
Adaptive Scheduling withAdaptive Scheduling with
Parallelism Feedback

Kunal Agrawal

Collaborators: Yuxiong He, Wen Jing Hsu, and
Charles E. Leiserson

Adaptive Multiprocessor Scheduling

Many jobs space-share a large
multiprocessor, entering and p , g
leaving the system dynamically.
The number of processors available
to the job may therefore changeto the job may, therefore, change
during execution and the jobs must
adapt to these changes.

2

Adaptive Multiprocessor Scheduling

Many jobs space-share a large
multiprocessor, entering and p , g
leaving the system dynamically.
The number of processors available
to the job may therefore changeto the job may, therefore, change
during execution and the jobs must
adapt to these changes.
The parallelism of a job may
change during execution. The jobs
do not know their future parallelismdo not know their future parallelism.

3

A Job and Its Environment

4

A Job and Its Environment
Focus on a single job.

Job

5

A Job and Its Environment

Environment
Focus on a single job.
The environment is an abstract entity

fthat captures the behavior of the other
jobs in the system and the allocation
policy of the job scheduler.

Job

6

A Job and Its Environment

Environment
Focus on a single job.
The environment is an abstract entity

f

desire d

that captures the behavior of the other
jobs in the system and the allocation
policy of the job scheduler.

Job
Between scheduling quanta, the job
provides parallelism feedback to the
environment by requesting the desired y q g
number of processors for the next
quantum.

7

A Job and Its Environment

Environment
Focus on a single job.
The environment is an abstract entity

f

desire d
allotment a

that captures the behavior of the other
jobs in the system and the allocation
policy of the job scheduler.

Job

allotment aBetween scheduling quanta, the job
provides parallelism feedback to the
environment by requesting the desired y q g
number of processors for the next
quantum.
The environment allots processors toThe environment allots processors to
the job. The allotment for a quantum is
always less than or equal to the desire.

8

A Job and Its Environment
Focus on a single job.
The environment is an abstract entity

f
Environment

that captures the behavior of the other
jobs in the system and the allocation
policy of the job scheduler. desire d

allotment aBetween scheduling quanta, the job
provides parallelism feedback to the
environment by requesting the desired

Job

allotment a

y q g
number of processors for the next
quantum.
The environment allots processors toThe environment allots processors to
the job. The allotment for a quantum is
always less than or equal to the desire.
The allotment remains unchanged during a quantum and the

9

The allotment remains unchanged during a quantum, and the
quantum length L is long enough to amortize the overheads
due to communication and reallocation.

How To Provide Feedback

L L L
The job does not know its
future parallelism.

sm

p
The job’s parallelism may
change during the
q ant m Therefore

Pa
ra

lle
lisquantum. Therefore,

using the instantaneous
parallelism as the desire

Time

might be ineffective.
For example, if the job
uses instantaneous A Buses instantaneous
parallelism to estimate desire, then at time A, the job will
ask for more processors than it needs. On the other

f f

10

hand, at time B, the job will ask for fewer processors than
it needs.

Completion Time and Waste

If the job requests (and
receives) too few

L L L
receives) too few
processors, then it runs
slowly.

sm

If the job requests (and
receives) too many
processors, then it wastes Pa

ra
lle

lis

p ,
processor cycles that other
jobs could have used more
effectively Timeeffectively.
An effective parallelism feedback algorithm tries to reduce
both completion time and waste of the job.

11

j

Contributions

A provably good algorithm for providing parallelism feedback.
If this algorithm is combined with greedy scheduling [G69,
B72], the job completes quickly and waste few processor
cycles even if the environment is adversarial We call thecycles, even if the environment is adversarial. We call the
combination A-GREEDY.
Similarly, if it is combined with work-stealing [BL94], we call
the combination A-STEAL.
To analyze A-GREEDY and A-STEAL, we introduce a new
analytical technique called trim analysisanalytical technique called trim analysis.
Preliminary experiments using simulations indicate that
advantages of parallelism feedback become apparent on

12

moderately to heavily loaded large machines.

Theoretical Results

THEOREM: Consider a job with work T1 and spanj 1 p
(critical-path length) T∞ running on P-processor
machine and scheduling quanta of length L. A-
GREEDY (and A STEAL) guarantees that the jobGREEDY (and A-STEAL) guarantees that the job

wastes O(T1) processor cycles and
attains linear speedup on all but O(T∞ + L lg P) time p p (∞ g)
steps.

The proofs use trim analysis, which ignores a few of
data points and obtains tight bounds on the remainder.

13

Experimental Results

We simulated a large multiprogrammed multiprocessor and
used synthetic jobs to assess the performance of A-STEAL.used synthetic jobs to assess the performance of A STEAL.
A-STEAL provides nearly perfect linear speedup and wastes
less than 20% of the allotted processor cycles.
We compared the utilization provided by A-STEAL and ABP,
a work-stealing scheduler that does not employ parallelism
feedback When manyfeedback. When many
synthetic jobs share a large
server, and jobs arrive and
l d i ll A Sleave dynamically, A-STEAL
consistently provided higher
utilization than ABP for a

14

variety of job mixes.

Outline

Introduction
The Feedback AlgorithmThe Feedback Algorithm
Greedy Scheduling
Adversarial Environment and Trim AnalysisAdversarial Environment and Trim Analysis
Analysis Idea
Conclusions

15

The Feedback Algorithm

It is a multiplicative-increase, multiplicative-decrease
algorithm for providing parallelism feedback to thealgorithm for providing parallelism feedback to the
environment.

At the beginning of quantum q, it uses the job’s recent
history to provide parallelism feedback to the
environment:environment:

desire dq−1 in quantum q−1;
allotment aq−1 in quantum q−1; q

usage uq−1 — the number of processor cycles used
effectively (not wasted) in quantum q−1.

16

Utilization Parameter
Efficient

The utilization parameter
δ < 1 is an input to the

aq δ aq

Efficient

δ < 1 is an input to the
algorithm, which provides
a threshold for Pr

oc
es

so
rs

Wasted
Used

determining whether a
particular quantum is
efficient or inefficient, e.g.,

L
0

I ffi i t, g ,
δ = 90%.

Quantum q is efficient if
u ≥ Lδa

aq δ aq

Inefficient

uq ≥ Lδaq.

Pr
oc

es
so

rs
Wasted
Used

Quantum q is inefficient if
uq < Lδ aq

17L
0

uq Lδ aq.

Details of the Algorithm
FEEDBACK(q,δ)
1. if q = 1q

2. then dq 1

3 elseif u < L δ a3. elseif uq−1 < L δ aq−1
4. then dq dq−1/2

5 l if d5. elseif aq−1 = dq−1
6. then dq 2dq−1

7. else dq dq−1
8. Report dq as the desire for quantum q.

18

Details of the Algorithm

1. if q = 1 Initial desire is d1 = 1.

FEEDBACK(q,δ)
q

2. then dq 1
1

3 elseif u < L δ a

5 l if d

3. elseif uq−1 < L δ aq−1
4. then dq dq−1/2

5. elseif aq−1 = dq−1
6. then dq 2dq−1

7. else dq dq−1

19

Details of the Algorithm

1. if q = 1 Initial desire is d1 = 1.

FEEDBACK(q,δ)
q

2. then dq 1

Too much waste

1

3 elseif u < L δ a

5 l if d

Too much waste.
Job overestimated the desire.
Decrease the desire.

3. elseif uq−1 < L δ aq−1
4. then dq dq−1/2

5. elseif aq−1 = dq−1
6. then dq 2dq−1

7. else dq dq−1

20

Details of the Algorithm

1. if q = 1 Initial desire is d1 = 1.

FEEDBACK(q,δ)
q

2. then dq 1

Too much waste

1

3 elseif u < L δ a

5 l if d S ll t l ll t t

Too much waste.
Decrease the desire.

3. elseif uq−1 < L δ aq−1
4. then dq dq−1/2

5. elseif aq−1 = dq−1
6. then dq 2dq−1

Small waste + large allotment.
Job effectively utilized all the
processors requested and

7. else dq dq−1 speculates that it may be able
to use more.
Increase the desire

21

Increase the desire.

Details of the Algorithm

1. if q = 1 Initial desire is d1 = 1.

FEEDBACK(q,δ)
q

2. then dq 1

Too much waste

1

3 elseif u < L δ a

5 l if d S ll t l ll t t

Too much waste.
Decrease the desire.

3. elseif uq−1 < L δ aq−1
4. then dq dq−1/2

5. elseif aq−1 = dq−1
6. then dq 2dq−1

Small waste + large allotment.
Increase the desire.

7. else dq dq−1 Small waste + small allotment.
The job was allotted few
processors but used all of

22

processors, but used all of
them effectively.
Maintain the desire.

Details of the Algorithm

1. if q = 1 Initial desire is d1 = 1.

FEEDBACK(q,δ)
q

2. then dq 1

Too much waste

1

3 elseif u < L δ a

5 l if d S ll t l ll t t

Too much waste.
Decrease the desire.

3. elseif uq−1 < L δ aq−1
4. then dq dq−1/2

5. elseif aq−1 = dq−1
6. then dq 2dq−1

Small waste + large allotment.
Increase the desire.

7. else dq dq−1 Small waste + small allotment.
Maintain the desire.

23

It provides simple and effective parallelism feedback.

Outline

Introduction
The Feedback AlgorithmThe Feedback Algorithm
Greedy Scheduling
Adversarial Environment and Trim AnalysisAdversarial Environment and Trim Analysis
Analysis Idea
Conclusions

24

Job Model
DAG

Node: Unit time task.
Edge: Dependence between tasks.
A task becomes ready when all its
predecessors have been executedpredecessors have been executed.

T1: Work
Number of nodes (tasks) in the DAG.()
Time to execute on one processor.

T∞: Span (Critical Path Length)
L th f th l t th i thLength of the longest path in the
DAG.
Time to execute on infinite number

25

of processors.

Greedy Scheduling

During quantum q, A-GREEDY

aq = 4
g q q,

schedules the tasks on aq allotted
processors greedily.

26

Greedy Scheduling

During quantum q, A-GREEDY

aq = 4
g q q,

schedules the tasks on aq allotted
processors greedily.

Case 1: (complete step) If at
least aq tasks are ready,
execute any a of themexecute any aq of them.

27

Greedy Scheduling

During quantum q, A-GREEDY

aq = 4
g q q,

schedules the tasks on aq allotted
processors greedily.

Case 1: (complete step) If at
least aq tasks are ready,
execute any a of themexecute any aq of them.

28

Greedy Scheduling

During quantum q, A-GREEDY

aq = 4
g q q,

schedules the tasks on aq allotted
processors greedily.

Case 1: (complete step) If at
least aq tasks are ready,
execute any a of themexecute any aq of them.
Case 2: (incomplete step) If
less than aq tasks are ready, q y
execute all of them.

29

Greedy Scheduling

During quantum q, A-GREEDY

aq = 4
g q q,

schedules the tasks on aq allotted
processors greedily.

Case 1: (complete step) If at
least aq tasks are ready,
execute any a of themexecute any aq of them.
Case 2: (incomplete step) If
less than aq tasks are ready, q y
execute all of them.

30

Nonadaptive Greedy Scheduling

The allotment is fixed at P processors. p

Lower Bound: Completion time
T ≥ max{T1/P T }T ≥ max{T1/P, T∞}

Greedy scheduling guarantees y g g
T ≤ T1/P + T∞. [G69, B72]

The completion time is within 2 of
i loptimal.

If the job is parallel enough, then
T1/P << T The completion time is

31

T1/P << T∞. The completion time is
almost optimal (linear speedup).

Outline

Introduction
The Feedback AlgorithmThe Feedback Algorithm
Greedy Scheduling
Adversarial Environment and Trim AnalysisAdversarial Environment and Trim Analysis
Analysis Idea
Conclusions

32

Processor Availability
Job Environment

33

Processor Availability
Job Environment

d = 7
Between quanta, the job
interacts with its environment to
decide its allotment for the nextdecide its allotment for the next
quantum.

34

Processor Availability
Job Environment

d = 7
Between quanta, the job
interacts with its environment to
decide its allotment for the nextdecide its allotment for the next
quantum.
The environment represents the
other jobs in the system theother jobs in the system, the
allocation policy of the job
scheduler, etc.

35

Processor Availability
Job Environment

d = 7
Between quanta, the job
interacts with its environment to
decide its allotment for the next p = 10p = 10decide its allotment for the next
quantum.
The environment represents the
other jobs in the system theother jobs in the system, the
allocation policy of the job
scheduler, etc.
B h t thBy whatever means, the
environment determines the
processor availability p for the
j bjob.

36

Processor Availability
Job Environment

d = 7
Between quanta, the job
interacts with its environment to
decide its allotment for the next p = 10p = 10

a = min{d, p} = 7

decide its allotment for the next
quantum.
The environment represents the
other jobs in the system theother jobs in the system, the
allocation policy of the job
scheduler, etc.
B h t thBy whatever means, the
environment determines the
processor availability p for the
j bjob.
The allotment of the job is
always the minimum of the

37

y
desire and the processor
availability.

Processor Availability

d = 7
Job EnvironmentBetween quanta, the job

interacts with its environment to
decide its allotment for the next

a = min{d, p} = 7

p = 10p = 10decide its allotment for the next
quantum.
The environment represents the
other jobs in the system the Executes on 7

processors during
the quantum

Executes on 7
processors during
the quantum

other jobs in the system, the
allocation policy of the job
scheduler, etc.
B h t thBy whatever means, the
environment determines the
processor availability p for the
j bjob.
The allotment of the job is
always the minimum of the

38

y
desire and the processor
availability.

Processor Availability

d = 7
Job EnvironmentBetween quanta, the job

interacts with its environment to
decide its allotment for the next

a = min{d, p} = 7

p = 10p = 10decide its allotment for the next
quantum.
The environment represents the
other jobs in the system the Executes on 7

processors during
the quantum

Executes on 7
processors during
the quantum

other jobs in the system, the
allocation policy of the job
scheduler, etc.
B h t th

p = 9p = 9

d = 14
By whatever means, the
environment determines the
processor availability p for the
j b p 9p 9

a = min{d, p} = 9

job.
The allotment of the job is
always the minimum of the

39

Executes on 9
processors during
the quantum

Executes on 9
processors during
the quantum

y
desire and the processor
availability.

The Environment

The completion time of the job depends on its
environment’s processor availability

For example, if the environment decides that the
processor availability of the job is always 1, then the job

l l tt h t it ll li

environment s processor availability.

runs slowly, no matter what its parallelism.
Therefore, we analyze the completion time relative to the
availability provided by the environment.

We assume that the environment is an adversary of the
job.

availability provided by the environment.

Thus, our results apply to any environment.
job.

We would like to prove that A-GREEDY provides speedup p p p p
with respect to (proportional to) the mean availability Pmean.

Power of the Adversary
PROBLEM: Even omniscient
parallelism feedback cannot
guarantee good speedup with
respect to the mean availability
Pmean against an adversary.Pmean against an adversary.

41

Power of the Adversary

d = 1
parallelism = 1parallelism = 1PROBLEM: Even omniscient

parallelism feedback cannot d 1
guarantee good speedup with
respect to the mean availability
Pmean against an adversary.Pmean against an adversary.

42

Power of the Adversary

parallelism = 1parallelism = 1
d = 1 106106

PROBLEM: Even omniscient
parallelism feedback cannot d 1 p = 106p = 106guarantee good speedup with
respect to the mean availability
Pmean against an adversary.

When a job has small
parallelism and requests few

th i t

Pmean against an adversary.

processors, the environment
makes the availability huge.

43

Power of the Adversary

parallelism = 1parallelism = 1
d = 1 106106

PROBLEM: Even omniscient
parallelism feedback cannot d 1

a = min{d, p} = 1
p = 106p = 106guarantee good speedup with

respect to the mean availability
Pmean against an adversary.

When a job has small
parallelism and requests few

th i t

Pmean against an adversary.

processors, the environment
makes the availability huge.

44

Power of the Adversary

d = 1
parallelism = 1parallelism = 1

106106

PROBLEM: Even omniscient
parallelism feedback cannot

a = min{d, p} = 1
d 1

Execute on 1 proc.Execute on 1 proc.

p = 106p = 106guarantee good speedup with
respect to the mean availability
Pmean against an adversary.

When a job has small
parallelism and requests few

th i t

Pmean against an adversary.

processors, the environment
makes the availability huge.

45

Power of the Adversary

d = 1
parallelism = 1parallelism = 1

106106

PROBLEM: Even omniscient
parallelism feedback cannot

a = min{d, p} = 1
d 1

Execute on 1 proc.Execute on 1 proc.

p = 106p = 106guarantee good speedup with
respect to the mean availability
Pmean against an adversary.

d = 100

parallelism = 100parallelism = 100

11

When a job has small
parallelism and requests few

th i t

Pmean against an adversary.

d = 100 p = 1p = 1processors, the environment
makes the availability huge.
When a job has largeWhen a job has large
parallelism, the environment
makes the availability small.

46

Power of the Adversary

d = 1
parallelism = 1parallelism = 1

106106

PROBLEM: Even omniscient
parallelism feedback cannot

a = min{d, p} = 1
d 1

Execute on 1 proc.Execute on 1 proc.

p = 106p = 106guarantee good speedup with
respect to the mean availability
Pmean against an adversary.

d = 100

parallelism = 100parallelism = 100

11

When a job has small
parallelism and requests few

th i t

Pmean against an adversary.

d = 100 p = 1p = 1
a = min{d, p} = 1

processors, the environment
makes the availability huge.
When a job has largeWhen a job has large
parallelism, the environment
makes the availability small.

47

Power of the Adversary

d = 1
parallelism = 1parallelism = 1

106106

PROBLEM: Even omniscient
parallelism feedback cannot

a = min{d, p} = 1
d 1

Execute on 1 proc.Execute on 1 proc.

p = 106p = 106guarantee good speedup with
respect to the mean availability
Pmean against an adversary.

d = 100

parallelism = 100parallelism = 100

11

When a job has small
parallelism and requests few

th i t

Pmean against an adversary.

a = min{d, p} = 1
d = 100 p = 1p = 1

Execute on 1 proc.Execute on 1 proc.

processors, the environment
makes the availability huge.
When a job has large ppWhen a job has large
parallelism, the environment
makes the availability small.

48

Power of the Adversary

d = 1
parallelism = 1parallelism = 1

106106

PROBLEM: Even omniscient
parallelism feedback cannot

a = min{d, p} = 1
d 1

Execute on 1 proc.Execute on 1 proc.

p = 106p = 106guarantee good speedup with
respect to the mean availability
Pmean against an adversary.

d = 100

parallelism = 100parallelism = 100

11

When a job has small
parallelism and requests few

th i t

Pmean against an adversary.

a = min{d, p} = 1
d = 100 p = 1p = 1

Execute on 1 proc.Execute on 1 proc.

processors, the environment
makes the availability huge.
When a job has large

d 100

pp

parallelism = 100parallelism = 100

When a job has large
parallelism, the environment
makes the availability small.

49
a = min{d, p} = 1

d = 100 p = 1p = 1

Power of the Adversary

d = 1
parallelism = 1parallelism = 1

106106

PROBLEM: Even omniscient
parallelism feedback cannot

a = min{d, p} = 1
d 1

Execute on 1 proc.Execute on 1 proc.

p = 106p = 106guarantee good speedup with
respect to the mean availability
Pmean against an adversary.

d = 100

parallelism = 100parallelism = 100

11

When a job has small
parallelism and requests few

th i t

Pmean against an adversary.

a = min{d, p} = 1
d = 100 p = 1p = 1

Execute on 1 proc.Execute on 1 proc.

processors, the environment
makes the availability huge.
When a job has large

d 100

pp

parallelism = 100parallelism = 100

When a job has large
parallelism, the environment
makes the availability small.
Th f th j b’ ll t t i

50
a = min{d, p} = 1

d = 100 p = 1p = 1Therefore, the job’s allotment is
always small.

Power of the Adversary

d = 1
parallelism = 1parallelism = 1

106106

PROBLEM: Even omniscient
parallelism feedback cannot

a = min{d, p} = 1
d 1

Execute on 1 proc.Execute on 1 proc.

p = 106p = 106guarantee good speedup with
respect to the mean availability
Pmean against an adversary.

d = 100

parallelism = 100parallelism = 100

11

Since the availability is huge on
some quanta, the mean

il bilit P i l

Pmean against an adversary.

a = min{d, p} = 1
d = 100 p = 1p = 1

Execute on 1 proc.Execute on 1 proc.

availability Pmean is large.

d 100

pp

parallelism = 100parallelism = 100

51
a = min{d, p} = 1

d = 100 p = 1p = 1

Power of the Adversary

d = 1
parallelism = 1parallelism = 1

106106

PROBLEM: Even omniscient
parallelism feedback cannot

a = min{d, p} = 1
d 1

Execute on 1 proc.Execute on 1 proc.

p = 106p = 106guarantee good speedup with
respect to the mean availability
Pmean against an adversary.

d = 100

parallelism = 100parallelism = 100

11

Since the availability is huge on
some quanta, the mean

il bilit P i l

Pmean against an adversary.

a = min{d, p} = 1
d = 100 p = 1p = 1

Execute on 1 proc.Execute on 1 proc.

availability Pmean is large.
But the availability is large only
on time steps when the job isn’t

d 100

pp

parallelism = 100parallelism = 100

on time steps when the job isn t
able to use the available
processors. Therefore, it runs
virtually serially

52
a = min{d, p} = 1

d = 100 p = 1p = 1virtually serially.

Mean Allotment Does Not Work

d = 1
parallelism = 100parallelism = 100

100100

Try to get speedup with respect to
the mean allotment. Here is a
trivial algorithm

a = min{d, p} = 1
d 1

Execute on 1 proc.Execute on 1 proc.

p = 100p = 100trivial algorithm.
Always requests 1 processor.
The job achieves optimal

d = 1

parallelism = 100parallelism = 100

100100

The job achieves optimal
completion time with respect
to the mean allotment.

a = min{d, p} = 1
d = 1 p = 100p = 100

Execute on 1 proc.Execute on 1 proc.

And the job does not waste
any processor cycles.

d 1

pp

parallelism = 100parallelism = 100PROBLEM: The algorithm
provides no useful parallelism

53
a = min{d, p} = 1

d = 1 p = 100p = 100provides no useful parallelism
feedback.

R-Trimmed Mean

R-trimmed mean Strim(R) of a
time series S is computed as

Va
lu

e

time series S is computed as
follows:

Time

54

R-Trimmed Mean

R-trimmed mean Strim(R) of a
time series S is computed astime series S is computed as
follows:

Va
lu

e

Sort the data in the set by

Time
value.

lu
e

Va
l

55

R-Trimmed Mean

R-trimmed mean Strim(R) of a
time series S is computed astime series S is computed as
follows:

Va
lu

e

Sort the data in the set by

Time
value.
Ignore the R largest
values

lu
e

values.

lu
e

Va
l

Va
R

56

R

R-Trimmed Mean

R-trimmed mean Strim(R) of a
time series S is computed astime series S is computed as
follows:

Va
lu

e

Sort the data in the set by

Time
value.
Ignore the R largest
values

lu
e

values.
Compute the mean of the
remaining. lu

e
Va

lg

Va

Strim(R)

R

In general, as R increases, R-
trimmed mean Strim(R)

57

Rtrim(R)
decreases.

Trim Analysis
IDEA: Trim (ignore) the R steps with the highest availability.

Against an adversarialAgainst an adversarial
environment, no parallelism
feedback algorithm can

t li d

Va
lu

e

guarantee linear speedup
with respect to 0-trimmed
mean availability. V

A good parallelism
feedback algorithm should
provide linear speedup withprovide linear speedup with
respect to R-trimmed mean
availability, where R is 12

4
8

58

small.

Outline

Introduction
The Feedback AlgorithmThe Feedback Algorithm
Greedy Scheduling
Adversarial Environment and Trim AnalysisAdversarial Environment and Trim Analysis
Analysis Idea
Conclusions

59

Three Types of Quanta

1. if q = 1

FEEDBACK(q,δ)
q

2. then dq 1

Too much waste3 elseif u < L δ a

5 l if d S ll t l ll t t

Too much waste.
Inefficient Quanta.

3. elseif uq−1 < L δ aq−1
4. then dq dq−1/2

5. elseif aq−1 = dq−1
6. then dq 2dq−1

Small waste + large allotment.
Efficient and Satisfied Quanta.

7. else dq dq−1 Small waste + small allotment.
Efficient and Deprived Quanta.

60

Analysis Idea — Waste
THEOREM: A job with work T1 wastes at most O(T1) processor
cycles.

61

Analysis Idea — Waste
THEOREM: A job with work T1 wastes at most O(T1) processor
cycles.

PROOF:

If there is a inefficient
B G

D
es

ire

quantum r with desire
dr , there is an earlier
efficient quantum s

B C G H

Defficient quantum s
with desire ds = dr /2. CA

A
D

D E
E

F
F

H

Time

62

Analysis Idea — Waste
THEOREM: A job with work T1 wastes at most O(T1) processor
cycles.

PROOF:

If there is a inefficient
B G

D
es

ire

quantum r with desire
dr , there is an earlier
efficient quantum s

B C G H

Defficient quantum s
with desire ds = dr /2.
We amortize the

CA
A

D
D E

E

F
F

H

Timewaste during
quantum r to the
work done during

63

work done during
quantum s.

Analysis Idea — Time
THEOREM: Consider a job with work T1 and span T∞ running on
a P-processor machine with quantum length L and let R =
O(T L l P) A G t th t th j b l tO(T∞ + L lg P). A-GREEDY guarantees that the job completes
in time T ≤ O(T1/Ptrim(R) + T∞ + L lg P).

64

Analysis Idea — Time
THEOREM: Consider a job with work T1 and span T∞ running on
a P-processor machine with quantum length L and let R =
O(T L l P) A G t th t th j b l t

PROOF IDEA: Bound the number of the three types of quanta

O(T∞ + L lg P). A-GREEDY guarantees that the job completes
in time T ≤ O(T1/Ptrim(R) + T∞ + L lg P).

Too much waste3 elseif u 1 < L δ a 1

PROOF IDEA: Bound the number of the three types of quanta.
FEEDBACK(q, δ)

5 elseif a = d Small aste + large allotment

Too much waste.
Inefficient Quanta.

3. elseif uq−1 < L δ aq−1
4. then dq dq−1/2

5. elseif aq−1 = dq−1
6. then dq 2dq−1

Small waste + large allotment.
Efficient and Satisfied Quanta.

65

7. else dq dq−1 Small waste + small allotment.
Efficient and Deprived Quanta.

Special Case: L = 1 and δ = 1
THEOREM: Consider a job with work T1 and span T∞ running
on a P-processor machine with L = 1 and R = 2T∞ + lg P + 1.
A G l t th j b i t t T /P 2T lA-GREEDY completes the job in at most T1/Ptrim(R) + 2T∞ + lg
P + 1 time steps.

PROOF IDEA:

Too much waste3. elseif u 1 < a 1

PROOF IDEA:
FEEDBACK(q,1)

5 elseif a = d Small aste + large allotment

Too much waste.
Incomplete step

3. elseif uq−1 < aq−1
4. then dq dq−1/2

5. elseif aq−1 = dq−1
6. then dq 2dq−1

Small waste + large allotment.
Complete and satisfied step

66

7. else dq dq−1 Small waste + small allotment.
Complete and deprived step

Incomplete Steps

On an incomplete step, A-GREEDY
t ll th d th dexecutes all the ready threads,

and therefore reduces the
remaining critical path by 1.g p y

LEMMA 1: There are at most T∞
incomplete steps.

67

Complete and Satisfied Steps

A-GREEDY doubles the desire after Incomplete
complete and satisfied steps, and halves
the desire after incomplete steps.

p
Comp. and sat.
Comp. and dep.

D
es

ir
e

D

68

Time

Complete and Satisfied Steps

A-GREEDY doubles the desire after Incomplete
complete and satisfied steps, and halves
the desire after incomplete steps.

p
Comp. and sat.
Comp. and dep.

D
es

ir
e

D
es

ir
e

DD

69

TimeTime

Complete and Satisfied Steps

A-GREEDY doubles the desire after Incomplete
complete and satisfied steps, and halves
the desire after incomplete steps.
Most complete and

p
Comp. and sat.
Comp. and dep.

Most complete and
satisfied steps are
amortized against

B G

D
es

ir
e

D
es

ir
e

incomplete steps.

C HB G

DD

A
A

D
E

FC
D F

H

E

70

TimeTime

Complete and Satisfied Steps

A-GREEDY doubles the desire after Incomplete
complete and satisfied steps, and halves
the desire after incomplete steps.
Most complete and

p
Comp. and sat.
Comp. and dep.

Most complete and
satisfied steps are
amortized against

B G

D
es

ir
e

D
es

ir
e

D
es

ir
e

incomplete steps.

C HB G

DDD

D
E

FC
D F

H

E

71

TimeTimeTime

Complete and Satisfied Steps

A-GREEDY doubles the desire after Incomplete
complete and satisfied steps, and halves
the desire after incomplete steps.
Most complete and

p
Comp. and sat.
Comp. and dep.

Most complete and
satisfied steps are
amortized against

G

D
es

ir
e

D
es

ir
e

D
es

ir
e

D
es

ir
e

incomplete steps.

HG

DDDD

E
F

F
H

E

72

TimeTimeTimeTime

Complete and Satisfied Steps

A-GREEDY doubles the desire after Incomplete
complete and satisfied steps, and halves
the desire after incomplete steps.
Most complete and

p
Comp. and sat.
Comp. and dep.

Most complete and
satisfied steps are
amortized against

D
es

ir
e

D
es

ir
e

D
es

ir
e

D
es

ir
e

D
es

ir
e

incomplete steps.
DDDDD

73

TimeTimeTimeTimeTime

Complete and Satisfied Steps

A-GREEDY doubles the desire after Incomplete
complete and satisfied steps, and halves
the desire after incomplete steps.
Most complete and

p
Comp. and sat.
Comp. and dep.

Most complete and
satisfied steps are
amortized against

D
es

ir
e

D
es

ir
e

D
es

ir
e

D
es

ir
e

D
es

ir
e

incomplete steps.
LEMMA 2: If there are
r incomplete steps DDDDDr incomplete steps,
there are at most r +
lg P + 1 complete

d ti fi d t

74

TimeTimeTimeTimeTime
and satisfied steps.

Complete and Deprived Steps

On deprived steps, aq = min {dq, pq} < dq ⇨ aq = pq.q q q q q q

On complete steps, uq = aq.
Let S be the set of complete and deprived steps, and PS =
(1/|S|)∑ b th il bilit th t(1/|S|)∑S pq be the mean availability on these steps.
The total number of tasks executed is T1. Therefore,
T ≥ ∑ uT1 ≥ ∑S uq

= ∑S pq

= |S| PS.| | S

LEMMA 3: The total number of complete and deprived steps
is |S| ≤ T1/PS.

75

Special Case: L = 1 and δ = 1
FEEDBACK(q,1)

#incom ≤ T3. elseif uq 1 < aq 1

5 elseif a = d #com&sat ≤ #incom + lg P + 1

#incom. ≤ T∞3. elseif uq−1 < aq−1
4. then dq dq−1/2

5. elseif aq−1 = dq−1
6. then dq 2dq−1

7 l d d

#com&sat. ≤ #incom. + lg P + 1
≤ T∞ + lg P + 1

7. else dq dq−1 #com&dep. = |S| ≤ T1/PS

Special Case: L = 1 and δ = 1
FEEDBACK(q,1)

#incom ≤ T3. elseif uq 1 < aq 1

5 elseif a = d #com&sat ≤ #incom + lg P + 1

#incom. ≤ T∞3. elseif uq−1 < aq−1
4. then dq dq−1/2

5. elseif aq−1 = dq−1
6. then dq 2dq−1

7 l d d

#com&sat. ≤ #incom. + lg P + 1
≤ T∞ + lg P + 1

7. else dq dq−1 #com&dep. = |S| ≤ T1/PS

Completion time T ≤ T1/PS + 2T∞ + lg P + 1.1 S

Special Case: L = 1 and δ = 1
FEEDBACK(q,1)

#incom ≤ T3. elseif uq 1 < aq 1

5 elseif a = d #com&sat ≤ #incom + lg P + 1

#incom. ≤ T∞3. elseif uq−1 < aq−1
4. then dq dq−1/2

5. elseif aq−1 = dq−1
6. then dq 2dq−1

7 l d d

#com&sat. ≤ #incom. + lg P + 1
≤ T∞ + lg P + 1

7. else dq dq−1 #com&dep. = |S| ≤ T1/PS

Completion time T ≤ T1/PS + 2T∞ + lg P + 1.1 S

Trim incomplete and complete & satisfied steps.

Special Case: L = 1 and δ = 1
FEEDBACK(q,1)

#incom ≤ T3. elseif uq 1 < aq 1

5 elseif a = d #com&sat ≤ #incom + lg P + 1

#incom. ≤ T∞3. elseif uq−1 < aq−1
4. then dq dq−1/2

5. elseif aq−1 = dq−1
6. then dq 2dq−1

7 l d d

#com&sat. ≤ #incom. + lg P + 1
≤ T∞ + lg P + 1

7. else dq dq−1 #com&dep. = |S| ≤ T1/PS

Completion time T ≤ T1/PS + 2T∞ + lg P + 1.1 S

Trim incomplete and complete & satisfied steps.
Set R = 2T∞ + lg P + 1.

Special Case: L = 1 and δ = 1
FEEDBACK(q,1)

#incom ≤ T3. elseif uq 1 < aq 1

5 elseif a = d #com&sat ≤ #incom + lg P + 1

#incom. ≤ T∞3. elseif uq−1 < aq−1
4. then dq dq−1/2

5. elseif aq−1 = dq−1
6. then dq 2dq−1

7 l d d

#com&sat. ≤ #incom. + lg P + 1
≤ T∞ + lg P + 1

7. else dq dq−1 #com&dep. = |S| ≤ T1/PS

Completion time T ≤ T1/PS + 2T∞ + lg P + 1.1 S

Trim incomplete and complete & satisfied steps.
Set R = 2T∞ + lg P + 1.
Therefore, PS ≥ Ptrim(R), and T1/PS ≤ T1/ Ptrim(R).

Special Case: L = 1 and δ = 1
FEEDBACK(q,1)

#incom ≤ T3. elseif uq 1 < aq 1

5 elseif a = d #com&sat ≤ #incom + lg P + 1

#incom. ≤ T∞3. elseif uq−1 < aq−1
4. then dq dq−1/2

5. elseif aq−1 = dq−1
6. then dq 2dq−1

7 l d d

#com&sat. ≤ #incom. + lg P + 1
≤ T∞ + lg P + 1

Completion time T ≤ T1/PS + 2T∞ + lg P + 1.

7. else dq dq−1 #com&dep. = |S| ≤ T1/PS

1 S

Trim incomplete and complete & satisfied steps.
Set R = 2T∞ + lg P + 1.
Therefore, PS ≥ Ptrim(R), and T1/PS ≤ T1/ Ptrim(R).
Completion time T ≤ T1/ Ptrim(R) + 2T∞ + lg P + 1.

Back to the General Case

3 elseif u < L δ a

FEEDBACK(q,δ)

#ineff ≤ T /(L (1 − δ))

5 l if d

3. elseif uq−1 < L δ aq−1
4. then dq dq−1/2

ff& t ≤ #i ff l P

#ineff. ≤ T∞/(L (1 δ))

5. elseif aq−1 = dq−1
6. then dq 2dq−1

#eff&sat. ≤ #ineff. + lg P
≤ T∞/(L(1 − δ)) + lg P

7. else dq dq−1 #eff&dep. = |S| ≤ T1/(L δ PS)

Back to the General Case
FEEDBACK(q,δ)

3 elseif u < L δ a #ineff ≤ T /(L (1 − δ))

5 l if d

3. elseif uq−1 < L δ aq−1
4. then dq dq−1/2

ff& t ≤ #i ff l P

#ineff. ≤ T∞/(L (1 δ))

5. elseif aq−1 = dq−1
6. then dq 2dq−1

#eff&sat. ≤ #ineff. + lg P
≤ T∞/(L(1 − δ)) + lg P

T i ll t i i ffi i t d ffi i t & ti fi d t

7. else dq dq−1 #eff&dep. = |S| ≤ T1/(L δ PS)

Trim all steps in inefficient and efficient & satisfied quanta.
Set R = 2T∞/(1−δ) + L lg P.
We get PS ≥ Pt i (R) and T1/PS ≤ T1/ Pt i (R)We get PS ≥ Ptrim(R) and T1/PS ≤ T1/ Ptrim(R).
Therefore, T ≤ T1/(δPtrim(R)) + 2T∞/(1 − δ) + L lg P.

Closer Look at the Completion Time
T = O(T1/Ptrim(R) + T∞ + L lg P) where R = O(T∞ + L lg P).
Lower Bound: TL > max {T1/Pmean, T∞}

84

Closer Look at the Completion Time
T = O(T1/Ptrim(R) + T∞ + L lg P) where R = O(T∞ + L lg P).
Lower Bound: TL > max {T1/Pmean, T∞}

Jobs with large parallelism,
T1/Ptrim(R) >> T∞ + L lg P.

The number of time steps
trimmed is a small fraction of the
total number of time stepstotal number of time steps.
For “nice” availability profiles,
Ptrim(R) ~ Pmean. T = O(T1/Pmean).trim(R) mean (1 mean)

85

Closer Look at the Completion Time
T = O(T1/Ptrim(R) + T∞ + L lg P) where R = O(T∞ + L lg P).
Lower Bound: TL > max {T1/Pmean, T∞}

Jobs with large parallelism,
T1/Ptrim(R) >> T∞ + L lg P.

The number of time steps
trimmed is a small fraction of the
total number of time stepstotal number of time steps.
For “nice” availability profiles,
Ptrim(R) ~ Pmean. T = O(T1/Pmean).

Jobs with small parallelism,
T = O(T∞ + L lg P).

trim(R) mean (1 mean)

86

(g)

Except for very short jobs, we have
T∞ >> L lg P. In this case, T = O(T∞).

A-STEAL Bounds

THEOREM: Consider a job with work T1 and span T∞
running on a P-processor machine with quantum length Lrunning on a P processor machine with quantum length L
and let R = O(T∞ + L lg P + L ln 1/ε). A-STEAL guarantees
that the job

completes the job in O(T1/Ptrim(R) + T∞ + L lg P + L ln 1/ε)
time steps with probability (1-ε), and
wastes at most O(T1) processor cycles.

87

More Results

The job scheduler allocates processors to individual
jobs The combination of A GREEDY (or A STEAL) and ajobs. The combination of A-GREEDY (or A-STEAL) and a
job scheduler that implements dynamic equipartitioning
(or round-robin) is constant-competitive with optimal
scheduler with respect to both makespan and mean
completion time.

Extensive
simulations show
th t A S h ldthat A-STEAL should
work well in practice.

88

Future Work

Does trim analysis apply in other domains?
I A G A S bl d ith i l tIs A-GREEDY or A-STEAL provably good with incomplete
information about the job’s utilization history?
How do you provide parallelism feedback when theHow do you provide parallelism feedback when the
individual jobs are not independent?

Parse
MPEG
Stream

Inverse
Quantization

Saturation &
Mismatch Control

Inverse Discrete
Cosine Transform Saturation

Motion Vector
Decode

Luminescence
Channel Processing

Chrominance
Channel Processing

Chrominance
Channel Processing

89

DisplayCombiner &
Processing

Experimental Results

We simulated a large multiprogrammed multiprocessor and
used synthetic jobs to assess the performance of A-STEAL.used synthetic jobs to assess the performance of A STEAL.
A-STEAL provides nearly perfect linear speedup and wastes
less than 20% of the allotted processor cycles.
We compared the utilization provided by A-STEAL and ABP,
a work-stealing scheduler that does not employ parallelism
feedback When manyfeedback. When many
synthetic jobs share a large
server, and jobs arrive and
l d i ll A Sleave dynamically, A-STEAL
consistently provided higher
utilization than ABP for a

90

variety of job mixes.

The Simulation Environment

The simulated large multiprogrammed multiprocessors,
and the simulation environment is built using Desmo Jand the simulation environment is built using Desmo-J.

We simulated the execution of synthetic jobs.
The jobs are scheduled using work-stealing On eachThe jobs are scheduled using work stealing. On each
discrete time step, a processer can complete either a
work-cycle, a steal-cycle or a mug-cycle.
W d A S ABP ABP t d bWe compared A-STEAL or ABP. ABP, presented by
Arora, Blumofe and Plaxton, is an adaptive work-
stealing scheduler that does not provide parallelism g p p
feedback.

91

The work, critical path, and
the rate of change of
parallelism of the jobs can
b h d b h i

92

be changed by changing w1,
w2 and h.

Job Schedulers

The job scheduler allocates processors to individual jobs.

An equipartitioning (EQ) job scheduler simply allots the
same number of processors to all the jobs in the systemsame number of processors to all the jobs in the system.
A dynamic equipartitioning (DEQ) is a dynamic version of
the equipartitioning job scheduler, which allots equal
number of processors to all jobs with the constraint that
no job gets more processors than it desires. Thus, it
requires parallelism feedbackrequires parallelism feedback.
For profile-based job schedulers, we pre-computed the
sequence of processor availabilities for each quantum of

93

the job’s execution using workload archives [Feitelson].

Utilization Experiment
Comparing the utilization provided by A-Steal and ABP on a
simulated 1000 processor server, where jobs enter dynamically

ith mean inter arri al time of 1000 time stepswith mean inter-arrival time of 1000 time steps.
We considered 9 sets of
jobs with the three

Uniform distribution

j
distributions on each
parallelism and critical path.

Uniform distribution
Heavy tailed I:
Pr{x} ~1/x.{ }
Heavy tailed II:
Pr{x} ~ 1/√x.

94

Utilization Experiment
Comparing the utilization provided by A-Steal and ABP on a
simulated 1000 processor server, where jobs enter dynamically

ith mean inter arri al time of 1000 time stepswith mean inter-arrival time of 1000 time steps.
We considered 9 sets of
jobs with the three

Uniform distribution

j
distributions on each
parallelism and critical path.

Uniform distribution
Heavy tailed I:
Pr{x} ~1/x.{ }
Heavy tailed II:
Pr{x} ~ 1/√x.

95

A-STEAL consistently provides higher utilization. The mean
completion time of the jobs is about 50% faster using A-STEAL

Time-Waste Experiments I

Comparing the completion
time and waste on a simulated
P = 128 processor machine
using predetermined
availability profiles with meanavailability profiles with mean
availability P = 30,60.

A STEAL wastes fewerA-STEAL wastes fewer
processor cycles, since it
uses parallelism feedback

lto control excess
allotment.
But A-STEAL completes

96

But A STEAL completes
the jobs slightly slower.

Time-Waste Experiment II

This experiment is similar to the
previous one, except that we ran p , p
the jobs on a larger (P = 512
processor) machine.

Again, A-STEAL wastes fewer
processor cycles.
Paradoxically in this case A-Paradoxically, in this case A-
STEAL also completes faster.

A-STEAL may be a better optionA STEAL may be a better option
on heavily loaded large machines
where each job gets a small
fraction of the total processors

97

fraction of the total processors.

