
VECTRABOOL
M1 INTEGRATED PROJECT — ÉCOLE NORMALE SUPÉRIEURE DE LYON

Final report

Vladan Jovičić
(project leader)

Rémy Cerda
Rémi Coudert
Etienne Desbois
Quentin Guilmant
Emirhan Gürpınar
Ha Nguyen
Manon Philibert
Enguerrand Prebet
Hippolyte Signargout
Dewi Sintiari

Website: https://vladan-jovicic.github.io/Vec-Lib/
Code: https://github.com/vladan-jovicic/Vec-Lib

https://vladan-jovicic.github.io/Vec-Lib/
https://github.com/vladan-jovicic/Vec-Lib

VECTRABOOL Final report

Contents
1 Project Summary 2

1.1 Motivation . 2
1.2 Existing solutions . 2
1.3 Approach . 2
1.4 Technical details . 4

2 Contour Detection 4
2.1 Preprocessing . 4
2.2 The Canny Algorithm . 4
2.3 Postprocessing . 5

3 Polgonization 5
3.1 Context . 5
3.2 Integer programming . 5
3.3 Ramer-Douglas-Peucker algorithm . 6

4 Corner Detection 7
4.1 Resampling . 7
4.2 Bottom-Up Corner Finding . 8
4.3 Top-Down Corner Checking . 8

5 Curve fitting 9
5.1 Cubic Bezier Curves . 9
5.2 Conditions . 10
5.3 Solution . 10
5.4 Other implemented algorithms . 10

6 Color Detection 10
6.1 First algorithm . 11
6.2 Algorithm implemented . 11
6.3 Comments . 12

7 Results and user guide 12

8 A simple example 13

9 The flower example 14

10 The objects example 14

11 A very precise output example 15

12 Better than autotracer or not 17

13 Blurring trick 17

14 Further work 18

1

VECTRABOOL Final report

1 Project Summary

The aim of the project is to make a library for vectorization of a bitmap images, i.e., given an image in the
bitmap format as input, transform it into vector image format SVG 1.

1.1 Motivation

Our aim was basically to get a simple image in a vectorized form, given a bitmap one as an input. Who
did not already say once "well, it would be better if I could resize this image without losing the quality".
Thanks to our project, one may be able to get a good approach of this image in vectorized format and then
manipulate it as necessary.

Obviously we say simple image, the motivation was not about photography but mostly to have a tool that
can cope with logos, diagrams... For instance if one needs to put one’s institution logo on any LATEX report
or article but does not have any access to one with an appropriate size, it will be possible to vectorize it and
resize it with great quality and, we aim to, accuracy.

1.2 Existing solutions

There are several softwares (commercial and open source) that can vectorize a bitmap image. Some of them
are:

1. Commercial software:

• Vector Magic

• Printy

• Image Vectorizer

2. Open source software:

• Potrace

• Vectorization.org

• Autotrace

A natural question is why do we need then another software. Each mentioned software has some disadvan-
tages. For example, Potrace and Vectorization.org work only with black and white images. Autotrace can
handle also color images, but the output is not optimistic in some cases (see the results section). So, the
answer on the above question is that we need a library that is combination of all features provided by the
mentioned softwares, which is easy to use and which anyone can use.

1.3 Approach

Our approach to this problem is to firstly detect different contours and make a hierarchy of contours. The
obtained contours are approximated with Bezier curves since they can be represented on an easy way in
the SVG format. Since each contour defines some region, based on the obtained contours we detect color

1See https://en.wikipedia.org/wiki/Scalable_Vector_Graphics.

2

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

VECTRABOOL Final report

inside each of them. We will restrict ourselves on monochromatic regions and regions that are colored with
a transition from one color to the other. Many problems can occur in this package (check the initial project
proposal2). When the above is done we plan to try to detect if some of the contours represents a polygon
which can be represented in the SVG format. We call this polygonization. At the end, we need to merge
obtained and to export to the SVG format.

Guided by our approach, we split our library into several parts (packages):

1. Contour detection and contour hierarchy detection

2. Curve fitting

3. Color detection

4. Polygonization

5. Output

MONTHLY SCHEDULE (initial plan)

1st October 2016 - 15th November 15th November 2016 - 15th February 15th February 2017 - 15th March 2017 15th March 2017 - 15th April

Contour Detection and
Hierarchy of contours

Curve Fitting (corner detection)

Color Detection

Polygonization

Output & Testing Testing & Demonstration

Figure 1: The initial schedule

2See https://docs.google.com/document/d/1rv0qQLA3jWaatWc40hIRV-x8QutbySnuLv5yGqzValU/edit?usp=
sharing.

3

https://docs.google.com/document/d/1rv0qQLA3jWaatWc40hIRV-x8QutbySnuLv5yGqzValU/edit?usp=sharing
https://docs.google.com/document/d/1rv0qQLA3jWaatWc40hIRV-x8QutbySnuLv5yGqzValU/edit?usp=sharing

VECTRABOOL Final report

1.4 Technical details

We use the OpenCV library as a support. It provides many algorithms for an easy image processing. We
use C++ (g++ 5.4.0 compiler) and Python 2.7 to implement packages. There are a few dependencies. A
detailed specification is given in the code description (Github code). We also encourage the reader to check
user guide ().

2 Contour Detection

In order to be able to draw the vectorized image, we first needed to be able to extract its contours.

2.1 Preprocessing

The image needs to be preprocessed first. There are mutliple possible ways of doing it such as Blurring,
Thresholding, Sharpening for example. We chose to apply a Gaussian Blur.

First let’s recall the (1D) Gaussian function :

g(x;σ) =
1√

2πσ2
e−

x2

2σ2

The Image is a function f : Z2 → Z (for each color). In order to apply a Gaussian Blur to it, we first
need to compute a n× n matrix (n odd) corresponding to the discretized version of g. Then we compute
(f ∗Kn) : Z2→ Z, the convolution of f with Kn as :

(f ∗g)(x,y) =
n

∑
i=−n

n

∑
j=−n

f (x− i,y− j)Kn(i, j)

It Can be done with two passes of the 1-D Version, and has to be done for all colors.

2.2 The Canny Algorithm

This Algorithm for contour detection was introduced by John F. Canny in 1986. Its principle is to detect
edges by computing the image gradients. It works in 5 steps :

1. A Smoothing of the image (with Gaussian Blur here), with resulting image h : Z2→ Z

2. Computation of the image gradient in both direction and retrieve gradient norm and direction

3. Thresholding of the image with T , hT (x,y) =

{
h(x,y) if h(x,y)> T
0 otherwise

4. Suppression of non-maxima pixels to thin edges

5. Hysteresis phase : with two new thresholds (upper and lower), accept a pixel if either :

• its gradient value is bigger than the upper threshold

4

http://docs.opencv.org/2.4.13.2/
https://github.com/vladan-jovicic/Vec-Lib

VECTRABOOL Final report

• its gradient value is between upper and lower threshold and it is connected to a pixel whose
gradient value is bigger than the upper threshold

The implementation was done thanks to OpenCV

2.3 Postprocessing

After the edge map have been computed by the Canny Algorithm, We apply a last processing to the Image.
We chose to use a closing. A Closing is a Dilation followed by an erosion. The intuition behind the idea of
dilation is to "push" the edges with with a small element such as a square of a circle, erosion is the converse.

Using a closing permits to close edges seen as different by the Canny Algorithm that are very close. This
allowed us to be able to get a better edge map. We applied the closing with a 3×3 square.

3 Polgonization

3.1 Context

When we do the contour detection step, we use polylines. The major problem that one can notice is that a
polyline may have a huge number of points. At the corner detection step we work thanks to those points.
If there are too many of them, the complexity would increase and the accuracy may drop down. Basically,
the algorithm may detect corner that do not exist in the actual image. To avoid that, we have to decrease
the number of points. So, the polygonization problem can be formulated as follows: what is the smallest
number of points on polyline such that we can approximate the polyline within a pre-defined error. The
only assumption for this package is that points of a polyline are sorted in clockwise or counterclockwise
order.

3.2 Integer programming

The first thing one can notice is that the problem can be expressed as an integer programming problem. Let
S ⊆ R2. Let d be the usual euclidean distance over R2. Suppose we are given a distance δ such that each
initial point of the input set of point must have a distance to the output polygon (or polyline) P at most δ , in
other words

∀e ∈ S d(e,P)≤ δ

We also define for all e ∈ S, the interger variable xe corresponding the the node e of S. Then the condition
will be

∀e ∈ S ∃ f , f ′ ∈ S x f = x f ′ = 1 d(e, [f , f ′])≤ δ

Suppose now we are given e, f and f ′. Let h be the orthogonal projection of e on [f , f ′]. Then

~f h = ~f f ′
〈~f e, ~f f ′〉
‖ ~f f ′‖2

Thanks to the projection h we can simplify and say

d(e, [f , f ′])2 = 〈~f e, ~f e〉−〈~f h, ~f h〉

5

VECTRABOOL Final report

One may notice that the quantities we are working on are positive. Then squaring them does not change
anything. The condition now becomes

∀e ∈ S min f , f ′∈S((〈~f e, ~f e〉−〈~f h, ~f h〉−δ 2)x f x f ′)< 0
⇔ ∀e ∈ S ∑ f , f ′∈S(〈~f e, ~f e〉−〈~f h, ~f h〉−δ 2)x f x f ′ < ∑ f , f ′∈S |〈~f e, ~f e〉−〈~f h, ~f h〉−δ 2|x f x f ′

⇔ ∀e ∈ S ∑ f , f ′∈S(|〈~f e, ~f e〉−〈~f h, ~f h〉−δ 2|− 〈~f e, ~f e〉+ 〈~f h, ~f h〉+δ 2)x f x f ′ > 0

Let ãe, f , f ′ be the quantity

ãe, f , f ′ = |〈~f e, ~f e〉−〈~f h, ~f h〉−δ
2|− 〈~f e, ~f e〉+ 〈~f h, ~f h〉+δ

2

We now need to have a fresh variable z for each tuple (f , f ′) that will represent the product of the variables
corresponding to f and f ′. Because all those variables can be seen as elements of {0,1}, one can express
that z f , f ′ is the product of both the varaibles with three constraints and get the following problem

min∑e∈S xe
respect to ∀e ∈ S ∑ f , f ′∈S ãe, f , f ′z f , f ′ > 0

∀ f , f ′ ∈ S z f , f ′ ≤ x f
∀ f , f ′ ∈ S z f , f ′ ≤ x f ′

∀ f , f ′ ∈ S z f , f ′ ≥
x f +x f ′

2 − 1
2

∀e ∈ S xe ∈ {0,1}
∀ f , f ′ ∈ S z f , f ′ ∈ {0,1}

To simplify the problem we can relax the problem with ãe, f , f ′ ∈ {0,1}. In fact the goal of those variable are
to say wheter or not e is close enough to [f , f ′] to be forgetten we we take them in the final polyline or not.
It is 0 if they are not good candidates, positive otherwise. Then let ae, f , f ′ defined as 1 if ãe, f , f ′ > 0 and 0
otherwise. Then we get the problem

min∑e∈S xe
respect to ∀e ∈ S ∑ f , f ′∈S ae, f , f ′z f , f ′ > 0

∀ f , f ′ ∈ S z f , f ′ ≤ x f
∀ f , f ′ ∈ S z f , f ′ ≤ x f ′

∀ f , f ′ ∈ S z f , f ′ ≥
x f +x f ′

2 − 1
2

∀e ∈ S xe ∈ {0,1}
∀ f , f ′ ∈ S z f , f ′ ∈ {0,1}

This integer program was interesting but is difficult to solve. Basically, even if we get ride of the
1
2

coef-

ficients, if δ is big, the matrix is (trivially) not totally unimodular and then a sufficient condition to have
integer vertices of the polytope is not satisfied. Then we will do a simpler algorithm.

3.3 Ramer-Douglas-Peucker algorithm

We still use a threshold disance ε . We will proceed recusivly. We chose the farthest point from le straight
line that links the first and the last point and we call recursively on the two part we have drawn. The
algorithm is as follows

6

VECTRABOOL Final report

Function RDP(points,epsilon) : point array
Determine imax ≥ 2 the index of the farthest point from [points[0]points[|points|−1]]
Let dmax be the corresponding distance.
If (dmax ≥ epsilon) then

return RDP(points[0 : imax−1])||RDP(points[imax : |points|−1])
else

return points
end If

End

One can notice that it is a quicksort. One choose a pivot and then divides the original set into two parts
thanks to this pivot and then proceed recursively. Then, the complexity is the same and we get

• average: O(n logn).

• worst case Θ(n2).

4 Corner Detection

The next thing to do, when we have the polylines, is to find which of the polylines corners are real corners,
and which ones could be contained in curves. This is what we call corner detection. For this we use
the ShortStraw algorithm, designed by Wolin, Eoff and Hammond in 2008 [2]. We assume that points
describing a polylines are sorted either clockwise or counterclockwise. The algorithm consists of three
main steps:

• Resampling: Resample the points on the stroke so that each pair of consecutive points has the same
distance between them;

• Bottom-Up Corner Finding: Compute the length of all straws between two points separated by a
certain number of points, and set as corners the middle point of straws of locally minimal length;

• Top-Down Corner Checking: Verify that corners are corners and that lines are lines by checking the
maximal distance between the stroke and a straight line between two corners.

4.1 Resampling

The idea of the algorithm is to fix a distance, draw straight lines between points at that distance on the stroke
from one another, and say that there are corners where the length of the line is the smallest. For this, we
need a way to calculate easily the stroke-distance between two points, and we will do this by resampling the
points so that they are evenly spaced apart, so that the stroke-distance can be approximated by the number
of points between two points.

7

VECTRABOOL Final report

Figure 2: Resampling of unevenly spaced points on a stroke

4.2 Bottom-Up Corner Finding

Once we have a stroke with points evenly spaced apart, we can start finding possible corners. We just fix w
an integer and define strawi = |pi−w, pi+w|, the Euclidian distance between the two points at stroke-distance
w from pi. The we compute the median straw length, set a parameter t ∈]0,1[, and set pk to be a corner is
strawk is a local minimum below median∗ t.

Figure 3: Example of straws on a stroke for w = 3

Our implementation does not fix nor find parameters t and w, it lets the user choose them.

4.3 Top-Down Corner Checking

After the initial set of corners is found by taking the shortest straws, some higher-level processing is run on
the stroke to find missed corners and remove false positives.

The first thing is to make sure we have not missed corners. For each pair of consecutive corners, we compute
r = |a,b|

stroke−distance(a,b) and say there is a missing corner if r < t. If it is the case, we define the point c with

8

VECTRABOOL Final report

straw between a and b and with minimum straw length to be a corner, and the verify that there are no
missing corners between a and c and between c and b.

Once we have done that, we want to check that we do not have false positives, corners which should be part
of lines, which is done by checking for three consecutive corners a, b, and c if |a,c|

|a,b|+|b,c| > t, and removing
b from the corners if it is the case.

5 Curve fitting

The next step is to link the corners with curves, as close as possible to the stroke while avoiding overfitting.
We chose to use cubic Bezier curves.

5.1 Cubic Bezier Curves

A Bézier curve of degree n is defined in terms of Bernstein polynomials:

Q(t) =
n

∑
i=0

ViBn
i (t) t ∈ [0,1]

Where the Vi are the control points, and the Bn
i (t) are the Bernstein polynomials of degree n:

Bn
i (t) =

(
n
i

)
t(1− t)n−i 0≤ i≤ n

When n = 3, the curves are called cubic.

Figure 4: A cubic Bézier curve

9

VECTRABOOL Final report

5.2 Conditions

Now that we have defined the tools we are going to use, here are the conditions that we put on the curves so
that they fit the stroke between two corners as well as possible:

• V0 and V3, the first and last control points, are given: they are set to be equal to the ends of the region
we want to approximate, that is, the two corners;

• Define t̂l and t̂2 the unit tangent vectors at V0 and V3, respectively;

• Vl = α1t̂1+V0, and V2 = α2t̂2+V3; that is, the two inner control points are each some distance α from
their the nearest end control point, in the tangent vector direction, so that the tangent of the curve at
the corners are t̂l and t̂2.

5.3 Solution

The idea is to find α1 and α2 minimizing S, the total quadratic distance between the curve Q and the stroke
points pi. That is, to find α1 and α2 for which δS

δα1
= 0 and δS

δα2
= 0

So, t̂l and t̂2 can be found by minimizing square distances in the neighborhood of V0 and V3, and α1 and α2
can be found with a closed-form solution, in order to get, for each pair of corners, V1, V2, V3 and V4. These
quadruples of Control points are what will be stored by our program.

5.4 Other implemented algorithms

We have also tried to implement other well-known algorithms for corner detection. One of them gave a
reasonable results: Harris corner detection algorithm. We will not describe the algorithm in this report since
an easy way to use that algorithm as a part of the library is not provided. However, all details can be found
in article [1]. We don’t provide a way to use the algorithm because of two reasons.

1. It is not the best solution for our problem since we want to find actually discontinuity points of a
curve for which we know only several points. The notion of corner in the article describing Harris
corner detection algorithm is much more general.

2. Using several tricks we were able to transform our problem to a special instance for Harris corner
detection algorithm. However, the running time of the algorithm was not very optimistic: O(k ∗
width ∗ length) where width, length represent the width and length of the input image and k is the
number of contours in the input image. Since value of k can be large for a very complex images and
the performance obtained by the Harris corner detection algorithm is not better than the ShortStraw
algorithm, we don’t use it as a part of the library.

6 Color Detection

We considered two algorithms for the color detection. Indeed, the implemented algorithm is a very simple
and naive, it gives a good results. Here we explain two algorithms that we try to implemented.

10

VECTRABOOL Final report

6.1 First algorithm

At the beginning we planned to implement algorithm to check the colour of the region given the polygon as
its borders (although the borders are not exactly the polygon).

This algorithm runs as follow :

• For each polygon as contour, take three corners (y,x) on the contour

• For each corner, check its neighbourhood by taking some close points such as (y+ 2,x), (y− 2,x),
(y,x+2) and (y,x−2)

• Check if these points are in the polygon using an openCV function named pointPolygonTest

• If it’s in the polygon, consider its colour to determine the colour of the region by a majority vote.

• If none of these points are in the polygon, we would generate some random points and check whether
they are in the polygon.

For not losing too much time to attend enough points in the polygon, we would compute the mean µxµy and
the standard deviation σxσy of the coordinates of the corners of the polygon and take random points with
coordinates in µx±2σx and µy±2σy. This helps taking random points near the region rather than possibly
far parts of the entire image. Afterwards we proceed in the same way with majority vote.

An additional feature of this algorithm was to be able to check if a point is in a region R and not in any
region contained in the contour of the region R. To have this property, we wanted to use the hierarchy tree of
contours. The idea was to check for each child (corresponding to inner contours) of the node (corresponding
to R), whether the point is in or out. To be in the region R, a point must satisfy two conditions : being inside
the contour of R and outside the contour of its children. Unfortunately, a lot of unexpected situations and
cases appeared while trying to handle all the structures. So, we decided to use a similar algorithm but easier
to implement.

6.2 Algorithm implemented

Consequently we used another algorithm for the entire colour detection package. The general idea of the
algorithm is as the following:

Algorithm: Colour Detection
1: Define a structure for keeping different colors and their number of occurrences
2: for a point in the contour do
3: Draw a square with center at point and side length 3
4: for a point pt in the square do
5: if pt belongs to contour then
6: check the color of pt
7: add it to the structure (or increase its number of occurrences)
8: end if
9: end for

10: return the majority color
11: end for

To check whether the point is in the polygon we use Ray Casting algorithm, although the coordinates are
not integers but floating point numbers. An advantage of this algorithm is that depending on the contour
detection, this algorithm is efficient in all cases. However it only works for monochromatic regions.

11

VECTRABOOL Final report

6.3 Comments

We haven’t use other colour detection algorithms we know since they have other cons such as using all the
pixels. It is hard to compare these algorithms, nevertheless for monochromatic case we are efficient. On
one hand this is not the restricting package for the speed of the project, on the other hand working only on
monochromatic images is a big restriction.

7 Results and user guide

In this section, we will present some examples and the results we achieved. Before we start with examples,
let us describe the layout of the gimp plugin (see figure 5). In the upper part, there are various parameters
that can be adapted for a different images. In the first group (the leftmost group) one can change lower
threshold for the contour detection algorithm and the maximum error for the polygonization algorithm. In
the middle group of upper part, one can set parameters for the corner detection algorithm: the length of the
straw, the thresholds for median and line. The last group contains parameters for the curve fitting algorithm.
One can set there the maximum error that is allowed when approximating polylines with either lines or
Bezier curves.

In the lower part, there are three windows for displaying an intermediate results. The first window shows
detected contours of the image, the second one shows contours together with corners (red points). The last
window shows the output stroke of the image after approximation of polylines.

Now we will present some concrete examples and compare them with other softwares. We will also try to
explain the values of parameters used for a particular images.

Remarks: To install the plugin, please follow the instructions provided in the code readme. To apply
the plugin, open an image, go to Filters-VUI and the vectrabool window will appear. The output image is
saved in the home directory named output.svg. All the examples presented here can be found in the code
repository.

12

VECTRABOOL Final report

Figure 5: The layout of gimp plugin

8 A simple example

We start by a simple example. For this example, each of the softwares produces a good result.

Figure 6: Parameters for simple example

13

VECTRABOOL Final report

(a) The input image (b) The output image

Figure 7: A simple example

9 The flower example

(a) The input image (b) The output image

Figure 8: The flower example

10 The objects example

14

VECTRABOOL Final report

Figure 9: Parameters for objects example

(a) The input image (b) The output image

Figure 10: The objects example

11 A very precise output example

In this example, we make a comparison between the input image and output image when both are zoomed
in.

15

VECTRABOOL Final report

Figure 11: Parameters for the image

(a) The input image (b) The output image

Figure 12: A very precise example

(a) The input image when it is zoomed in (b) The output image when it is zoomed it

Figure 13: A comparison of input and output image when both are zoomed n

16

VECTRABOOL Final report

12 Better than autotracer or not

This example shows that our library is not perfect. It also shows some bugs in the color detection algorithm.
We encourage the reader to try to test this example with autotracer or vectorization.org and compare the
results.

(a) The input image (b) The output image

Figure 14: An example where the color detection algorithm does not work properly

13 Blurring trick

If the input image has a very low resolution, one should blur it as much as possible (but keeping it under-
standable) in order to achieve the best results. In such cases, the color detection algorithm performs very
poorly. But, compared to other mentioned softwares, only our library produces a reasonable result.

Figure 15: The input image

17

VECTRABOOL Final report

(a) The input image when blurred (b) The output image

Figure 16: An example where the color detection algorithm does not work properly

14 Further work

There are several things we plan to do in order to improve the quality of the library. We can divide all of
them into to groups: technical improvements and algorithmic improvements. The most important technical
improvements are removing opencv as a dependency while keeping all features the same, adapting the gimp
plugin for inkscape software and developing a web application. We plan also to improve algorithms for cor-
ner detection and color detection. Although we have a good performance with the current implementations,
we think that finding a better algorithms could improve the library in terms of the quality of output image
as well as in terms of time complexity.

18

VECTRABOOL Final report

References
[1] Konstantinos G Derpanis. The harris corner detector. York University, 2004.

[2] Aaron Wolin, Brian Eoff, and Tracy Hammond. Shortstraw: A simple and effective corner finder for
polylines. In SBM, pages 33–40, 2008.

19

	Project Summary
	Motivation
	Existing solutions
	Approach
	Technical details

	Contour Detection
	Preprocessing
	The Canny Algorithm
	Postprocessing

	Polgonization
	Context
	Integer programming
	Ramer-Douglas-Peucker algorithm

	Corner Detection
	Resampling
	Bottom-Up Corner Finding
	Top-Down Corner Checking

	Curve fitting
	Cubic Bezier Curves
	Conditions
	Solution
	Other implemented algorithms

	Color Detection
	First algorithm
	Algorithm implemented
	Comments

	Results and user guide
	A simple example
	The flower example
	The objects example
	A very precise output example
	Better than autotracer or not
	Blurring trick
	Further work

