
tozti Final Report

‘Projet Intégré’ — Ens Lyon

More information at "https://tozti.github.io"

• Léonard Assouline • Pierre Meyer

• Peio Borthelle • Alex Noiret

• Guillaume Cluzel • Pierre Oechsel

• Guillaume Duboc • Lucas Perotin

• Julien Ducrest • Vincent Rebiscoul

• Lucas Escot • Emmanuel Rodriguez

• Joël Felderhoff • Daniel Szilagyi

• Félix Klingelhoffer • Lucas Venturini

• Romain Liautaud • Damien Reimert (supervisor)

March 23, 2018



Contents

1 Introduction 3

2 Specifications 4
2.1 User Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Developer Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Existing solutions 6
3.1 Email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Slack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Adeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5 Doodle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.6 Google Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.7 Framasoft Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.8 Hosted Git services (GitHub, GitLab) . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Our solution 9
4.1 Choice of technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.1 The web as a platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.2 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.3 MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.4 Adoption and installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.5 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2.1 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.2 HTTP API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.3 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 User Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.2 Common UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.3 Core Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.4 Multimedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.5 Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4.1 Our problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4.2 Handling Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4.3 Encryption Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5 Our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5.1 Division into workpackages . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5.2 Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Conclusion and next steps 21

A Mockups 22

B Screenshots 26

1



C Specifications 32

2



Chapter 1

Introduction

In this report, we describe tozti, the open source centralised platform for managing (student)
association. Its aim is be a ready-made (“batteries included”) solution, tailored specifically towards
managing the internal organisation of an association, while still remaining extensible and easily
customisable by advanced users.

The ENS has a rich and diverse associative life, and many of the student associations require
efficient means of internal organisation and external communication. Currently, they use software
ranging from a simple email client to a fully custom solution for managing members, meetings,
and finances, in addition to social networks. The biggest players in the field of associative software
are Facebook, mailing lists, and Adeline – developed by former ENS students who grew tired
of manually managing their hundreds of members. Overall, the existing tools are well suited for
public relations (e.g. informing members of upcoming events), but do not allow for efficient internal
organisation (e.g. storing documents, meeting of the board, scheduling events, archiving the work
that was done). Many student associations are therefore dragged down by the tools they use, which
are often counterintuitive and do not integrate well with one another. Most notably, this leads to
a lot of redundant plumbing work, and makes it hard for users to find the information they want
to access, as it is scattered over multiple sources. Even more surprisingly, the ENS isn’t the only
school subject to such problems. Associations of other schools (Polytechnique, Centrale, ENSTA,
EDHEC) are also in the same situations: they are using a patchwork of tools for their internal
organisation.

There is a real need for a data centralisation which tozti, the centralised associative platform,
will provide. The tozti project will allow each association to build the unified organisation
suite that best fits its needs by choosing from a wide range of well-integrated modules. These
modules, which we will develop over the course of the project, will each answer a specific organ-
isational need: communicating in a hierarchical manner, reaching consensus, planning tasks and
events, archiving files securely, collaborating on textual documents, or even automating recurring
tasks.

We ultimately want to build a service that student associations can use straight away. To
this end, we maintain close communication with their representatives, to ensure that what we are
building suits their needs.

In an effort to be flexible, our software architecture will revolve around small, loosely-coupled
but interoperable modules, which we will build using today’s web standards and best practices.

3



Chapter 2

Specifications

In order to determine the exact requirements for our product, the communication team conducted
interviews with several student associations at the ENS as well as several engineering schools that
also have a rich associative life. They were asked what solutions they were currently using or
have used over time – which we will discuss in the next chapter – and what features an ideal
internal organisation tool might have. The answers they gave us can broadly be split into two
main categories: user expectations and developer expectations. The further subdivision of these
categories is described in the following sections.

2.1 User Features
Upon interviewing the (non technically inclined) users, we realised that their answers also fell into
several distinct groups. We decided to implement some of the most requested features:

Unified overview of relevant information. The users should be able to see an overview of
all events, discussions, etc. that are relevant for them in a single place. This requirement
has a very deep meaning: tozti should be able to seamlessly display information from one
association or another but it also must not become another all-integrated platform locking
users inside it.

Intuitive and consistent organisation. The users should have two ways of accessing their files:
an intuitive one, that presents the most recent documents or unread notifications, and a
structured one, which enables the user to find a given piece of information in a consistent
fashion. The first part will be implemented using a dashboard-like interface, and the second
one will resemble a file browser, with abstractions similar to files and folders.

Calendar. A distributed calendar that displays the events from all associations of which the user
is a member. This feature should be accessible to each and every student of the school,
not only the ones that are part of the organisation group of an association. Optionally
it should support event organisation, with a form system helping the association members
assign themselves to a given time slot at an event (permit system).

File storage. A versioned and collaborative file storage service, that interfaces with the other
components. The stored files should be able to be referenced from other places in the system.
Any file type can be stored but we might provide rich editing and viewing for some of them
(for example, multimedia, formatted text or PDF).

Discussion board. A standard bulletin board, with the additional feature of being able to ref-
erence other entities in the system such as events, files, etc. For example in an ongoing
discussion about an event on the forum, one will be able to reference both the calendar event
and the event poster image.The discussion feature should also allow users to switch topics in
a fluid and non chaotic fashion, in opposition to most of the currently used instant messaging
services.

You can find in appendix C the full specification we wrote.

4



2.2 Developer Features
Apart from the non-technical users, we also communicated with the developers and power-users
that maintain internal organisation systems within individual associations. Given that most of
these systems were developed ad-hoc, with time they often become increasingly hard to maintain
and extend. Thus, the main request from the developers was to provide them with a convenient
API with which they can interface. Upon presenting them with our planned user-facing features,
we agreed on the following:

Ability to create new views and extend existing ones. The developers should be able to
add completely new components (such as a document viewer component), or extend existing
ones (like the dashboard).

REST HTTP API. The entire service state should be queryable through a well-defined REST
HTTP API, such as JSON API. This would enable the developers to automate common
actions and create new clients, other than the web-interface.

Implementing these features implies a fully modular architecture, where the core server knows
close to nothing about the entities it handles, and treats them completely uniformly. This further
allows us to have a consistent representation of all these entities, when returned by the API.

5



Chapter 3

Existing solutions

Based on the specification from the previous chapter, we evaluated several existing solutions that
are currently being used for the internal organisation of the associations we interviewed. We
considered several platforms: email, Slack, Facebook, Adeline, Doodle, Google Apps, and hosted
Git services (GitHub and GitLab).

Apart from most of them being closed-source (which limits the degree of extensibility), all of
these platforms have their own specific advantages and drawbacks. They are presented in the
remainder of this chapter.

3.1 Email
Email is the probably the most commonly-used communication platform today. As such, it is
not surprising that it is the preferred platform for many of the smaller associations. Its most
prominent advantage is that virtually no setup is required before it can be used, as everyone is
issued an insitutional email address (e.g. @ens-lyon.fr), which can be easily accessed via the school
Webmail. Experience has shown that such a system is feasible as long the the monthly volume of
sent messages is relatively low – however, most people are members of multiple associations while
only being active in a select few, which means that they receive a lot of emails of no interest to
them.

More specifically, this problem occurs because there is no standardised way of classifying emails
(apart from the email subject). Thus, with each sent message, it becomes increasingly hard to have
an overview of all the information that was exchanged between the members of a single association,
and in a sense the data gets lost.

The other disadvantage of emails stem from the fact that all non-text data needs to be sent as
a small embedded attachment, or as a link towards a third party service. Both of these approaches
complicate information retrieval, as it is all but impossible to search the contents of the attached
files or links. Additionally, the use of third-party services contributes to information fragmentation.

3.2 Slack
Slack is a proprietary cloud-based collaborative instant messaging platform, originally designed to
replace the wide variety of general-purpose instant messaging services used by teams in a profes-
sional environment. As a messaging-first platform, it shares many of the same disadvantages as
emails.

Still, it has several interesting features, most notably its integration with third-party services.
Namely, those services can implement bots, so that Slack users can access those services by exchang-
ing messages with a bot. Unfortunately, the chat-based form of this communication often limits
the degree of interaction with the third-party service, sometimes so much that external links are
still needed. Therefore, for similar reasons as email, Slack is also unsuitable for mid- to large-sized
associations.

6



3.3 Facebook
Facebook is the second most used communication platform, and just like emails, almost everybody
already uses it. On the other hand, because of its nature (determined by the fact that it is run by a
for-profit corporation that focuses on selling private data), many people are also uncomfortable with
using it for either professional or academic matters. Although Facebook’s messaging component
(Facebook Messenger) contains some advanced features (polls and event planning), it is still not
a proper long-term high-volume archival solution. Because Facebook’s UX is centered around a
powerful search-box and not a strict taxonomy like trees or tags, old content might easily get
lost. Additionally, because of Facebook’s closed nature, interoperability with third-party services
is difficult.

Recently, Facebook introduced Facebook Workplace, a platform that leverages Facebook’s group
feature, and adapts it to a more professional setting. However, the majority of philosophical and
practical problems applies to Workplace as well – chief among them being that it is a closed
platform, and as such, there is no way that it can have anything more than superficial integration
with other solutions it claims to interoperate with (G Suite, Office Online, Dropbox, etc.).

3.4 Adeline
Adeline is a service created by (former) ENS students, marketed as a social network for managing
a student’s associative life. Our analysis concluded that Adeline takes a lot of concepts verbatim
from Facebook: it is more a social network for regular associations members than an association
management platform. Thus, most of the criticism aimed at Facebook applies to Adeline as
well. One notable feature however is the ability of association staff members to create forms
(speadsheets). In fact, implementing such a feature in tozti is one of our long-term plans.

3.5 Doodle
Doodle is an event-scheduling service that helps a group of people in finding a common time slot
when they are all available. It is well integrated with personal calendars, which is a strong feature.
But given that it is such a special-purpose service, it can only be used in conjunction with other
document storage and communication services.

3.6 Google Apps
Google provides a wide range of services, aimed at private users and organisations. It provides
tight integration between the services, and connects all of them with their search engine. However,
since it is completely hosted by a third party (Google), it cannot be modified or extended in any
way. Since Google Apps are not implemented with associative workflows in mind, this is very much
a problem.

3.7 Framasoft Apps
Framasoft also provides a wide range of services (e.g. event-scheduling, poll, forms, etc.), with
less integration between them or with other services as their Google counterparts, but with the
distinct advantage of being a completely free software, free licence, and an open source based
solution. However, these solutions can only be used in conjunction with other services, because of
their special-purpose design.

3.8 Hosted Git services (GitHub, GitLab)
Hosted Git services provide a publicly (or privately) hosted Git server, augmented with features
that enable more efficient software development. As such, they are ideal for storing versioned
text files and their collaborative editing. They are usually beloved by – but also restricted to –
tech-savvy users (one such group of users at ENS is the AliENS association). Exactly because of

7



their special purpose, it is hard to extend these platforms to support non-software-development
workflows e.g. calendars and event scheduling.

8



Chapter 4

Our solution

4.1 Choice of technologies
We chose Python and Javascript supported by the Vue.js framework in order to develop tozti.
Finally, the database backend is provided by MongoDB. We describe the reasons of this choices
below:

4.1.1 The web as a platform
The web is not only about HTML and CSS anymore, it is now the overwhelmingly dominant
platform for building user application. The reasons for that are multiple but here are some we
could think of:

• HTML and CSS provide an easy to use declarative language for designing tailored graphical
interfaces enabling fast prototyping.

• The installation step of the software is hidden from the user. A package manager or an
installer is not a very complicated tool but it still adds friction (similar mechanisms are at
play in compiled versus interpreted languages).

• It is not an abstraction layer on top of heterogeneous platforms but a fully featured and
comprehensive platform.

• Almost every consumer device with a screen has a web browser.

For these reasons – as well as the simple fact that the prevalence of this platform brings modern
and well supported tools – we have chosen to develop a single-page app in Javascript. We picked the
Vue.js framework because it is lightweight, yet still powerful enough to express the most interesting
design patterns. Additionally it is well documented and has a large community and an ecosystem
built around it.

4.1.2 Python
The core API server language has few constraints besides having a good HTTP server library. We
chose Python for the language as it is easy to both write code and understand somebody else’s.
The public we are targeting (ENS students at first, and afterwards students from other schools and
universities) will almost certainly be at least a bit familiar with Python. One noteworthy detail is
that we used the aiohttp library leveraging the new asynchronous IO features of Python, that are
well-suited to highly concurrent tasks such as those performed by a HTTP server.

4.1.3 MongoDB
As described in section 2.1, our idea is to store the data as a rich network of resources that can
reference each other in a variety of ways (relationships). Additionally, in order to allow third-party
extensions to define new resource types, it is easier from a developer’s point of view to work with a
database that that does not impose a fixed schema (besides the necessary minimum of the object’s

9



ID and type). Therefore, MongoDB seemed to be a good fit for us: it is a mature document-oriented
schemaless database, with excellent Python support. However, it should be noted that only a small
part of tozti depends directly on MongoDB: the storage abstraction layer. All other components,
both server- and client-side communicate only with the storage abstraction layer through its API:
either by using it directly (on the Python side), or calling it through the exposed HTTP methods
(on the client side).

4.1.4 Adoption and installation
Most associations have only one person in charge of maintaining their infrastructure. We know
that to convince this person of using tozti over an other solution, tozti must be:

• easy to deploy,

• easy to configure,

• (optionally) easy to adapt and tweak.

We wrote an exhaustive installation guide explaining how to install tozti. However, as we
worked on tozti, the complexity of installation grew. Therefore we decided to provide a Docker
container allowing a system administrator to create an instance of tozti easily.

To make sure the copy of tozti provided on our GitHub always remains functional, we imple-
mented continuous integration on the repository. Every change on the code must pass through
multiple tests making sure no regressions happened. Travis is used to automatically execute these
tests on the GitHub repository, on each commit. As of now, over 100 tests are written, achieving
80-90% code coverage. The tests mainly focus on module loading, authentication and storage.
We also wrote some tests using Selenium to test the UI of tozti end-to-end. The mechanism of
branching was also used extensively while developing new features. Each new feature has to pass
rigorous code reviewing before being accepted and merged with the public version of tozti.

4.1.5 Documentation
As suggested earlier, and in adequacy with our modular design, we want to make it easy for
external developers to contribute to tozti. We wrote several documentation articles, all accessible
on https://tozti.readthedocs.org. We also provide a sample extension, that demonstrates how to
interface both with the server- and client-side of tozti.

Finally, we chose the AGPL licence for tozti. We set for ourselves the goal of providing a libre
tool benefiting the common public, and thus a strong copyleft license was agreed upon. Because
we believe that services disempower people while tools and protocols empower them, we took the
adopted the Affero clause of AGPL, effectively ruling out inclusion of tozti in any closed-source
service.

4.2 Architecture
tozti is implemented as a modern web application. As such, it is divided in two parts, the backend
and frontend. The backend code is executed on the server, whereas the frontend code is executed
on the client (i.e. a web browser). Additionally, extensions (also called modules) can extend the
functionality of both parts, as mentioned in the specification.

An overview of the architecture can be seen on figure 4.1. Black arrows are function calls
(JavaScript on the client-side and Python on the server-side), blue arrows are HTTP queries and
the red arrows are WebSocket connections. We can see how the core (the large rectangle on the
left) interacts with extensions (narrow rectangles on the right).

10

https://tozti.readthedocs.org


M
Q

A
uth

Store
C
rypto

P
ython
A
P
I

Core py

R
outer

Store
(vuex)

R
outer

(vue-router)
C
om

m
on

V
iew

s
JS
A
P
I

Core js

endpoints
handlers

-
view

s
-
com

-
ponents

endpoints
handlers

-
view

s
-
com

-
ponents

rabbitM
Q

C
A
S

M
ongoD

B

SE
RV

E
R
-SID

E

C
LIE

N
T
-SID

E

Figure 4.1: Architecture diagram
11



4.2.1 Backend
The backend consists of three communicating components: the HTTP API server, the MongoDB
storage server, and the RabbitMQ message broker. The purpose of the API server is to act
as a middleman between the frontend and the storage server. It validates the incoming data,
formats the outgoing data, and takes care of the permissions for accessing data in the storage. The
communication with the frontend is done through a HTTP API, that is heavily inspired by JSON
API[5]. Extensions can introduce new functionality by hooking new HTTP endpoint handlers into
the core HTTP server.

4.2.2 HTTP API
A JSON API inspired API has been chosen because it follows the well-known HATEOS architecture
(Hypertext As The Engine Of Application State). This essentially means that the client need not
to construct URLs ex nihilo to navigate the API: a single entry point is needed (in our case,
/api/auth/me), after which URLs for all related actions will be provided inside the HTTP reply.
This means that the state of the client is the document given as the reply, and possible state
transitions are all included as hyperlinks inside this state. The benefit of HATEOAS—in addition
to being the pedantic 3rd and highest level of RESTful API design—is that it makes the API more
discoverable and clients more robust. Such a strong contract between the client and the servers
enables us to keep the client completely unmodified, even in face of relatively large changes, such
as server hostname change, URL change or type description change (see below).

Resource objects

JSON API is centered around resource objects. They are what we would call entities in databases
or hypermedia on the web. A resource object is a simple abstract structure: it has an unique id, a
type, a few meta-data (meta) and finally a body. Extension can declare different resource types,
constraining what goes into the content.

There are several kinds of resource objects:

• Structures: the type declaration specifies the fields names and value types. The body is
a JSON object mapping fields to their values. Supported operations are get(field) and
set(field, value).

• Arrays: the type declaration specifies the type of the items. Supported operations are
get(index), append(value), insert(index, value) and pop(index).

• Dictionaries: the type declaration specifies the type of values (keys must be strings). Sup-
ported operations are get(key), set(key, value) and pop(key).

Type Description Objects

We will introduce types since they are treated abstractly in the original JSON API specification.
Type are simply namespaced strings so that each extension can create its own types, in addition
to the ones provided in the core/ namespace. New types can be declared together with a type
description object in an extension.

Type description objects ressemble JSON schema but we added the new relationship type.
A relationship is a link between the current resource and either one or many target resources. This
enables us to create a directed tagged graph between resources and build complex data-structures
like a file system or an identity management system.

For example, the core/user type might specify a to-many relationship called groups, whose
targets are restricted to the core/group type. A partial description of the core/user type can be
seen below:

{
"body": {

"name": {
"type": "string"

},
"handle" : {

12



"type": "string"
},
"groups": {

"type": "relationship",
"arity": "to-many",
"targets": "core/group",

}
}

}

This creates a directed graph, but regularly we want to have bidirectional links where both
directions are kept in sync. For example, we would like core/group to specify a relationship
named members mapping to the list of core/users that have access to the group. To handle that,
we add a new kind of relationship description: auto relationships. These relationships cannot be
modified by the user, they are specified by a target type and a forward-relationship name—here
core/user and groups. This relationship is not kept in the internal database, but upon query of
a given object we fill it we the result of the query “all resources of matching type such that the
current resource is contained in the matching relationship”.

Authentication

To perform a password login, we use state-of-the-art Argon2 password hashing from the lib-
sodium[4] library. Note that our authentification scheme if currently trivial (eg post your password
to the /login endpoint). This scheme is the most common and recommended, on top of SSL/TLS,
but it has some pitfals: it does not provide mutual authentication and permits easy man-in-the-
middle attacks, either by an active network attack or by a compromised server. Thus we will
probably switch to SCRAM1 We might also implement additional login schema like CAS (to in-
tegrate with the ENS de Lyon single sign-on), GPG authentication (for power-users that have a
key), TOTP[3] or U2F[1] (for power-users that have a hardware security token).

The login endpoint answers with a macaroon[2] cookie. A macaroon is composed of public key
signed data, in order to ensure the authenticity. In our current implementation, it contains the
handle and the uuid of the current user, in order to access the database quickly. This macaroon
can be seen as a capability authorizing its bearer to act as the user. The macaroons also provide
advanced functionalities such as delegations and caveats, which will prove useful if we ever switch
to a multi-server architecture.

4.2.3 Frontend
The frontend follows the “single-page application” approach, which is the de facto standard for
modern web application development. Essentially, it means that the application interacts with the
user by rewriting the current page rather than loading new pages from the server, which improves
the user experience by making the whole application feel more responsive.

In this approach, the client retrieves most of the application logic on the first request to the
website. This includes the routing layer (which tells the browser which page to render depending
on the URL) and the rendering layer (which describes the HTML code to produce for a given type
of resource). This way, subsequent page changes do not trigger a full page refresh: instead, the
client uses the HTTP API to retrieve JSON objects for the resources that need to be displayed,
and renders them locally.

Specifically, our implementation uses well-established tools such as Vue[8], Vuex [9] and Vue
Router [7] to help with the routing, state management and rendering. Like most recent web frame-
works, Vue allows for declarative rendering of small, reusable components, which simplifies the
development of single-page applications. This way, even developers with limited web development
skills can write relatively robust and modular code. Working with small components also allows
us to easily create new views and extend existing ones, as required by chapter 2.

1SCRAM was originaly specified for TCP sockets but the experimental [6] ports it to HTTP.

13



4.3 User Experience
In order to streamline the development process, we created mockups for the most complex com-
ponents, so that their design is already known at implementation time. This process is known to
save (developer) time, as it allows them to focus on actual code, as opposed to design and usability
concerns. The mockups can be found in appendix A.

4.3.1 Taxonomy
As specified, we want a consistent organisation of the resources (a taxonomy). Usually, this is done
with a resource hierarchy, that is a tree. However, a common requirement is to share some resource
with multiple people. On a file system this is usually done with symbolic links. Our approach for
the taxonomy is closer to hard links than symbolic links: we allow resources to show up at multiple
places in the tree. This taxonomy could also be described as being the crossover of a tag system
and a tree: the set of tags form a tree and every resource can be tagged one or more times.

4.3.2 Common UI
There are two UI elements that we want to be present in every view of tozti. Firstly, there is a
thin horizontal header at the top containing the profile, settings and notification menu. Secondly,
there is a vertical strip on the left containing quick-links to some nodes of the taxonomy tree
(folders, groups, . . . ). These quick-links will contain the root directory of every group the user is
a member of but will also be customisable by the users. See the top left drawing of figure A.2 for
these common parts.

4.3.3 Core Views
Besides the user profile, group profile and settings views, there are two more views that are provided
by the core.

The first one is the directory view, that is the consistent view of directory (also called tag) of
the taxonomy. As such it can be compared to the main window of a file browser or to category list
view in bulletin-boards. The content of the view is straightforward: the main pane contains a list
of items, each describing an element of the directory. Each list item contains the name its name
as well as some additional information based on it’s type (it can be a file, a thread, an event or a
subdirectory). On the right, we have a full-height column showing the file preview, meta-data and
interactions like share-to or edit when the user selects an item. For a mockup, see figure A.1.

The second one is the dashboard and landing page. This view is much more versatile and
can be extended at will with new widgets. It shows things like upcoming events, recently modified
resources etc.

4.3.4 Multimedia
The multimedia file extension mostly provides a right sidebar for viewing the meta-data of a file,
as well as the context of this file in tozti. This includes: group membership, user rights, viewers,
etc. It should also serve as a basic visualization tool for text or PDF files. . .

4.3.5 Calendar
The calendar extension is centered around events. Events are presented on a calendar (grid where
columns and rows corresponds to a specific day and time). Events can be shared between groups
of persons or restricted to a sub-group of the current group. This notion of sharing and restricting
is integrated directly thanks to the taxonomy. Furthermore, events can be defined to be recurring
or one-off. As such, the calendar view is made of two big components:

• A search bar with some controls to search through specific events, see the events planned
later or earlier in time, and add an event.

• A calendar displaying the events of the week, month and day.

14



When a user chooses an event inside the calendar, an overlay page will allow him to view a more
precise description of this event. He will be able, if he has the permissions to, to edit and delete this
event. See figure A.2 for the mockup, as well as figures B.10 and ?? for the actual implementation.

The final view is composed of three frames that correspond to the daily, weekly or monthly
representation of an agenda. The design is simple but clean, and integrates into the rest of the
tozti layout. A right sidebar is mainly used for event creation, modification or simply to view the
details of an event.

4.3.6 Discussion
As detailed in C, the main resource type of the discussion extension is the thread. As such, it
provides a classical bulletin-board view of a given thread: a vertical sequence of messages followed
by a message redaction zone. On the right there is a full-height column displaying the list of
resources that have been mentioned in the thread. For example the organisational thread of some
upcoming event might mention resources like the public event, the staff task-attribution form or
advertisement PDFs and images. The right column also features a “scrubber”, which allows the
user to easily scroll to a specific message. This is especially useful for long threads, which would
otherwise be hard to navigate. See figures A.3 and A.4 for mockups.

4.4 Security

4.4.1 Our problem
Goals & Motivations

When we surveyed prospective users of tozti (i.e. student associations), one particular use-case
came up which required us to set up cryptographic security: some associations have to collect very
sensitive data such as testimonies of sexual harassment. For this reason among others, we require
that all data server-side be encrypted and be only accessible to those with the necessary clearance
level.

In particular, one important requirement for our storage system is that the server’s owner
cannot have access to unencrypted data. This is both for obvious privacy reasons, as well as to
keep our hands free for if we ever want to distribute the data over multiple servers. Indeed, one
long term project for the storage is to be compatible with multiple servers (an object of a certain
type could for instance be stored on a server even though its type is only defined on another server).
In that scenario, we cannot possibly trust an increasing number of server owners, even if we are
ready to trust just one.

For this same reason, we require that decryption happen client-side as much as possible. One
way around this would be to use (fully) homomorphic encryption2 (FHE) or Predicate Encryption3

(PE). Indeed that would allow some operations on encrypted data to be done server-side without
allowing the owner of the server to gain access to any information.

Choices & Compromises

While we cannot guarantee full anonymity for users storing their testimonies (an attacker listening
in might be able to see that a user sent data for instance) as not authenticating users would leave us
wide open to Denial of Service (DOS) attacks, we must guarantee the integrity and confidentiality
of these testimonies.

Considering tozti’s intended use-case, (F)HE seems too complicated and is more of a research
topic than a practical solution: there are neither widely trusted constructions or efficient imple-
mentations of these constructions. We therefore decided to forgo it entirely.

The cryptographic protocol we present here might be vulnerable to side channel attacks (de-
pending on the libraries we use), but then again, considering the most general use-case (i.e every-
thing but sensitive testimonies), it does not seem to matter at first (tozti is not meant, as of yet,
to be used to store data so sensitive as to catch the eye of so resourceful an attacker). Still, before
we launch tozti we will have to do a proper security audit, analysing possible side-channels and
implementation issues.

2Homomorphic encryption allows the server to compute over encrypted data (without having to decrypt).
3Roughly the secret’s owner can issue keys that have the ability to evaluate some predicate from the ciphertext.

15



4.4.2 Handling Permissions
First solution: ACL

The most commonplace way to handle permissions is to use an Access Control List (ACL) based
system. The idea is that each ressource will store a list of authorised users. When user Alice wants
to access the ressource, her id is checked against the list and she is denied access if her name is
not on the list. In particular, anyone may request ask that their id be checked against the list: one
need only know the name of the ressource to attempt an operation of which it is the target. On
the plus side, this means that we do not set a boundary on accessible objects, however this does
leave the system open to a worm, virus, backdoor, or stack buffer overflow. The list itself should
be stored in a safe location, in this case it must be stored on the server (which may be problematic
with a distributed system). An analogy for this system would be the following: the server is a
bank, the ressource is a safe at the bank, and users are the bank’s customers. Anyone can walk up
to the counter and request to have access, which is enforced by the bank. And the list’s integrity
is only as good as the bank’s owner’s, which must be trusted for all transactions (i.e. all requests
on the ressource must be approved by the server).

Second solution: C-List

An other system for handling permissions is the Capability List (C-List). In a certain sense, it is the
converse of ACL as each users as the "capability" to access certain ressources. So each user knows
which ressources he or she can access, and not the reverse. Moreover one must have the necessary
capability in order to event attempt to access the corresponding ressource. An analogy for this is
the real-life key and lock system. Each ressource is locked behind a locked door, and each user is
issued a key for each of the ressources he or she is allowed to access. The key cannot be forged (i.e.
an attacker knowing only the shape of the lock cannot forge a key which will open it), however
a user may copy the key and give access to another. While this is unclear in the analogy, a user
cannot even attempt a request without the necessary anology, thus preventing the aforementioned
attacks on ACLs. More precisely, "A capability is a token, ticket, or key that gives the possessor
permission to access an entity or object in a computer system" 4 and is classicly implemented in a
structure containing an identifier and an access right. An added benefit of capabilities is that they
are not based soleley on users: the possessors may be processes and procedures too. This allows
for more flexibility and finer granularity.

Our choice for tozti

For the permission system, we chose to use a Capability List (C-List) based system. Here are the
specific points which ultimately explain how the latter is preferable over the former for tozti (it
might be worth recalling the bank and lock analogies in order to better understand the pros and
cons we discuss here):

• Minimum server interference: The server need not verify the requests with C-Lists which
fits in perfectly with our general philosophy of not relying on a trusted third party unless
absolutely necessary;

• Transparency: While ACLs can better guarantee transparency over permissions (authorised
users are explicitely listed), the fact that users can freely transfer capabilities to their friends
is not of great concern as users can in any case copy and share any ressource they want;

• Simplicity: Capabilities work in a very intuitive way and both the users and the administra-
tors are already familiar with the lock-and-key system, which means they are less likely to
make security blunders;

However, in the associative world, mandates and responsabilities tend to be relatively short and
therefore the authorisations to access given ressources change regularly. Unfortunately, with ca-
pability lists, it is tedious to revoke access as this means changing the lock and reforging all keys.
Still, we feel that this system’s intuitive nature means it is easier for both users and administrators
to handle. This alone outways the aforementioned drawbacks.

4concept introduced by Dennis and Van Horn in 1966

16



4.4.3 Encryption Protocols
A general scheme

Notation 1 (Shorthand & Notations). • pubA, privA are Alice’s public and private keys (for
an asymmetric encryption algorithm).

• Given a message M and a key χ, define eχ(M) the encryption of M using χ (this is a general
notation, common to all encryption methods).

Creating secret data Case: User Alice wants to store a message M on the server.

• Alice generates (client-side) a key K in order to encrypt M (client-side).

• Alice sends eK(M) to the server.

• Alice encrypts (client-side) K with pubA.

• Alice sends epubA(K) to her keychain on the server.

Notice that since the server does not have access to privA, it cannot efficiently compute K and
hence M .

Server

A’s keychain

Stored data

Alice

(1) ex(M)

(2) epubA(K)

Figure 4.2: Creating secret data

Retrieving secret data Case: User Alice wants to retrieve the message M which is stored on
the server.

• Alice sends the request to the server.

• The server checks if she is allowed access (via a tag attached to the secret message).

• If she is, the server sends Alice eK(M) and epubA(K) (the latter retrieved from Alice’s key-
chain).

• Alice decrypts (client-side) epubA(K) using privA in order to obtain K .

• Alice decrypts (client-side) eK(M) using K in order to obtain M .

Server

permission check

A’s keychain [epubA(K)]

Stored data [eK(M)]

Alice

(1) Ask for file

(2) epubA(K)

(3) eK(M)

Figure 4.3: Retrieving secret data

17



Sharing secret data Case: User Alice wants to share with user Bob the message M which is
stored as epubA(M) on the server.

• Alice retrieves pubB from B’s keychain on the server.

• Alice retrieves epubA(K) from her keychain on the server.

• Alice decrypts (client-side) epubA(K) to get K and encrypts it (client-side) using pubB .

• Alice sends epubB (K) to Bob’s keychain.

• Bob now has access to K, hence M .

Server

B’s keychain

A’s keychain [epubA(K)]

Stored data [eK(M)]

Alice

Bob

(2)epubA(K)

(1) pubB

(3) epubB (M)

Figure 4.4: Sharing secret data

Group keys This is a generalisation of sharing secret data amongst multiple users. Each group
has a symmetric key (which all members share). In order to save memory space on the server, the
group can also share a keychain, so as not to copy the group’s keys in every one of the group’s
members keychains.

This approach has two major deficiencies however:

• Confidentiality: The group’s confidentiality is only as strong as its weakest link, and it is
unreasonable to assume that all members of a large group have good security practices.

• Computation time: Whenever a member leaves a group, all of the group’s keys have to be
generated anew. This is computationally long, especially for larger groups of users. Once the
system is implemented, and depending on the efficiency of our key generation algorithms, we
might have to think of a better way to share a secret amongst a group.

Still, this is the best compromise we have between security and ergonomy.

Implementation recommendations

Caveat Please note that in the above paragraphs, whenever we mentionned a attack by worms,
viruses, potential backdoors, stack buffer overflow, denial-of-service, or side-channels, it should be
understood that all of these attacks are purely implementation problems. We only mentioned them
as they can be used against the system without the proper precautions, but we trust the libraries
we use to properly guard themselves against those attacks. We will use widely tested library in
order to ensure that.

Possible encryption schemes Our high-level protocol relies on us having some means of per-
forming both asymmetric and symmetric encryption. Here are the algorithms which we plan on
using:

• for asymmetric encryption: either Curve25519 (which offers 128 bits of security on elliptic
curves, and is good with broken random number generators), or RSA (at least with 2048 bit
keys, since under 1024 bits is broken).

• for symmetric encryption: Advanced Encryption Standard (AES) or ChaCha20-Poly1305
(modern and has authentication).

18



Libraries For the moment, the library we plan on using is the JavaScript version of libsodium.

4.5 Our work

4.5.1 Division into workpackages
In order to be more productive, organise ourselves and split the work, several workpackages were
created inside of tozti. Below we provide a list of the workpackages, their team members, and
the work they have done to contribute to tozti.

Core (Romain (leader), Joël, Léonard, Peio, Daniel, Pierre O.) Designed the architecture of tozti,
and implemented the core parts of the server and the client.

Meta (Daniel(leader), Peio, Romain, Lucas E., Pierre O., Guillaume D., Alex) In charge of the
technical infrastructure around the project. The main tasks were code review, documenting
the inner parts of tozti and writing tests. Provided a Docker image and a basic configuration
to build extensions. Organized the Git, Javascript and tozti extension-writing workshops.

UX/UI (Lucas E.(leader), Felix, Romain, Daniel, Lucas P., Alex, Guillaume C., Vincent, Em-
manuel) Created mockups for the user interface of tozti. Made sure that the user experience
is consistent across all parts.

Demo (Alex(leader), Pierre O., Pierre M., Romain) Delivered the pitch during the public presen-
tation of tozti.

Communication (Alex(leader), Peio, Lucas E., Pierre O.) Communicated with associations of
ENS Lyon (and of other schools) to understand their needs. Investigated existing solutions
in order to understand their advantages and disadvantages.

Storage (Peio(leader), Julien, Daniel, Lucas E., Vincent, Joël, Pierre M.) In charge of designing
the storage part of tozti. This also includes investigating and researching about ways to
allow encryption and permission control.

Calendar (Pierre O.(leader), Guillaume C., Guillaume D., Lucas E., Daniel, Lucas V.) Designed
a multi-view (day, week and month) that allows one to add, delete and modify events easily.

Discussion (Felix(leader), Romain, Alex, Felix, Lucas P.) Specified, designed and implemented
the discussion board.

Multimedia (Léonard(leader), Peio, Guillaume D., Emmanuel) Designed the basis UI elements
for file handling on the user part such as download, upload, consulting file information, etc.

4.5.2 Difficulties
At the beginning of this project, as soon as we decided that we are going to strive for a modular
architecture, we realized that there is no point in (and no possibility of) developing tozti modules
before the core and storage modules were designed, implemented, and ready for usage. Unfortu-
nately, since for logistical reasons not everybody could participate in the design and development
of tozti’s core, some team members felt stalled while waiting for the core codebase to mature.
We tried to compensate this by organising workshops in Git and Javascript, where interested team
members were able to get acquainted with the technologies we use.

Luckily, this period ended after several weeks, when the communications team compiled the
requests received from different associations both inside and outside of the ENS. Having those
requests as their reference, the members of the module workpackages have started to design the
UX mockups – first on paper, and later as HTML/CSS. Finally the “warm-up” phase has ended
roughly two and a half months after the start of the project, when the preliminary work on the
core layer was finished both on the server- and the client-side.

Apart from the slow start, we encountered several other problems that usually plague inex-
perienced teams such as ours. Chief among them was a lack of efficient internal communication.
Although we did maintain a Slack chatroom, that turned out to be too frequent for some team

19



members, so they turned off notifications altogether. This lead to several misunderstandings re-
garding the division of labor, which could have been prevented had everyone been following the
latest developments.

Additionally, we failed to cultivate a culture of strong respect for the internally and externally
imposed deadlines, which forced us to organise several “hackathon” sessions, to make up for the
lost time. Ultimately however, this helped cultivate the team spirit.

20



Chapter 5

Conclusion and next steps

Despite the difficulties described in the previous section, we managed to have a successful public
demo of our project on March 2nd. There, we presented a fully working first version of tozti,
complete with the calendar, discussion and multimedia modules, as well as some of the more subtle
features, such as taxonomy. The presented design was minimalistic, but otherwise functional, and
above all, consistent, thanks to the Vue components that were developed as part of the core work.

Now that we have all but released the first version, the next phase of the work is a big code
cleanup and refactor. This is made necessary by the fact that several features were rushed into
tozti mainline before the demo, with implementations that are suboptimal, but good enough for
the time being. Additionally, we can use the experience we gained during these months to reim-
plement the parts of tozti that proved to be difficult to work with, or for which the requirements
have changed since the initial design. Maybe the most prominent component that will need to be
rewritten is the storage part, since it is quite inefficient in its current form – exactly because of the
functionality that was added outside the original specification, in response to the requests from
the client-side part of the team.

Once all major components are cleaned up, the tozti project will be ready to be deployed at
the ENS, and we will be able to accept external contributions. After some amount of testing (and
back-and-forth with the users) at the ENS of Lyon, we will feel confident to promote tozti to
external users. As many of us participate in student associations, we are looking forward to the
day when tozti becomes the industry standard for managing all the associations we belong to.

21



Appendix A

Mockups

Figure A.1: A mockup of the directory view.

22



Figure A.2: Mockup of the calendar

23



25/10/2017 OneNote Online

https://www.onenote.com/webapp/pages?token=K0Kx6ibwcHn76aKa6QnBubpEdj1sjtZ-YkdBKxYL9h73s1WsGkZUkV8EX5ROyn5clwv15mNISFFjCot1Tjtc7bJBPEbaoHum0&id=636445649460146243 1/2

Discussion 1 
mercredi 25 octobre 2017 18:33 

 

Figure A.3: A mockup of the forum

24



Figure A.4: Another mockup of the forum

25



Appendix B

Screenshots

Figure B.1: Informative website "tozti.github.io"

26



Figure B.2: Login screen

Figure B.3: Group view

27



Figure B.4: Adding a new group

Figure B.5: Folder view

28



Figure B.6: Night mode

Figure B.7: Discussion

29



Figure B.8: Calendar day view

Figure B.9: Calendar week view

30



Figure B.10: Calendar month view

31



Appendix C

Specifications

In this appendix we present the specifications we gathered during our inquiry. Divided into several
sections, we present them more or less in their raw form. That is the reason why they are presented
in first person. Since the lists were compiled by members of different workpackages, both French
and English are used.

Fonctionnalités générales
En tant qu’utilisateur de la plateforme, je veux pouvoir :

M’inscrire et me présenter. Je peux renseigner des informations me concernant, comme mon
adresse e-mail ou mon numéro de téléphone.
Je veux pouvoir choisir les utilisateurs ou groupes d’utilisateurs ayant accès à chaque infor-
mation.
Je veux avoir accès à l’historique des consultations de mes informations.

Recevoir des notifications. Ces notifications m’informent des activités récentes sur la plate-
forme qui sont susceptibles de m’intéresser. Je peux les consulter en un coup d’oeil sur le
site, les recevoir sur mon téléphone (ou mon ordinateur) en push, ou encore les relayer sur
Facebook (voir ici). Une fois lues, je ne veux plus qu’elles soient en évidence.
Je veux choisir quel type de notifications je souhaite recevoir.

Être notifié lorsque l’on me mentionne.

Être notifié lorsque l’on répond à un de mes messages dans une discussion.

Être notifié lorsqu’il se passe quelque-chose dans une catégorie ou une entité à laquelle je
me suis abonné.

Rejoindre des groupes d’utilisateurs. Ces groupes correspondent généralement à des bureaux
d’associations ou de clubs.

Créer ou rejoindre des espaces de travail. Chaque espace de travail est accessible à un en-
semble de groupes et d’utilisateurs donnés.
Souvent, une association ou un club aura un unique espace de travail, mais on peut envisager
des cas dans lesquels plusieurs associations souhaiteraient un espace de travail commun pour
l’organisation d’un événement (typiquement le BDE, l’AS et Enscène pour le WEI) ; ou des
cas dans lesquels un groupe d’utilisateurs souhaiterait superviser un ensemble d’espaces de
travail (typiquement le bureau restreint du BDE pour les espaces de travail de chacun de ses
clubs).

Module Discussion
Au sein d’un espace de travail, je veux pouvoir :

Démarrer une discussion. Une discussion est une suite de messages, et doit comporter un titre
et un premier message.

32

https://developers.facebook.com/docs/games/services/appnotifications/


Consulter les messages d’une discussion. Ces messages sont triés par ordre chronologique et
paginés selon un nombre de messages par page configurable.
Ce nombre de message prend seulement en compte les messages “à la racine”.

Aller directement au dernier message lu. Lorsque j’ouvre une discussion que j’ai déjà con-
sultée par le passé, je veux pouvoir aller directement au dernier message que j’ai lu.

Ajouter un message à une discussion. Pour écrire ce message, je veux disposer d’un éditeur
WYSIWYG (similaire à celui du webmail) qui gère les mentions, l’intégration de liens ex-
ternes et de liens internes.
Pour mentionner un utilisateur, je veux taper @ puis commencer à saisir son nom, et pouvoir
choisir parmi les utilisateurs de l’espace de travail.
Pour l’intégration de liens externes, je veux pouvoir saisir mon lien et qu’il soit automatique-
ment reconnu et remplacé par un aperçu de la page vers laquelle il pointe.
Pour l’intégration de liens internes, je veux pouvoir saisir un lien vers une URL de Tozti, et
qu’il soit automatiquement reconnu et remplacé par une référence à (et un aperçu de) l’entité
qu’il désigne. Je veux aussi disposer d’un champ qui me permette de rechercher rapidement
une entité et d’insérer un lien interne vers celle-ci.

Mettre un message en évidence. Ces messages sont affichés d’une façon qui les fait se dis-
tinguer, au premier coup d’oeil, des autres.
En haut de chaque discussion, je veux pouvoir déplier une liste de tous ses messages en
évidence.

Répondre à un message. Je ne peux répondre qu’à un message “à la racine”, i.e. je ne peux
pas répondre à une réponse.
Toutes les réponses à un message sont affichées sous celui-ci, avec une légère indentation. Ces
réponses, à l’exception de celles mises en évidence, sont cachées par défaut, et sont dépliables
sur demande.
Pour maintenir une cohérence chronologique, un lien vers la réponse est affiché “à la racine”,
à l’endroit où le message aurait été placé s’il n’avait pas été une réponse.

Migrer un message et ses réponses vers une nouvelle discussion. Lorsque le nombre de
réponses à un message excède une limite prédéfinie, on me suggère de migrer le message
et ses réponses vers une nouvelle discussion.
Cette discussion contient une copie du message et de toutes ses réponses à la racine. Elle est
créée au même niveau dans l’arborescence que la discussion du message original, et je veux
pouvoir en choisir le titre.
Le message original demeure dans sa discussion, mais toutes ses réponses y sont supprimées.
À la place du bouton pour déplier les réponses, j’ai une indication clicable que "ce message
et ses réponses ont été migrés vers une autre discussion

Citer un message. Je peux sélectionner tout ou une partie d’un message, et le citer dans un de
mes messages.
Je peux cliquer sur une citation, et être amené au message original.

Modifier les messages que j’ai écrits. Comme pour les réponses, pour maintenir la cohérence
chronologique, un texte vers le lien du message modifié s’affiche à la racine du fil.

Savoir si un message a été modifié et consulter l’historique des modifications d’un message.

Module Calendrier
As users of the Calendar module, we would like to:

Add an event. We want to be able to create events.

Edit an event. We want to be able to edit an event after its creation. The changed made must
be visible to all persons who can see it.

Add a recurring event. We want to be able to add event that appears periodically.

33



Instantiate a particular event of a recurrent event. Sometime a specific event part of a re-
current event must be changed. We can convert this instance to its own event and apply the
modifications to it.

Give tags to an event We want to be able to give tag(s) to an event. The tags are used to
classify and categorize the events, and can help to delimit the scope of synchronisation. Tags
can be recursive. Each events should have at least one tag (it can be simple, like “bde”).
Some tags (like “soirees”, “AG”) are preexistent and are used to make classifications of typical
events easier.
Example:

• An event can have the tag “bde.wei.administration” and will only be pertinent to the
member of the bde who are part of the organisation of the wei and who are doing
administrative stuff. An event “bde.wei” is there for all members organizing the wei in
the bde.

• An event could have for tags “bde.wei” and “as.wei”, meaning it impacts both the mem-
bers of the bde and of the as parts of the wei
A Tag is mainly an information used to classify events. But it can also be used to specify
the visibility of an event. To a tag we can specify which users are able to see the event,
and which one are able to edit it.

Associate groups of people to an event. We can associate certain people to an event. This
can be done either automatically, by the tags (a tags represents a group of persons), or either
manually by specifying some persons when creating / editing an event.

Filter events. We wants to be able to filter events according to different criterions. These crite-
rions can be:

• Their tags
• Their date
• The users involved in them

Specify if we want to be notified for an event. The user should be able to specify if he wants
to get a notification when the deadline for an event is near (and at which frequency). He
should also be able to decide if he wants to get a notification when an event is modified (for
example the locations changes).

Words about synchronisation

• Synchronisation with external calendars services.
We want to be able to synchronise some events with gcalendar, framagenda, . . .

• Send an event other a media.
We want to be able to send (or initialise) an event on an other media (Mails, Facebook, . . . )

What is an event?

Entry Description
Title Title of the event
Date Date (and time) on which the event occurs
Duration Duration of the event. Can be changed with date of end
Description Description of the event. Can be some formatted text and includes “links” to

other sources
Location location of this event
Period period of time between two events if it is reccurent
Tag(s) Tag(s) associated to this events
Persons List of persons associated with the event

Example of usercase:
Shared calendar for La Festive availability:
To create a share calendar showing the availability of the room "la festive", a user could:

• create a tag where:

34



– Everyone (i.e. some associations) can see the events

– Only him can add one

• create an event associated to this tag to indicate that la festive is not available during this
time

Module Multimédia
Send a file (PDF, etc.) We want to be able to send files without using another interface (Drive,

Dropbox, etc.)

Sharing We should be able to select a group or persons that will have access to this file, and
will be notified of it being available. The notion of groups, and therefore of a generalized
contacts feature is important if we want to avoid having people enter entire groups of names
by hand. Otherwise it is the same a WeTransfer (that allows to share a file to 20 persons
simultaneously)

Change the version of a file If I modify a file that I previously shared, I should be able to
replace it without re-sending it to everyone. They will be notified (or not) that there’s a new
version.

Give tags to a file In order to find it easily and explain its content a bit (most files have absurd
names)

Delete a file Should be subject to caution. Some association files are a bit sensitive (STATUTS,
etc.). Rights to do so should probably be defined beforehand.

Accessing all the files I have access to Without it being too constraining, like having to load
a whole new page.

Filtering the files I have access to. Differents ways of doing this:

• chronologically

• by trending order - would be useful to work on the file that is being used most in your
groups right now

• by types - for example to find all the PDFs

Searching among these files. Searching by name, tags, etc.

Structure the files into directories Most associations, like Enscène, use a Dropbox for their
important common files, but are not very pleased with it.

Ask a file from someone Ask a file (e.g. a poster for a party) from a group of people able to
produce it (e.g. the Respo Graphisme). This will notify them every n day that they need to
make it, give them a deadline, and a “ghost” file should appear in the right folder to remind
everyone that such a file will be created.

35



Bibliography

[1] FIDO Alliance. Universal 2nd Factor 1.2. Tech. rep. FIDO Alliance, 2017. url: https://
fidoalliance.org/download/ (visited on 01/14/2018).

[2] Arnar Birgisson et al. “Macaroons: Cookies with Contextual Caveats for Decentralized Au-
thorization in the Cloud”. In: Network and Distributed System Security Symposium. 2014.

[3] M. Pei D. M’Raihi S. Machani and J. Rydell. TOTP: Time-Based One-Time Password Al-
gorithm. Tech. rep. Internet Engineering Task Force, 2011. url: https://tools.ietf.org/
html/rfc6238 (visited on 01/14/2018).

[4] F. Denis. libsodium 1.0. 2017. url: https://libsodium.org/ (visited on 01/14/2018).

[5] JSON API Specification 1.0. 2015. url: http://jsonapi.org/format/ (visited on 01/14/2018).

[6] A. Melnikov. Salted Challenge Response HTTP Authentication Mechanism. Tech. rep. Internet
Engineering Task Force, 2016. url: https://tools.ietf.org/html/rfc7804 (visited on
03/23/2018).

[7] Vue Router website. url: https://router.vuejs.org/ (visited on 01/14/2018).

[8] VueJS website. url: https://vuejs.org/ (visited on 01/14/2018).

[9] Vuex website. url: https://vuex.vuejs.org/ (visited on 01/14/2018).

36

https://fidoalliance.org/download/
https://fidoalliance.org/download/
https://tools.ietf.org/html/rfc6238
https://tools.ietf.org/html/rfc6238
https://libsodium.org/
http://jsonapi.org/format/
https://tools.ietf.org/html/rfc7804
https://router.vuejs.org/
https://vuejs.org/
https://vuex.vuejs.org/

	Introduction
	Specifications
	User Features
	Developer Features

	Existing solutions
	Email
	Slack
	Facebook
	Adeline
	Doodle
	Google Apps
	Framasoft Apps
	Hosted Git services (GitHub, GitLab)

	Our solution
	Choice of technologies
	The web as a platform
	Python
	MongoDB
	Adoption and installation
	Documentation

	Architecture
	Backend
	HTTP API
	Frontend

	User Experience
	Taxonomy
	Common UI
	Core Views
	Multimedia
	Calendar
	Discussion

	Security
	Our problem
	Handling Permissions
	Encryption Protocols

	Our work
	Division into workpackages
	Difficulties


	Conclusion and next steps
	Mockups
	Screenshots
	Specifications

