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Introduction

Task Scheduling

Problem Statement

Definition (Task Scheduling)

Given a set of tasks of a parallel computation, determine how the
tasks can be assigned (both in space and time) to processing
resources (scheduled on them) to satisfy certain optimality criteria.

Challenges
I minimizing execution time
I minimizing inter-processor communication
I load balancing the tasks among processors
I handling and/or recovering from failures
I meeting deadlines
I a combination of the above
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Introduction

Considerations and Solutions

Addressing the Problem of Task Scheduling

How easy/difficult is it to schedule tasks?
/ Scheduling dependent tasks onto a set of homogeneous

resources, considering interprocessor communication, and
aiming to minimize the total execution time is NP-complete.

/ The same holds for heterogeneous systems.
Make realistic assumptions regarding:

processor heterogeneity, communication link heterogeneity,
irregularity of interconnection networks, non-dedicated platforms

Solutions:
/ Optimal - there are no polynomial time optimal solutions

Heuristic methods - various (static/dynamic) scheduling
heuristics have been proposed
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Introduction

Static vs Dynamic Task Scheduling

Static vs Dynamic Scheduling

Definition (Static Scheduling)

Static scheduling involves assigning the tasks to processors before
the execution of the problem, in a non-preemptive fashion. The
application characteristics are known before program execution and
the state of the target system does not change during the parallel
execution.

Pros ,

Easy to design and program
Very low scheduling overhead

Cons /

Cannot cope with applications with irregular tasks
Cause high load imbalance on heterogeneous systems
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Introduction

Static vs Dynamic Task Scheduling

Static vs Dynamic Scheduling

Definition (Dynamic Scheduling)

In dynamic scheduling, only a few assumptions about the parallel
application or the target system can be made before execution, and
thus, scheduling decisions have to be made on-the-fly.

Pros ,

Offer good load balance on heterogeneous systems
Can tackle applications with irregular tasks as well

Cons /

Higher scheduling overhead than static methods
Harder to design and program
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Introduction

Static vs Dynamic Task Scheduling

Dynamic Task Scheduling

What are the goals of dynamic scheduling?
To minimize the program completion time and minimize the
scheduling overhead which constitutes a significant portion of the
cost paid for running the dynamic scheduler.

Why do we need dynamic scheduling?
Dynamic scheduling is necessary when static scheduling may
result in a highly imbalanced distribution of work among
processors or when the inter-tasks dependencies are dynamic
(e.g. due to changing system’s behavior or changing application’s
behavior), thus precluding a static scheduling approach.
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Introduction

What Has Been Done So Far?

What has been done so far?

I Numerous static algorithms devised for either DOALL or
DOACROSS loops on homogeneous and/or heterogeneous
systems

I Numerous dynamic algorithms devised for DOALL loops on
homogeneous and/or heterogeneous systems

What is missing?

Dynamic scheduling and load balancing algorithms for
DOACROSS loops on heterogeneous systems
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Introduction

Why dynamic load balancing algorithms?

Why deal with dynamic load balancing algorithms?

Motivation:
I Existing dynamic load balancing algorithms (self-scheduling) can

not cope with task dependencies, because they lack inter-slave
communication

I If dynamic load balancing algorithms are applied to DOACROSS
loops, in their original form, they yield a very slow/serial execution

I Static algorithms are not always efficient on heterogeneous
systems

What is needed?
The current dynamic load balancing algorithms (self-scheduling)
need something to enable them to handle DOACROSS loops
and something else to enable them to be efficient on
heterogeneous systems
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Introduction

Why dynamic load balancing algorithms?

Why deal with dynamic load-balancing algorithms?

Contributions:
A synchronization mechanism (the ‘something’) based on an
extended master-slave model that provides inter-slave
communication
A weighting mechanism (the ‘something else’) that adjusts the
amount of work assigned to a processor according to its
performance
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Dynamic Load Balancing for DOACROSS Loops

Modeling the DOACROSS Loops

DOACROSS loops - algorithmic model

for (i1 = l1; i1 <= u1; i1 ++)
for (i2 = l2; i2 <= u2; i2 ++)
. . .

for (in = ln; in <= un; in ++)
S1(I);
. . .
Sk (I);

endfor
. . .
endfor

endfor

I J = {I ∈ Nn|lr ≤ ir ≤ ur ,1 ≤ r ≤ n}
- the Cartesian n-dimensional
index space of a loop of depth n

I |J|= ∏
n
i=1(ui − li +1) - the

cardinality of J
I Si(I) - general program

statements of the loop body
I DS = {d̃1, . . . , d̃p}, p ≥ n - the set

of dependence vectors
I By definition d̃j > 0, where

0 = (0, . . . ,0) and > is the
lexicographic ordering

I L = (l1, . . . , ln) - the initial point of J
I U = (u1, . . . ,un) - the terminal

point of J
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Dynamic Load Balancing for DOACROSS Loops

Modeling the DOACROSS Loops

Graphical representations of DOACROSS loops using
Cartesian spaces

Cartesian Spaces - the
points have coordinates
and represent tasks and
the directed vectors
represent the
dependencies among the
tasks (e.g. precedence)

Figure: Cartesian representation of tasks
and dependencies
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Dynamic Load Balancing for DOACROSS Loops

Overview of Self-Scheduling Algorithms for DOALL Loops

Partitioning the Index Space with Self-Scheduling
Algorithms I uc - scheduling dimension (1D partitioning)

I P1, . . . ,Pm - slave processors; P0 - master
processor

I N - the number of scheduling steps (the
total number of chunks)

I Ci - chunk size at the i-th scheduling step
I Vi - the projection of Ci along scheduling

dimension uc

I Ci = Vi ×
∏

n
j=1 uj
uc

I VPk - virtual computing power of slave Pk (delivered speed)
I qk - number of processes in the run-queue of slave Pk
I Ak = bVPk

qk
c - available computing power of slave Pk (delivered

speed)
I A = ∑

m
i=1 Ak - total available computing power of the system
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Dynamic Load Balancing for DOACROSS Loops

Overview of Self-Scheduling Algorithms for DOALL Loops

Overview of Self-Scheduling Algorithms for DOALL
Loops

Obs. They use a simple master-slave model

PSS - Pure Self-Scheduling, Ci = 1

CSS [Kruskal and Weiss, 1985] - Chunk Self-Scheduling,
Ci = constant > 1

GSS [Polychronopoulos and Kuck, 1987] – Guided Self-Scheduling,
Ci = Ri/m, where Ri is the number of remaining iterations
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Dynamic Load Balancing for DOACROSS Loops

Overview of Self-Scheduling Algorithms for DOALL Loops

Overview of Self-Scheduling Algorithms for DOALL
Loops

FSS [Hummel et al, 1992] – Factoring Self-Scheduling, assigns
batches of equal chunks. Ci = d Ri

α∗m e and Ri+1 = Ri − (m×Ci),
where the parameter α is computed (by a probability distribution)
or is sub-optimally chosen α = 2.

TSS [Tzen and Ni, 1993] - Trapezoid Self-Scheduling, Ci = Ci−1−D,
where D decrement, the first chunk is F = |J|

2m and the last chunk
is L = 1

DTSS [Chronopoulos et al, 2001] - Distributed TSS,
Ci = Ak × (F −D× (Sk−1 +(Ak −1)/2)), where:
Sk−1 = A1 + . . .+Ak−1, the first chunk is F = |J|

2A and the last
chunk is L = 1
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Dynamic Load Balancing for DOACROSS Loops

Overview of Self-Scheduling Algorithms for DOALL Loops

Overview of Self-Scheduling Algorithms for DOALL
Loops

Algorithm Pros , Cons / Heterogeneity?
PSS good load bal. excessive sch. & comm. ovhd no
CSS low sch. ovhd. large chunks ⇒

load imbalance no
small chunks ⇒
excessive comm. ovhd.

GSS low sch. ovhd.
large chunks first ⇒ reduced comm. ⇒ may cause load imbalance no
small chunks last ⇒ good load bal.

FSS improves on GSS difficult to determine
low sch. ovhd. the optimal parameters no
few chunk adaptations (batches) for batching

TSS low sch. ovhd. (constant decrement) difficult to determine
improves on GSS for the optimal parameters no
irregular tasks (F, L, D)

DTSS improves on TSS by difficult to determine
assigning chunks to the optimal parameters yes
processors according to their (F, L, D)
delivered speed
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Dynamic Load Balancing for DOACROSS Loops

Enhancing Self-Scheduling Algorithms via S

Self-Scheduling for DOACROSS loops with
Synchronization Points

I Chunks are formed along the scheduling dimension, uc
I SPs are inserted along the synchronization dimension, us
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Dynamic Load Balancing for DOACROSS Loops

Enhancing Self-Scheduling Algorithms via S

The Inter-slave Communication Scheme

I Ci−1 is assigned to Pk−1, Ci assigned to Pk and Ci+1 to Pk+1
I When Pk reaches SPj+1, it sends to Pk+1 only the data Pk+1

requires (i.e., those iterations imposed by the existing
dependence vectors)

I Next, Pk receives from Pk−1 the data required for the current
computation

Obs. Slaves do not reach a SP at the same time, which leads to a
pipelined execution
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Dynamic Load Balancing for DOACROSS Loops

Enhancing Self-Scheduling Algorithms via S

The Synchronization Mechanism S

I Enables self-scheduling algorithms to handle DOACROSS loops
I Provides:

I The synchronization interval h along us: h = Us
M

I A framework for inter-slave communication (presented earlier)

Observations:
1 S is completely independent of the self-scheduling algorithm

and does not enhance the load balancing capability of the
algorithm

2 The synchronization overhead is compensated by the increase of
parallelism ⇒ overall performance improvement
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Dynamic Load Balancing for DOACROSS Loops

Enhancing Self-Scheduling Algorithms via S

The Synchronization Mechanism S

S adds 3 components to the
original algorithm A :

1 transaction accounting
(master)

2 receive part (slave)
3 transmit part (slave)

h is determined empirically or
selected by the user and must
be a trade-off between
synchronization overhead and
parallelism
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Dynamic Load Balancing for DOACROSS Loops

Enhancing Self-Scheduling Algorithms via W

The Weighting Mechanism W

I Enables self-scheduling algorithms to handle load variations and
system heterogeneity

I Adjusts the amount of work (chunk size) given by the original
algorithm A according to the current load of a processor and its
nominal computational power

Observations:
1 W is completely independent of the self-scheduling algorithm

and can be used alone for DOALL loops
2 The weighting overhead is insignificant (a ? and a / operation)
3 On a dedicated homogeneous system, W does not improve the

performance and could be omitted
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Dynamic Load Balancing for DOACROSS Loops

Enhancing Self-Scheduling Algorithms via W

The Weighting Mechanism W

W adds 2 components to the
original algorithm A :

1 chunk weighting (master)
2 run-queue monitoring

(slave)

W calculates the chunk Ĉi
assigned to Pk as follows:
Ĉi = Ci × VPk

qk
, where Ci is the

chunk size given by the original
self-scheduling algorithm A .
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Dynamic Load Balancing for DOACROSS Loops

Enhancing Self-Scheduling Algorithms via both S and W

The Combined S W Mechanisms

I S W enable self-scheduling algorithms to handle DOACROSS
loops on heterogeneous systems with load variations

I Synchronization points are introduced and chunks are weighted
Observations:

1 Since S does not provide any load balancing, it is most
advantageous to use W to achieve it

2 The synchronization & weighting overheads are compensated by
the performance gain
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Dynamic Load Balancing for DOACROSS Loops

Enhancing Self-Scheduling Algorithms via both S and W

The Combined S W Mechanisms

S W add 5 (3+2) components
to the original algorithm A :

1 chunk weighting (master)
2 transaction accounting

(master)
3 run-queue monitoring

(slave)
4 receive part (slave)
5 transmit part (slave)
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Dynamic Load Balancing for DOACROSS Loops

Experimental Validation of the Two Mechanisms

Experimental Setup
I The algorithms are implemented in C and C++
I MPI is used for master-slave and inter-slave communication
I The heterogeneous system consists of 13 nodes (1 master and

12 slaves):
I 7 twins: Intel Pentiums III, 800 MHz with 256MB RAM, assumed to

have VPk = 1 (one of them is the master)
I 6 kids: Intel Pentiums III, 500 MHz with 512MB RAM , assumed to

have VPk = 0.8
I Interconnection network is Fast Ethernet, at 100Mbit/sec
I Non-dedicated system: at the beginning of program’s execution,

a resource expensive process is started on some of the slaves,
halving their Ak

I Machinefile: twin1 (master),twin2, kid1, twin3, kid2, twin4, kid3,
twin5, kid4, twin6, kid5, twin7, kid6

I In all cases, the kids were overloaded
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Dynamic Load Balancing for DOACROSS Loops

Experimental Validation of the Two Mechanisms

Experimental Setup
I Three series of experiments on the non-dedicated system, for

m = 4,6,8,10,12 slaves:
Experiment 1 for the synchronization mechanism S
Experiment 2 for the weighting mechanism W
Experiment 3 for the combined mechanisms S W

I Two real-life applications: Floyd-Steinberg (regular DOACROSS),
and Mandelbrot (irregular DOALL)
(Similar results for Hydro – in [Ciorba et al, 2008]

I Reported results are averages of 10 runs for each case
I The chunk size for CSS was: Ci = Uc

2×m
I The number of synchronization points was: M = 3×m
I Lower and upper thresholds for the chunk sizes (table below)
I 3 problem sizes - some analyzed here, some in

[Ciorba et al, 2008]
Problem size small medium large

Floyd-Steinberg 5000×15000 10000×15000 15000×15000
upper/lower threshold 500/10 750/10 1000/10

Mandelbrot 7500×10000 10000×10000 12500×12500
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Dynamic Load Balancing for DOACROSS Loops

Experimental Validation of the Two Mechanisms

Experiment 1
Speedups of the synchronized–only algorithms for Floyd-Steinberg

Test case VP S -CSS S -FSS S -GSS S -TSS S W -TSS
3.6 1.45 1.57 1.59 1.63 2.86
5.4 2.76 2.35 2.33 2.47 4.35

Floyd-Steinberg 7.2 2.81 2.92 3.09 3.10 5.39
9 3.41 3.50 3.49 3.70 6.27

10.8 3.95 4.07 4.27 4.34 7.09

I The serial time was measured on the fastest slave type, i.e., twin
I S -CSS, S -FSS, S -GSS and S -TSS give significant speedups
I S W -TSS gives an even greater speedup over all

synchronized–only algorithms , expected!

40



Enhancing Self-Scheduling Algorithms via Synchronization and Weighting

Dynamic Load Balancing for DOACROSS Loops

Experimental Validation of the Two Mechanisms

Experiment 1
Parallel times of the synchronized–only algorithms for Floyd-Steinberg

Serial times increase faster than parallel times as the problem size
increases ⇒ larger speedups for larger problems , anticipated!
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Dynamic Load Balancing for DOACROSS Loops

Experimental Validation of the Two Mechanisms

Experiment 2
Gain of the weighted over non-weighted algorithms for Mandelbrot

Test Problem VP CSS vs GSS vs FSS vs TSS vs
case size (large) W -CSS W -GSS W -FSS W -TSS

3.6 27% 50% 18% 33%
5.4 38% 54% 37% 34%

Mandelbrot 15000×15000 7.2 45% 57% 53% 31%
9 49% 54% 52% 35%

10.8 46% 52% 54% 33%
Confidence Overall 40 ± 6 % 53 ± 6 % 42 ± 8 % 33 ± 4 %

interval (95%) 42 ± 3 %

I Gain is computed as TA −TW −A
TA

I GSS has the best overall performance gain
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Dynamic Load Balancing for DOACROSS Loops

Experimental Validation of the Two Mechanisms

Experiment 2
Parallel times of the weighted algorithms for Mandelbrot

The performance difference of the weighted algorithms is much
smaller than that of their non-weighted versions , anticipated!
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Dynamic Load Balancing for DOACROSS Loops

Experimental Validation of the Two Mechanisms

Experiment 2
Load balancing obtained with W for Mandelbrot

Table: Load balancing in terms of total number of iterations per slave and
computation times per slave, GSS vs W -GSS.

Slave GSS GSS W -GSS W -GSS
# Iterations Comp. time # Iterations Comp. time

(106) (sec) (106) (sec)
twin2 56.434 34.63 55.494 62.54
kid1 18.738 138.40 15.528 62.12
twin3 10.528 39.37 15.178 74.63
kid2 14.048 150.23 13.448 61.92

W -GSS achieves better load balancing and smaller parallel time
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Dynamic Load Balancing for DOACROSS Loops

Experimental Validation of the Two Mechanisms

Experiment 3
Gain of the synchronized–weighted over synchronized–only algorithms for Floyd-Steinberg

Test Problem VP S -CSS vs S -GSS vs S -FSS vs S -TSS vs
case size S W -CSS S W -GSS S W -FSS S W -TSS

3.6 50% 46% 45% 43%
Floyd- 5.4 41% 48% 44% 43%

Steinberg 15000×10000 7.2 41% 42% 41% 42%
9 39% 43% 40% 41%

10.8 38% 36% 38% 39%
Confidence Overall 39 ± 2 % 40 ± 3 % 40 ± 2 % 41 ± 2 %

interval (95%) 40 ± 1 %

I Gain is computed as TS−A −TS W −A
TS−A

I CSS has the highest performance gain 50%
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Dynamic Load Balancing for DOACROSS Loops

Experimental Validation of the Two Mechanisms

Experiment 3
Parallel times of the synchronized–weighted and synchronized–only algorithms for Floyd-Steinberg

The performance difference of the synchronized–weighted algorithms
is much smaller than that of their synchronized–only versions
, anticipated!
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Dynamic Load Balancing for DOACROSS Loops

Experimental Validation of the Two Mechanisms

Experiment 3
Load balancing obtained with S W for Floyd-Steinberg

Table: Load balancing in terms of total number of iterations per slave and
computation times per slave, S -CSS vs S W -CSS

Test Slave # Iterations Comp. # Iterations Comp.
(106) time (sec) (106) time (sec)

S -CSS S -CSS S W -CSS S W -CSS
twin2 59.93 19.25 89.90 28.88

Floyd- kid1 59.93 62.22 29.92 30.86
Steinberg twin3 59.93 19.24 74.92 24.06

kid2 44.95 46.30 29.92 29.08

S W -CSS achieves better load balancing and smaller parallel time
than its synchronized–only counterpart , anticipated!
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Conclusions

I DOACROSS loops can be dynamically scheduled using S

I Self-scheduling algorithms are quite efficient on heterogeneous
dedicated & non-dedicated systems using W

I S W Self-scheduling algorithms are even more efficient on
heterogeneous dedicated & non-dedicated systems
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Future Work

1. Design a fault tolerant mechanism for the scheduling
DOACROSS loops to increase system reliability and maximize
resource utilization in distributed systems

2. Employ the scheduling algorithms presented earlier to perform
large scale computation (containing both DOALL and
DOACROSS loops) on computational grids

3. Use the scheduling algorithms presented earlier to schedule and
load balance divisible loads (i.e. loads that can be modularly
divided into precedence constrained loads)
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Thank you for your attention!

Questions?
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Appendix

Test Problems

Mandelbrot

for (hy=1; hy<=hyres; hy++) { /* scheduling dimension */

for (hx=1; hx<=hxres; hx++) {

cx = (((float)hx)/((float)hxres)-0.5)/magnify*3.0-0.7;

cy = (((float)hy)/((float)hyres)-0.5)/magnify*3.0;

x = 0.0; y = 0.0;

for (iteration=1; iteration<itermax; iteration++) {

xx = x*x-y*y+cx;

y = 2.0*x*y+cy;

x = xx;

if (x*x+y*y>100.0) iteration = 999999;

}

if (iteration<99999) color(0,255,255);

else color(180,0,0);

}

}
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Appendix

Test Problems

Floyd-Steinberg Error Dithering

for (i=1; i<width; i++){ /* synchronization dimension */

for (j=1; j<height; j++){ /* scheduling dimension */

I[i][j] = trunc(J[i][j]) + 0.5;

err = J[i][j] - I[i][j]*255;

J[i-1][j] += err*(7/16);

J[i-1][j-1] += err*(3/16);

J[i][j-1] += err*(5/16);

J[i-1][j+1] += err*(1/16);

}

}
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Appendix

Test Problems

Modified LL23 - Hydrodynamics kernel

for (l=1; l<=loop; l++) { /* synchronization dimension */

for (j=1; j<5; j++) {

for (k=1; k<n; k++){ /* chunk dimension */

qa = za[l-1][j+1][k]*zr[j][k] + za[l][j-1][k]*zb[j][k] +

za[l-1][j][k+1]*zu[j][k] + za[l][j][k-1]*zv[j][k] +

zz[j][k];

za[l][j][k] += 0.175 * (qa - za[l][j][k] );

}

}

}
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