations that are emitted by the model.

3.2 State of the art

In this part, we present bibliographical results on problems similar to ours.

3.2.1 Allan & William

The objective of the work by Allan and William [1] is to construct Hidden Markov Model that automatically

compose a sequence of chords (a chord progression) for a rough melody.

For the melody as well as the chord progression, they use a discretization step size of one beat, with

the assumption that the notes and chords do not change during a beat (there are often 3 or 4 beats per

measure).

To train the HMM they used the Baum-Welch method which maximizes the probability that the model

will emit a given set of sequences of observations.

Their Hidden Markov Models do not only produce a chain of chords, but also the harmonic functions that

the chord is serving (i.e. the alto, tenor and bass).

3.2.2 Songsmith by Microsoft Research Ltd.

The objective of Songsmith (the original name is MySong) [2] is producing immediately the chord sequence

coincident with the input melody. The technique of Songsmith is based on the harmonization-HMM by

Allan & William.

The developers collected about 300 music sheets that contained both music notes and chords. From the

database, they created two matrices to train the HMM. First, they ignored the melodies of the music sheets

and kept only statistics on the transition of chords and obtained two chord transition matrices (one

for major mode, and one for minor mode), describing the probability that one chord appears right after

another. Then they created the melody observation matrix which represents the number of times a

certain note is associated to a certain chord.
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For a matter of normalization, they also fixed the length of the measures. As a parameter of the software,

the user is able to set some factors : the “happy factor” and the “jazzy factor” that influence a bit the

output (basically by determining the mode and the kind of chords used). To generate the chords (which is

called decoding) that coincide with the melody, the developers used the Viterbi algorithm [3] (a popular

algorithm to find hidden states of HMM) to produce the most likely chord sequence.

One of Songsmith’s strength is its computing speed : it creates a chord progression almost immediately.

However, although they fixed some parameters to enhance the precision of the generated chords, because

of the small set of musical notes and chords, and the too simple HMM they use, the generated chord

sequences are very far from the expected chords according to feedbacks from users.

3.2.3 Orio et al.

The work by Orio et. al. [4, 5] is on using HMM to automatically generate a score following, which is an

accompaniment (audio synthesis or sound processing) to a human performer. Different from Songsmith,

which orients to popular users, this method aims at helping musical experts, and automatically produces

the accompaniment for their song.

The problem is, given the observation (the melody), how to find the optimal sequence of hidden states.

The procedure of finding this sequence is called decoding. There are two levels of states: states at the

lower level, which model the incoming signals like notes or rests (musical notation to denote the absence

of note played), and states at the higher level, which model all events written in the music sheet as notes,

trills (rapid sucession of notes), chords, rests... Each state at the higher level is made by a set of states at

the lower level.

Normally, training of HMM is performed using the Baum-Welch method, as in [1], that maximizes the

probability that the model will emit a given set of sequences of observations. However, Orio showed that

the procedure is not suitable to train HMM and introduced a new technique, which maximizes a more

complex formula. Decoding with Viterbi algorithm is widely used, but it is not suitable for real-time score

following. The reason is that for a given sequence of observation, the algorithm outputs the most probable

path in the hidden states. In fact, for score following, the main goal is to find the state locally corresponding

to the emitted note, so Orio et. al. used the algorithm by Durbin et al. [6] where the probability of each

individual state is locally maximized.
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3.3 Implementation choices

As shown by the bibliographic review, Hidden Markov Models have been widely used in similar contexts,

that’s why we decided to use them for our problem.

For LazyChords, each hidden state of the model describes a Chord, and each observation describes a

measure of a melody (further explanations below). Then, a song (melody and chords) corresponds to a

path through the chain (the sequence of chords), each state emitting the associated measure of the melody.

The main problem of Markov chain is that they don’t have any memory. To overcome this problem, we

restrained ourselves to chord progressions with a period of 4 chords (very common in nowadays musics).

Then, for each chord C, we created 4 states SC,1, SC,2, SC,3 and SC,4 in the model, one for each possible

position in the progression. To ensure the validity of the progression, we enforced the following property :

∀C 6= C ′, ∀i, j ∈ {1, 2, 3, 4}, (j 6= i+ 1 mod 4⇒ p(SC,i, SC′,j) = 0)

Overall, there are 288 possible chords, so we had 1152 states in the model

As for the observations, we had to tackle an issue: of course, we could not decide the set of observations

to be the set of every possible measures. It is far too huge, and would be pointless: the HMM would

have provided results only if the input melody was already in the database. Thus, we had to implement an

efficient description of a melody, which is a kind of high level description. We discussed several choices, and

chose a vector of the accumulated duration of notes in the measure, which represents in a way a footprint of

the melody. This allows a realistic but not too general description. Moreover, there is then a very natural

way of defining the distance between two observations (distance induced by the infinite norm); so that we

can get the closest known observation (from the database) of the input melody. This representation has

however the drawback of loosing all the temporal information of a measure: as an example, a measure “C

D E F” will be encoded exactly the same way as “F E D C”.

Using the HMM is done in two parts. The first one is the learning part, with a database. In this part, the

path through the chain and the resulting observations are completely known for every song in the database.

So the purpose is to compute the corresponding probability distributions of the transition function and

the observation function. This is done by computing the empirical mean of each transition in the matrix.

One obvious shortcoming of this method is that if a chord doesn’t belong to any song of the database, we

have no information regarding the transition from the corresponding state to any other state, and thus the

means are not defined. We addressed this issue by initializing the matrix so that these “orphan” states had

equal probability to go to any other valid state, and to output any valid observation. In a future prospect,

it could be worth considering using unsupervised learning for example through the Baum-Welch algorithm
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(which we have implemented). We could thus use entries without annotations, which are usually much

easier to find on the Internet. However, it is unlikely that using exclusively this kind of learning would lead

to coherent enough results, so this algorithm should be applied only after an initial supervised learning, to

refine the probabilities.

The second part is the inference process, or retrieving. Given the probability distributions of the HMM

and a melody, it allows to infer what path in the chain can have emitted such a melody (thus, to find

a fitting chord progression). For that we also implemented a classical algorithm, the Viterbi algorithm,

which is a dynamic programming algorithm. It computes the most probable sequence of states given a

sequence of observation, and the corresponding conditional probability. We had to modify the algorithm

because the Music workpackage expected us to provide not only one but the n most probable sequences of

chords, so as to be able to compare them with other rules. Also, two different versions were implemented.

One is fast but needs a large database to be efficient, because for each measure, it considers only the

closest observation in the set of known observations. Thus, if this observation was not very frequent in the

examples of the database, the algorithm outputs poor results. The other method is a lot slower (several

minutes for a single execution) but compares the input melody with every known observation, and add a

corrective factor to the probability to penalize the most distant observation (with regard to the metric we

defined, the infinite norm). Thus, it allows to overcome partly the problem of rare observations and works

rather well even with a small database.

3.4 Complexity

If we denote by Data the size of the database (total number of measures), s the total number of hidden

states in the model, o the number of different observations, n the number of expected chord progressions,

and m the length of the input melody, we have the following complexities:

- learning: Θ(Data(s2 + so) (for each entry of the database, we update the probability matrices);

- fast retrieving: Θ(s2 ·mn) (classic Viterby algorithm, but with the n best progressions);

- slow retrieving: Θ(c2 · mn · o) (the additionnal factor comes from the fact that we consider all

observations instead of only the closest one).
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4 Music Rules

A parallel approach was studied in the conception of the software: the notion of music rules. This relies

on the idea that, if Machine Learning is meant to detect intricate musical notions, such as style, we can

implement many musical notions manually. In fact, chord progressions follow logical rules, which are given

by the musical theory of harmony.

The first idea that arises is to implement these rules is to give to each chord progression generated by the

Machine learning a value, depending on these harmony considerations. Then, the objective is to find the

best chord progression, balancing between what the Machine Learning part outputs and what music rules

output. Also, we wanted to be able to modify those rules dynamically, for at least two reasons. First,

this allows us to improve easily the quality of those rules (empirically), which is essential in the process of

writing convincing rules. Secondly, this would allow us to extend the writing of music rules both to the

user (through a simplified interface), and to contributors with a deeper knowledge of harmony than ours,

but without necessarily any coding knowledge.

However, writing a complete language for music rules, which first seemed interesting, arises some inherent

issues. First, an exhaustive language would necessarily be complex to use, which can be a problem if non-

programmers musicians want to contribute in rule writing. Also, without any knowledge on the shape of

the rules, we wouldn’t have been able to write an efficient algorithm to find the optimal chord progression.

Thus, we have chosen a modular approach: we wrote several types of rules, that can be divided into the

two following categories:

- Local coherence between melody and chord;

- Chords transition.

The first category of rules is applied on one chord at a time, ensuring that the chord fits well with the

notes of the current measure. The second category of rules only applies on chords, independently of the

melody, ensuring that two neighbouring chords follow a coherent progression. The rules falling into that

category are particularly well explained by harmony.

For the first category of rules, we want to give a value, a score of how a chord fits on a measure, whereas

for the second category, we will give a score to pair of chords. We can actually achieve that by writing

the rules as extended arithmetic expressions over variables describing some aspects of the melody and/or

chords, depending on the rule type, either by boolean or statistical values. This is enough to capture

everything we want to say about the melody and the chords (basically, we can encode “if then else” kind
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of statements), and arithmetic expressions are a convenient way to give a score, either to one chord and a

measure, or for pairs of chords.

The five rules we have implemented are listed in the appendix.
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5 Algorithm

Once we have the music rules and the machine learning results, we still need to output the best chord

progression. This part presents how we unify them, and the obtained results.

To unify the machine learning results with the music rules, we add a bonus to chord progressions that are

returned by the machine learning.

The obvious naive algorithm would be to generate all possible chord progressions and calculate the value

given by the music rules on each one of them. However, the complexity of that algorithm is Ω(cm), c being

the number of possible chords and m the number of measures.

We propose another algorithm using dynamic programming which has a complexity of O((c2 + ML)m)

where ML is the number of chord progressions returned by the machine learning algorithm. Here is the

algorithm:

Let Best(i, t) be the value of the best chord progression (only counting music rules) on the t first measures

of the melody and that finishes by chord i. Let val(i, t) be the sum of the values of how chord i fits on

measure number t (each rule of the first category giving a (most likely) different value). Let link(i, j) be

the value of the rule that describes the link between chord i and chord j. Let overall(cp) be the value over

the whole melody of the chord progression cp according to music rules only. Let Best be the value of the

best chord progression (now adding machine learning). We have the following equations from which we

can deduce the algorithm:

1. Best(i, t+ 1) = max
j
Best(j, t) + val(i, t+ 1) + link(j, i)

2. Best = max{Best(i, n), i} ∪ {overall(cp) +MLBonus(cp), cp ∈ML}

5.1 Results

We could not test formally the results of our HMM, but here we give some empirical clues. As we already

stated, our database is too small to deduce efficiently the expected chord progressions. Yet, the musicians

of the group found the results of the slow version very promising; yet its running time is at the moment

too prohibitive to be integrated in the released version. On the other side, the faster version works only on

melodies that are relatively close to these in the database (else it may only give arbitrary chord progressions

of probability zero).
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Concerning the whole algorithm, including all the rules, we have had convincing results on pop, rock’n’roll,

traditional, and even classical music, in a short execution time. In the released version, chords very rarely

felt strange to our ears. Sometimes selected chords are questionable (for example minor chords on a major

melody, or vice versa); but the overall result is convincing. Nevertheless, it cannot handle more intricated

music styles in terms of harmony, like jazz.
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6 Production

6.1 Website

A website with all the needed information, and a link to download the source code, has been created. It

can be found at the following address: http://www.lazychords.nicolascarion.com/index.php.

6.2 Databases

If one wants the Machine Learning algorithms to actually work, and to output proper chords given an

input melody, proper chords must be defined for these algorithms. So a database defining this criterion

must be created.

To that extent, we decided to select melodies and songs that already exist through the pop culture, and

write down the melody, and the corresponding chords the artists play. But there are major difficulties here.

First, we decided to restrict ourselves to specific melody formats. More specifically, we restricted ourselves

to one chord per measure. Thus, many songs do not fit our requirements, as the chords may be played along

a non trivial rhythm in existing songs. Then, it seems that no reliable, already existing database, exists.

Indeed, score and chords can be found through the internet, but are most of the times inaccurate, or even

incorrect. That is amplified by the fact that main melodies are often vocal, thus not totally representable

through scores. Also, no sufficiently simple, reliable, automated solution seems to exist to this problem.

Indeed, no reliable audio to any classical format converter has been found: mistaking a note by a semitone

can easily create unpleasant harmonies. But a database must be created, in order to, at least, test the

algorithms. Considering the size of the project, we created a database by hand, either by listening to audio

files directly, or by comparing and correcting existing scores with audio files. This, at least, led to a small

but hopefully reliable data for the algorithms.

In order to implement this database we chose to use only text files to store the data. The main reasons for

this choice are that it is easy and fast to implement, and we only needed two functions in the database,

add a file and load all the songs of a certain style. Thus, we have one file for each style, containing all the

songs of this style.

6.3 User’s interface

The user must provide a melody for LazyChords to generate chords. We chose the abc format as it is

readable, and has all the information we need about the melody. For now, the parser does not parse all of

16

http://www.lazychords.nicolascarion.com/index.php


the specifications of the ABC format as we did not need all features.

We chose to use Qt 5 to implement the Graphic User Interface (GUI) because it is C++, easy to use,

portable, and provides nice interfaces. The GUI provides all needed buttons: an import file button, to put

the ABC file of the melody, a button to generate the chords, and all player related buttons, like play, stop,

two different volumes (one for the chords, one for the melody), but also the tempo. The GUI provides an

emphasis of the chords as they are played, to help the user follow the song. It has also a score rendering

using the library abcjs, and the possibility to look at the ABC file to see if it is the right one.

To play the music, we use ABCToMidi to create a midi file and then the library FMOD to play it, which

added some licensing issues, as FMOD is free for independent or non-commercial uses, but it is not open-

source, so we can not put the sources of FMOD, thus the software requires the user to install FMOD on

its computer to be able to use the software with the sound player.

Figure 3: Graphic User Interface
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7 Conclusion and Perspectives

The software we provide is clearly not a full software, it needs some improvements. However, results

are already quite good, and we really would like to improve them, so the software can really be used by

musicians and gets to the point where its name is really relevant, this means the user would not even have

to think about chords and would get a very nice chord progression to play. We reached the objectives we

chose, with a little restriction about style, and we created the basis of a much more evolved software. This

M1 project is only the beginning of a larger project, which will hopefully last for years.

The project will continue, because at least half of the members are willing to continue working on it. This

legitimates this part of improvements that are planned to be in the next version of LazyChords which

would start to be implemented in January. We would also be very happy if some people would like to

join us on this project. We designed LazyChords, not only to work after three months of work, but

to be able to improve its quality. For instance we defined music rules so that the user can describe his

own rules, giving him much power. We knew that it would be very hard for us to release in December a

software enabling the user to make his own choices. Anyway, we built it this way, so we can continue in this

perspective, without having to restart this part from scratch. This is essential to get more contributors. We

may not have produced the best chord finder we could have done with the same amount of work, because

defining the rules description well took time, but we probably created the best basis for the project to live

afterwards.

The main improvement we would like to do is the management of music rules. We want to simplify rules

writing, make it more intuitive, and provide a way to write them in the GUI. We also would like the user

to be able to choose how to balance the rules (including the Machine Learning part), in the GUI of course.

The idea is that a musician, non computer scientist, could improve the rules, and add new ones, without

any knowledge in C++. We also would like to be able to choose the rules from a database, in order to get

usual rules and choose exactly the ones the user wants, maybe with predefined sets of rules to help users

who are not aware of music concerns enough, or to specialize on a certain style of music.

We would like to improve the database for the Machine Learning algorithm in order to get better, so that

the software could get more taste of style, since it could be hard to get the right chords for each style only

with rules. Thus we need a larger database, with much more styles of music.

The Machine Learning part in itself can be improved too. There is an algorithmic perspective of decreasing

the running time, because the retrieving algorithm (as well as the main unifying algorithm), that uses

dynamic programming, could easily be parallelized. Moreover, it would be interesting to find new ways
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of representing the observations (a boolean presence vector, some notes. . . ), and compare, formally, the

corresponding results.

We also wanted to implement a SQL database for music rules. The idea is to provide a database on the

website with concurrent access to get a bigger database for music rules, so users can contribute and share

their rules with everyone. We already worked on that, but the main issue is that the management of music

rules in the software is not easy to do yet.

We also want to improve the GUI to enable editing the score and the chords. Now, the user can only

play the chords he got from the software, but he can not change one of them that sounds odd to see if it

could sound better with a new one. Also if he found a note in the score that is not the right one, he can

not change it easily. He has to edit the abc file by hand (using his own text editor), and to reload it in

LazyChords. Adding a cursor that follow the music on the score would be interesting then to find easily

what note to change if one is not the right one.

Developing a web and an android application is also one possible improvement, maybe with less functional-

ities first. An android application could be very useful for people who do not want to bring their computer

everywhere and get chords as soon as they want to play some music.

Improvements can also be done on input. First, we do not parse every ABC file, lots of things allowed by

the ABC format are not taken into account. Improving the parser to parse all ABC files could be very

interesting for a real use of the software, as it is already not so easy to find the ABC file of the music

you like; and if you are not able to write it yourself, finding one that we parse could be complicated. A

huge improvement could also be to implement a microphone input, but it is very complicated to get the

right notes, even limiting ourselves to only one instrument, or to voice only. This is an improvement we

all would like to add, but we know it is hard to make it work and it costs a lot of work even to know if we

can achieve this well enough. It is more of a wish than a real objective for now, but it can be later. We

know projects which tried to implement this kind of microphone input, and we may rely on them for this

objective.
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Appendix

Utilisation

Installing dependencies

On Archlinux All the needed packages are available in the official repositories. To install them, the

following command should be enough :

$ pacman −S fmodex boost boost− l i b s cmake qt5−base qt5−webkit

On Ubuntu Due to licence issues, the library FMODex on which our software relies is not available in

the repositories. There are two options to solve this issue : the first one is to download and install by

hand the library (http://www.fmod.org/download-previous-products/). The other solution is to rely

on the cmake script provided in the archive, which downloads a local version of the library if not found on

the computer. Please note that it won’t install FMODex properly on your computer.

The other packages can be installed as follow :

$ sudo apt−get i n s t a l l l i bboo s t−dev l i bboo s t−f i l e s y s t e m−dev cmake \

qt5−d e f a u l t l i bq t5webk i t5

On other Unix-like systems This project has not be tested on other systems, including Mac OS, but

all the library used are cross-platform so in principle it should work correctly. Please make sure you install

Qt 5 (http://www.qt.io/download-open-source/), Boost (http://www.boost.org/users/download/)

and FMOD (http://www.fmod.org/download-previous-products/).

Get the software

On windows You can just download an installer from the download page of the site (http://www.

lazychords.nicolascarion.com/download.php)

On other systems Download the source archive from the website (http://www.lazychords.nicolascarion.

com/download.php). Then you can extract the source and start the build process :

21

http://www.fmod.org/download-previous-products/
http://www.qt.io/download-open-source/
http://www.boost.org/users/download/
http://www.fmod.org/download-previous-products/
http://www.lazychords.nicolascarion.com/download.php
http://www.lazychords.nicolascarion.com/download.php
http://www.lazychords.nicolascarion.com/download.php
http://www.lazychords.nicolascarion.com/download.php


$ ta r xvz f lazychords0 . 1 b . ta r . gz

$ cd l a zychords

$ mkdir bu i ld

$ cd bu i ld

$ cmake . .

$ make −j

$ cd . .

$ . / LazyChords

Usage

Use the import ABC button and select the file of your melody (this should be an ABC file). You can look

at the score to see if it is the right melody, you can also play it with the play button, and choose the tempo

if the tempo is not right. You can toggle the repeat button if you want your music to repeat. You can then

generate chords with the LazyChords button in the middle of the button bar. You can mute, change the

volume separately of chords and melody by clicking on the volume icons (to mute/un-mute) or using the

sliders. When you play the music with the chords, the chord that is played is displayed in red, and the box

moves to always show you the chord played. So you can easily follow the song, but also mute the chords

and play your own instrument and know when to play the chords, only watching this part of the screen.

Contribution

Everyone can contribute to the project, and we are likely to have more people working on it, or at least

some feedback from people trying it. To get contributors we would have to spread the software among

musicians. Also having some feedback from beginners to know exactly what they need to improve their

knowledge about chords using LazyChords. New active contributors could be very interesting, they can

bring new ideas, new ways of thinking the music rules to get better results. An other way to contribute

will be brought by the online music rules database we would like to have on the website. This would need

enough people to create music rules to be relevant, but with the huge power of the rules we defined, users

are really free to create good rules, sharing rules with beginners could then be a good way to share their

knowledge of music. Creating a forum is also an idea to give the possibility to discuss pertinence of rules,

or to help beginners with them. If you want to contribute do not hesitate to contact us at the following

e-mail address: benjamin.gras@ens-lyon.fr, or to go on the website. We use git to work, and there is a
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full documentation of every function implemented in the software, using Doxygen to create it, so a new

contributor can easily join us. This documentation can be found on the website.

Our music rules

We implemented five music rules. As we said, they are encoded using arithmetic expressions, which are

described by the following grammar, with the usual priority conventions:

A,B ::= k ∈ R+ | v or v(i) or v(i, j) | A+B | A−B | A ∗B | A/B |

AB | [A = B]2 | abs(A) | . . .

Let’s then define those rules. We only have to describe how to interpret the variables (v or v(i) or v(i, j)),

a rule being an arithmetic expression on those variables.

Local coherence of melody and chord

Rule 1 The goal of this rule is to check if the notes on the beats (1, 2, 3 or 4, since we consider only

measures of 4 beats) are present in the chord:

Variables v(i, j), i = 1, 2, 3, 4, j = 1, 2, 3

Interpretation v(i, j) = 1 if the note on the ith beat is equal to the jth note of the chord, v(i, j) = 0

otherwise

Rule 2 The goal of this rule is to check if the notes of the chord are in the melody in a long enough time:

Variables v(i)

Interpretation v(i) = p where p is the percentage of the time the ith note of the chord appears in the

melody

Rule 3 The goal of this rule is to check if the longest notes of the melody are present in the chord:

Variables v

2[A = B] is the boolean value of the proposition “A = B”, given an evaluation of the variables
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Parameter v the minimum length of notes we are going to look at

Interpretation v is the percentage of notes which aren’t in the chord and that last more than x (default

is 1 beat)

Rule 4 The goal of this rule is to check if the notes of the chord are in the key: if we do not actually look

at the notes of the measure of the melody for this rule, it is still dependent of the melody, since the key is

one of its parameters. It is the reason why we have put this rule in the same category as the previous ones:

Variables v(i), i = 1, 2, 3

Interpretation v(i) = 1 if the ith note of the chord is in the key, v(i) = 0 otherwise

Chords transition

Rule 5 The goal of this rule is to check if pairs of adjacent chords are harmonious, logical, . . . It applies

on each pair of measures:

Variables v(i, j), i = 0, 1 (0 is the precedent chord, 1 the current one), j = 1, 2, 3 (notes of the chord)

Interpretation To each of the 12 possible notes is associated an integer between 0 and 11 such that the

difference of two notes (mod 12) is the number of halftones between them. v(i, j) is then the corresponding

integer of the jth note of the ith chord. This allows us to test intervals between those chords, which is

enough to implement most harmony considerations.

Organisation feedback

The organisation of the project went well from a general point of view. We achieved our objectives in time.

We had nice relations between the members of the project even if some disagreements have been a bit hard

to deal with. Moreover, a least half of the team wants to continue the project, which shows that it was

well enough to keep people willing to work together. The organisation was a bit strange due to the fact

that the coordinator did not know music or was even good to implement things, so the organisation was

built on more people, one directing the project from a musician point of view, and two others directing

the code writing (some coding rules were chosen, some code has been cleaned to be more understandable).

This structure was a good point with no one having too much organisation to do, but enough organisation

overall.
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Yet, everything was not perfect. First, the organisation failed to make every member involved enough,

mainly non musicians members. We think this issue arose from the lack of leadership of the coordinator,

in the sense that he did not motivate people to work on the project.

Then, communication was an issue, some people thought some things implicit that were not for others.

This slowed down a lot the merge between the different parts. We chose to give us two weeks to merge, in

order to let us some time to improve some particular points of the software. This was a huge fail, we took

more than four weeks to merge, deleting all the time for improvements. What makes this less problematic

is that we did manage to have something already quite good, and we continued to work on the parts even

if the merge was not finished, trying to merge as much as possible between parts relying on others. The

reason of this much longer time to merge is the lack of communications, that made some parts overwritten

many times. The lack of strength in the asks to respect the deadlines combined with the amount of work

we had to do these weeks played also a role in that lateness.

An other failure in the project was that some people wrote a lot in parts they should not have with respect

to the workpackages. This happened because of the two issues before, some people less involved put less

energy trying to make everything work well, or thought they provided all the needed functions even if

some were missing to use the code properly. This also shows some failure in the workpackages, we did not

manage to put enough amount of motivation in each group, leading some to work slower, or to need other

people to work on them.

The last issue of organisation was not to deal well enough with the lack of confidence of some people into

others, leading to the willing to re-implement some parts to make them work easier, the database format,

for instance, was a huge issue of this kind. We think this is part of the previous point, we should have

more separated the workpackages, enhancing communications between workpackages that were linked and

reducing feedback from people who were not involved. Even if it is needed to have some feedback from

other points of view, it should only be feedback and not authoritative arguments.

To conclude this feedback on organisation, we can say that the workpackages were not well distributed,

that communications were not good enough, but overall it went well due to the motivation and the work

of most of the members.
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