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Adaptive Multiprocessor Scheduling

Many jobs space-share a large 
multiprocessor, entering and p , g
leaving the system dynamically.  
The number of processors available 
to the job may therefore changeto the job may, therefore, change 
during execution and the jobs must 
adapt to these changes.
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Adaptive Multiprocessor Scheduling

Many jobs space-share a large 
multiprocessor, entering and p , g
leaving the system dynamically.  
The number of processors available 
to the job may therefore changeto the job may, therefore, change 
during execution and the jobs must 
adapt to these changes.
The parallelism of a job may 
change during execution.  The jobs 
do not know their future parallelismdo not know their future parallelism.
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A Job and Its Environment
Focus on a single job.
The environment is an abstract entity 

f
Environment

that captures the behavior of the other 
jobs in the system and the allocation 
policy of the job scheduler. desire d

allotment aBetween scheduling quanta, the job 
provides parallelism feedback to the 
environment by requesting the desired 

Job

allotment a

y q g
number of processors for the next 
quantum. 
The environment allots processors toThe environment allots processors to 
the job.  The allotment for a quantum is 
always less than or equal to the desire.
The allotment remains unchanged during a quantum and the
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The allotment remains unchanged during a quantum, and  the 
quantum length L is long enough to amortize the overheads 
due to communication and reallocation.



How To Provide Feedback

L L L
The job does not know its 
future parallelism.

sm

p
The job’s parallelism may 
change during the 
q ant m Therefore

Pa
ra

lle
lisquantum.  Therefore, 

using the instantaneous
parallelism as the desire 

Time

might be ineffective. 
For example, if the job 
uses instantaneous A Buses instantaneous  
parallelism to estimate desire, then at time A, the job will 
ask for more processors than it needs.  On the other 

f f
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hand, at time B, the job will ask for fewer processors than 
it needs.



Completion Time and Waste

If the job requests (and 
receives) too few

L L L
receives) too few 
processors, then it runs 
slowly.

sm

If the job requests (and 
receives) too many 
processors, then it wastes Pa

ra
lle

lis

p ,
processor cycles that other 
jobs could have used more 
effectively Timeeffectively.
An effective parallelism feedback algorithm tries to reduce 
both completion time and waste of the job.

11

j



Contributions

A provably good algorithm for providing parallelism feedback.  
If this algorithm is combined with greedy scheduling [G69, 
B72], the job completes quickly and waste few processor 
cycles even if the environment is adversarial We call thecycles, even if the environment is adversarial.  We call the 
combination A-GREEDY.
Similarly, if it is combined with work-stealing [BL94], we call 
the combination A-STEAL. 
To analyze A-GREEDY and A-STEAL, we introduce a new 
analytical technique called trim analysisanalytical technique called trim analysis.
Preliminary experiments using simulations indicate that 
advantages of parallelism feedback become apparent on 
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moderately to heavily loaded large machines.



Theoretical Results

THEOREM: Consider a job with work T1 and spanj 1 p
(critical-path length) T∞ running on P-processor 
machine and scheduling quanta of length L.  A-
GREEDY (and A STEAL) guarantees that the jobGREEDY (and A-STEAL) guarantees that the job

wastes O(T1) processor cycles and
attains linear speedup on all but O(T∞ + L lg P) time p p ( ∞ g )
steps.

The proofs use trim analysis, which ignores a few of 
data points and obtains tight bounds on the remainder.
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Experimental Results

We simulated a large multiprogrammed multiprocessor and 
used synthetic jobs to assess the performance of A-STEAL.used synthetic jobs to assess the performance of A STEAL.
A-STEAL provides nearly perfect linear speedup and wastes 
less than 20% of the allotted processor cycles.
We compared the utilization provided by A-STEAL and ABP, 
a work-stealing scheduler that does not employ parallelism 
feedback When manyfeedback.  When many 
synthetic jobs share a large 
server, and jobs arrive and 
l d i ll A Sleave dynamically, A-STEAL
consistently provided higher 
utilization than ABP for a 

14

variety of job mixes. 
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The Feedback Algorithm

It is a multiplicative-increase, multiplicative-decrease 
algorithm for providing parallelism feedback to thealgorithm for providing parallelism feedback to the 
environment.

At the beginning of quantum q, it uses the job’s recent 
history to provide parallelism feedback to the 
environment:environment: 

desire dq−1 in quantum q−1;
allotment aq−1 in quantum q−1; q

usage uq−1 — the number of processor cycles used 
effectively (not wasted) in quantum q−1.
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Utilization Parameter
Efficient

The utilization parameter 
δ < 1 is an input to the

aq δ aq

Efficient

δ < 1 is an input to the 
algorithm, which provides 
a threshold for Pr

oc
es

so
rs

Wasted
Used

determining whether a 
particular quantum is 
efficient or inefficient, e.g., 

L
0

I ffi i t, g ,
δ = 90%.

Quantum q is efficient if 
u ≥ Lδa

aq δ aq

Inefficient

uq ≥ Lδaq.

Pr
oc

es
so

rs
Wasted
Used

Quantum q is inefficient if 
uq < Lδ aq

17L
0

uq Lδ aq.



Details of the Algorithm
FEEDBACK(q,δ )
1. if q = 1q

2.   then dq 1

3 elseif u < L δ a3. elseif uq−1 < L δ aq−1
4.   then dq dq−1/2

5 l if d5. elseif aq−1 = dq−1
6.   then dq 2dq−1

7. else dq dq−1
8. Report dq as the desire for quantum q.
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Details of the Algorithm

1. if q = 1 Initial desire is d1 = 1.

FEEDBACK(q,δ )
q

2.   then dq 1
1 

3 elseif u < L δ a

5 l if d

3. elseif uq−1 < L δ aq−1
4.   then dq dq−1/2

5. elseif aq−1 = dq−1
6.   then dq 2dq−1

7. else dq dq−1
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Details of the Algorithm

1. if q = 1 Initial desire is d1 = 1.

FEEDBACK(q,δ )
q

2.   then dq 1

Too much waste

1 

3 elseif u < L δ a

5 l if d

Too much waste.
Job overestimated the desire.
Decrease the desire.

3. elseif uq−1 < L δ aq−1
4.   then dq dq−1/2

5. elseif aq−1 = dq−1
6.   then dq 2dq−1

7. else dq dq−1
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Details of the Algorithm

1. if q = 1 Initial desire is d1 = 1.

FEEDBACK(q,δ )
q

2.   then dq 1

Too much waste

1 

3 elseif u < L δ a

5 l if d S ll t l ll t t

Too much waste.
Decrease the desire.

3. elseif uq−1 < L δ aq−1
4.   then dq dq−1/2

5. elseif aq−1 = dq−1
6.   then dq 2dq−1

Small waste + large allotment.
Job effectively utilized all the 
processors requested and 

7. else dq dq−1 speculates that it may be able 
to use more.
Increase the desire
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Increase the desire.



Details of the Algorithm

1. if q = 1 Initial desire is d1 = 1.

FEEDBACK(q,δ )
q

2.   then dq 1

Too much waste

1 

3 elseif u < L δ a

5 l if d S ll t l ll t t

Too much waste.
Decrease the desire.

3. elseif uq−1 < L δ aq−1
4.   then dq dq−1/2

5. elseif aq−1 = dq−1
6.   then dq 2dq−1

Small waste + large allotment.
Increase the desire.

7. else dq dq−1 Small waste + small allotment.
The job was allotted few 
processors but used all of

22

processors, but used all of 
them effectively. 
Maintain the desire.



Details of the Algorithm

1. if q = 1 Initial desire is d1 = 1.

FEEDBACK(q,δ )
q

2.   then dq 1

Too much waste

1 

3 elseif u < L δ a

5 l if d S ll t l ll t t

Too much waste.
Decrease the desire.

3. elseif uq−1 < L δ aq−1
4.   then dq dq−1/2

5. elseif aq−1 = dq−1
6.   then dq 2dq−1

Small waste + large allotment.
Increase the desire.

7. else dq dq−1 Small waste + small allotment.
Maintain the desire.
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It provides simple and effective parallelism feedback.
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Job Model
DAG

Node: Unit time task.
Edge: Dependence between tasks. 
A task becomes ready when all its 
predecessors have been executedpredecessors have been executed.

T1: Work
Number of nodes (tasks) in the DAG.( )
Time to execute on one processor.

T∞: Span (Critical Path Length)
L th f th l t th i thLength of the longest path in the 
DAG.
Time to execute on infinite number 

25

of processors.



Greedy Scheduling

During quantum q, A-GREEDY

aq = 4
g q q,

schedules the tasks on aq allotted 
processors greedily.
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Greedy Scheduling
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g q q,
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Greedy Scheduling

During quantum q, A-GREEDY

aq = 4
g q q,

schedules the tasks on aq allotted 
processors greedily.
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least aq tasks are ready, 
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Greedy Scheduling

During quantum q, A-GREEDY

aq = 4
g q q,

schedules the tasks on aq allotted 
processors greedily.
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Case 2: (incomplete step) If 
less than aq tasks are ready, q y
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Nonadaptive Greedy Scheduling

The allotment is fixed at P processors. p

Lower Bound:  Completion time 
T ≥ max{T1/P T }T ≥ max{T1/P, T∞}

Greedy scheduling guarantees  y g g
T ≤ T1/P + T∞.  [G69, B72]

The completion time is within 2 of 
i loptimal.

If the job is parallel enough, then
T1/P << T The completion time is

31

T1/P << T∞.  The completion time is 
almost optimal (linear speedup).
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Processor Availability
Job Environment
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Processor Availability
Job Environment

d = 7
Between quanta, the job 
interacts with its environment to 
decide its allotment for the next p = 10p = 10

a = min{d, p} = 7

decide its allotment for the next 
quantum.
The environment represents the 
other jobs in the system theother jobs in the system, the 
allocation policy of the job 
scheduler, etc.
B h t thBy whatever means, the 
environment determines the 
processor availability p for the 
j bjob.
The allotment of the job is 
always the minimum of the 
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Processor Availability
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Job EnvironmentBetween quanta, the job 
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Processor Availability

d = 7
Job EnvironmentBetween quanta, the job 

interacts with its environment to 
decide its allotment for the next

a = min{d, p} = 7

p = 10p = 10decide its allotment for the next 
quantum.
The environment represents the 
other jobs in the system the Executes on 7 

processors during 
the quantum

Executes on 7 
processors during 
the quantum

other jobs in the system, the 
allocation policy of the job 
scheduler, etc.
B h t th

p = 9p = 9

d = 14
By whatever means, the 
environment determines the 
processor availability p for the 
j b p  9p  9

a = min{d, p} = 9

job.
The allotment of the job is 
always the minimum of the 
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Executes on 9 
processors during 
the quantum

Executes on 9 
processors during 
the quantum

y
desire and the processor 
availability. 



The Environment

The completion time of the job depends on its 
environment’s processor availability

For example, if the environment decides that the 
processor availability of the job is always 1, then the job 

l l tt h t it ll li

environment s processor availability.

runs slowly, no matter what its parallelism. 
Therefore, we analyze the completion time relative to the 
availability provided by the environment.

We assume that the environment is an adversary of the 
job.

availability provided by the environment.

Thus, our results apply to any environment.
job.

We would like to prove that A-GREEDY provides speedup p p p p
with respect to (proportional to) the mean availability Pmean.



Power of the Adversary
PROBLEM: Even omniscient 
parallelism feedback cannot 
guarantee good speedup with 
respect to the mean availability
Pmean against an adversary.Pmean against an adversary.
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Power of the Adversary

d = 1
parallelism = 1parallelism = 1PROBLEM: Even omniscient 

parallelism feedback cannot d  1
guarantee good speedup with 
respect to the mean availability
Pmean against an adversary.Pmean against an adversary.
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When a job has small 
parallelism and requests few 

th i t

Pmean against an adversary.

processors, the environment 
makes the availability huge.
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d 100
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parallelism = 100parallelism = 100
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parallelism, the environment 
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processors, the environment 
makes the availability huge.
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d 100

pp

parallelism = 100parallelism = 100

When a job has large 
parallelism, the environment 
makes the availability small.
Th f th j b’ ll t t i
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a = min{d, p} = 1

d = 100 p = 1p = 1Therefore, the job’s allotment is 
always small.



Power of the Adversary
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Since the availability is huge on 
some quanta, the mean 

il bilit P i l

Pmean against an adversary.

a = min{d, p} = 1
d = 100 p = 1p = 1

Execute on 1 proc.Execute on 1 proc.

availability Pmean is large.

d 100

pp

parallelism = 100parallelism = 100
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Power of the Adversary
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PROBLEM: Even omniscient 
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Since the availability is huge on 
some quanta, the mean 

il bilit P i l

Pmean against an adversary.

a = min{d, p} = 1
d = 100 p = 1p = 1

Execute on 1 proc.Execute on 1 proc.

availability Pmean is large.
But the availability is large only 
on time steps when the job isn’t

d 100

pp

parallelism = 100parallelism = 100

on time steps when the job isn t 
able to use the available 
processors.  Therefore, it runs 
virtually serially
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a = min{d, p} = 1

d = 100 p = 1p = 1virtually serially.



Mean Allotment Does Not Work

d = 1
parallelism = 100parallelism = 100

100100

Try to get speedup with respect to 
the mean allotment.  Here is a 
trivial algorithm

a = min{d, p} = 1
d  1

Execute on 1 proc.Execute on 1 proc.

p = 100p = 100trivial algorithm.
Always requests 1 processor.
The job achieves optimal

d = 1

parallelism = 100parallelism = 100

100100

The job achieves optimal 
completion time with respect 
to the mean allotment.

a = min{d, p} = 1
d = 1 p = 100p = 100

Execute on 1 proc.Execute on 1 proc.

And the job does not waste 
any processor cycles.

d 1

pp

parallelism = 100parallelism = 100PROBLEM: The algorithm 
provides no useful parallelism
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a = min{d, p} = 1

d = 1 p = 100p = 100provides no useful parallelism 
feedback. 



R-Trimmed Mean

R-trimmed mean Strim(R) of a 
time series S is computed as

Va
lu

e

time series S is computed as 
follows:

Time
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R-Trimmed Mean

R-trimmed mean Strim(R) of a 
time series S is computed astime series S is computed as 
follows:

Va
lu

e

Sort the data in the set by 

Time
value. 

lu
e

Va
l
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R-Trimmed Mean

R-trimmed mean Strim(R) of a 
time series S is computed astime series S is computed as 
follows:

Va
lu

e

Sort the data in the set by 

Time
value. 
Ignore the R largest
values

lu
e

values.

lu
e 

Va
l

Va
R
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R-Trimmed Mean

R-trimmed mean Strim(R) of a 
time series S is computed astime series S is computed as 
follows:

Va
lu

e

Sort the data in the set by 

Time
value. 
Ignore the R largest
values

lu
e

values.
Compute the mean of the 
remaining. lu

e 
Va

lg

Va

Strim(R)

R

In general, as R increases, R-
trimmed mean Strim(R)

57

Rtrim(R)
decreases.



Trim Analysis
IDEA: Trim (ignore) the R steps with the highest availability. 

Against an adversarialAgainst an adversarial 
environment, no parallelism 
feedback algorithm can 

t li d

Va
lu

e

guarantee linear speedup 
with respect to 0-trimmed 
mean availability. V

A good parallelism 
feedback algorithm should 
provide linear speedup withprovide linear speedup with 
respect to R-trimmed mean 
availability, where R is 12

4
8
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Three Types of Quanta

1. if q = 1

FEEDBACK(q,δ )
q

2.   then dq 1

Too much waste3 elseif u < L δ a

5 l if d S ll t l ll t t

Too much waste.
Inefficient Quanta.

3. elseif uq−1 < L δ aq−1
4.   then dq dq−1/2

5. elseif aq−1 = dq−1
6.   then dq 2dq−1

Small waste + large allotment.
Efficient and Satisfied Quanta.

7. else dq dq−1 Small waste + small allotment.
Efficient and Deprived Quanta.
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Analysis Idea — Waste
THEOREM: A job with work T1 wastes at most O(T1) processor 
cycles.

61



Analysis Idea — Waste
THEOREM: A job with work T1 wastes at most O(T1) processor 
cycles.
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Analysis Idea — Waste
THEOREM: A job with work T1 wastes at most O(T1) processor 
cycles.

PROOF:

If there is a inefficient 
B G

D
es

ire

quantum r with desire 
dr , there is an earlier 
efficient quantum s

B C G H

Defficient quantum s
with desire ds = dr /2.
We amortize the 
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Timewaste during 
quantum r to the 
work done during
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Analysis Idea — Time
THEOREM: Consider a job with work T1 and span T∞ running on 
a P-processor machine with quantum length L and let R =
O(T L l P) A G t th t th j b l tO(T∞ + L lg P). A-GREEDY guarantees that the job completes 
in time T ≤ O(T1/Ptrim(R) + T∞ + L lg P).
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Analysis Idea — Time
THEOREM: Consider a job with work T1 and span T∞ running on 
a P-processor machine with quantum length L and let R =
O(T L l P) A G t th t th j b l t

PROOF IDEA: Bound the number of the three types of quanta

O(T∞ + L lg P). A-GREEDY guarantees that the job completes 
in time T ≤ O(T1/Ptrim(R) + T∞ + L lg P).

Too much waste3 elseif u 1 < L δ a 1

PROOF IDEA:  Bound the number of the three types of quanta.
FEEDBACK(q, δ)

5 elseif a = d Small aste + large allotment

Too much waste.
Inefficient Quanta.

3. elseif uq−1 < L δ aq−1
4.   then dq dq−1/2

5. elseif aq−1 = dq−1
6.   then dq 2dq−1

Small waste + large allotment.
Efficient and Satisfied Quanta.
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7. else dq dq−1 Small waste + small allotment.
Efficient and Deprived Quanta.



Special Case: L = 1 and δ = 1
THEOREM: Consider a job with work T1 and span T∞ running 
on a P-processor machine with L = 1 and R = 2T∞ + lg P + 1.  
A G l t th j b i t t T /P 2T lA-GREEDY completes the job in at most T1/Ptrim(R) + 2T∞ + lg
P + 1 time steps.

PROOF IDEA:

Too much waste3. elseif u 1 < a 1

PROOF IDEA:
FEEDBACK(q,1)

5 elseif a = d Small aste + large allotment

Too much waste.
Incomplete step

3. elseif uq−1 < aq−1
4.   then dq dq−1/2

5. elseif aq−1 = dq−1
6.   then dq 2dq−1

Small waste + large allotment.
Complete and satisfied step
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7. else dq dq−1 Small waste + small allotment.
Complete and deprived step



Incomplete Steps

On an incomplete step, A-GREEDY
t ll th d th dexecutes all the ready threads, 

and therefore reduces the 
remaining critical path by 1.g p y

LEMMA 1:  There are at most T∞
incomplete steps. 
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Complete and Satisfied Steps

A-GREEDY doubles the desire after Incomplete
complete and satisfied steps, and halves 
the desire after incomplete steps.
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Complete and Satisfied Steps

A-GREEDY doubles the desire after Incomplete
complete and satisfied steps, and halves 
the desire after incomplete steps.
Most complete and
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Complete and Satisfied Steps
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Complete and Satisfied Steps

A-GREEDY doubles the desire after Incomplete
complete and satisfied steps, and halves 
the desire after incomplete steps.
Most complete and

p
Comp. and sat.
Comp. and dep.

Most complete and 
satisfied steps are 
amortized against 

G

D
es

ir
e

D
es

ir
e

D
es

ir
e

D
es

ir
e

incomplete steps.

HG

DDDD

E
F

F
H

E

72

TimeTimeTimeTime



Complete and Satisfied Steps

A-GREEDY doubles the desire after Incomplete
complete and satisfied steps, and halves 
the desire after incomplete steps.
Most complete and
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Complete and Satisfied Steps

A-GREEDY doubles the desire after Incomplete
complete and satisfied steps, and halves 
the desire after incomplete steps.
Most complete and

p
Comp. and sat.
Comp. and dep.

Most complete and 
satisfied steps are 
amortized against 

D
es

ir
e

D
es

ir
e

D
es

ir
e

D
es

ir
e

D
es

ir
e

incomplete steps.
LEMMA 2: If there are 
r incomplete steps DDDDDr incomplete steps, 
there are at most r + 
lg P + 1 complete 

d ti fi d t
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Complete and Deprived Steps

On deprived steps, aq = min {dq, pq} < dq ⇨ aq = pq.q q q q q q

On complete steps, uq = aq.
Let S be the set of complete and deprived steps, and PS =
(1/|S|)∑ b th il bilit th t(1/|S|)∑S pq be the mean availability on these steps.
The total number of tasks executed is T1.  Therefore,
T ≥ ∑ uT1 ≥ ∑S uq

=  ∑S pq

=  |S| PS.| | S

LEMMA 3: The total number of complete and deprived steps 
is |S| ≤ T1/PS.
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Special Case: L = 1 and δ = 1
FEEDBACK(q,1)

#incom ≤ T3. elseif uq 1 < aq 1

5 elseif a = d #com&sat ≤ #incom + lg P + 1

#incom. ≤ T∞3. elseif uq−1 < aq−1
4.   then dq dq−1/2

5. elseif aq−1 = dq−1
6.   then dq 2dq−1

7 l d d

#com&sat. ≤ #incom. + lg P + 1
≤ T∞ + lg P + 1

7. else dq dq−1 #com&dep. = |S| ≤ T1/PS
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Trim incomplete and complete & satisfied steps. 



Special Case: L = 1 and δ = 1
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#incom ≤ T3. elseif uq 1 < aq 1

5 elseif a = d #com&sat ≤ #incom + lg P + 1

#incom. ≤ T∞3. elseif uq−1 < aq−1
4.   then dq dq−1/2

5. elseif aq−1 = dq−1
6.   then dq 2dq−1

7 l d d
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7. else dq dq−1 #com&dep. = |S| ≤ T1/PS

Completion time T ≤ T1/PS + 2T∞ + lg P + 1.1 S

Trim incomplete and complete & satisfied steps. 
Set R = 2T∞ + lg P + 1.
Therefore, PS ≥ Ptrim(R), and T1/PS  ≤ T1/ Ptrim(R).



Special Case: L = 1 and δ = 1
FEEDBACK(q,1)

#incom ≤ T3. elseif uq 1 < aq 1

5 elseif a = d #com&sat ≤ #incom + lg P + 1

#incom. ≤ T∞3. elseif uq−1 < aq−1
4.   then dq dq−1/2

5. elseif aq−1 = dq−1
6.   then dq 2dq−1

7 l d d

#com&sat. ≤ #incom. + lg P + 1
≤ T∞ + lg P + 1

Completion time T ≤ T1/PS + 2T∞ + lg P + 1.

7. else dq dq−1 #com&dep. = |S| ≤ T1/PS

1 S

Trim incomplete and complete & satisfied steps. 
Set R = 2T∞ + lg P + 1.
Therefore, PS ≥ Ptrim(R), and T1/PS  ≤ T1/ Ptrim(R).
Completion time T ≤ T1/ Ptrim(R) + 2T∞ + lg P + 1.



Back to the General Case

3 elseif u < L δ a

FEEDBACK(q,δ )

#ineff ≤ T /(L (1 − δ ))

5 l if d

3. elseif uq−1 < L δ aq−1
4.   then dq dq−1/2

# ff& t ≤ #i ff l P

#ineff. ≤ T∞/(L (1  δ ))

5. elseif aq−1 = dq−1
6.   then dq 2dq−1

#eff&sat. ≤ #ineff. + lg P
≤ T∞/(L(1 − δ )) + lg P

7. else dq dq−1 #eff&dep. = |S| ≤ T1/(L δ PS)



Back to the General Case
FEEDBACK(q,δ )

3 elseif u < L δ a #ineff ≤ T /(L (1 − δ ))

5 l if d

3. elseif uq−1 < L δ aq−1
4.   then dq dq−1/2

# ff& t ≤ #i ff l P

#ineff. ≤ T∞/(L (1  δ ))

5. elseif aq−1 = dq−1
6.   then dq 2dq−1

#eff&sat. ≤ #ineff. + lg P
≤ T∞/(L(1 − δ )) + lg P

T i ll t i i ffi i t d ffi i t & ti fi d t

7. else dq dq−1 #eff&dep. = |S| ≤ T1/(L δ PS)

Trim all steps in inefficient and efficient & satisfied quanta. 
Set R = 2T∞/(1−δ ) + L lg P.
We get PS ≥ Pt i (R) and T1/PS ≤ T1/ Pt i (R)We get PS ≥ Ptrim(R) and T1/PS  ≤ T1/ Ptrim(R).
Therefore, T ≤ T1/(δPtrim(R)) + 2T∞/(1 − δ ) + L lg P.



Closer Look at the Completion Time
T = O(T1/Ptrim(R) + T∞ + L lg P) where R = O(T∞ + L lg P).
Lower Bound: TL > max {T1/Pmean, T∞} 
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Closer Look at the Completion Time
T = O(T1/Ptrim(R) + T∞ + L lg P) where R = O(T∞ + L lg P).
Lower Bound: TL > max {T1/Pmean, T∞} 

Jobs with large parallelism, 
T1/Ptrim(R) >> T∞ + L lg P.  

The number of time steps 
trimmed is a small fraction of the 
total number of time stepstotal number of time steps.
For “nice” availability profiles,
Ptrim(R) ~ Pmean.  T = O(T1/Pmean).trim(R) mean ( 1 mean)
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Closer Look at the Completion Time
T = O(T1/Ptrim(R) + T∞ + L lg P) where R = O(T∞ + L lg P).
Lower Bound: TL > max {T1/Pmean, T∞} 

Jobs with large parallelism, 
T1/Ptrim(R) >> T∞ + L lg P.  

The number of time steps 
trimmed is a small fraction of the 
total number of time stepstotal number of time steps.
For “nice” availability profiles,
Ptrim(R) ~ Pmean.  T = O(T1/Pmean).

Jobs with small parallelism, 
T = O(T∞ + L lg P).

trim(R) mean ( 1 mean)
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( g )

Except for very short jobs, we have 
T∞ >> L lg P.  In this case, T = O(T∞). 



A-STEAL Bounds

THEOREM: Consider a job with work T1 and span T∞
running on a P-processor machine with quantum length Lrunning on a P processor machine with quantum length L
and let R = O(T∞ + L lg P + L ln 1/ε). A-STEAL guarantees 
that the job

completes the job in O(T1/Ptrim(R) + T∞ + L lg P + L ln 1/ε)
time steps with probability (1-ε), and
wastes at most O(T1) processor cycles.
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More Results

The job scheduler allocates processors to individual 
jobs The combination of A GREEDY (or A STEAL) and ajobs. The combination of A-GREEDY (or A-STEAL) and a 
job scheduler that implements dynamic equipartitioning
(or round-robin) is constant-competitive with optimal 
scheduler with respect to both makespan and mean 
completion time.

Extensive 
simulations show 
th t A S h ldthat A-STEAL should 
work well in practice.
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Future Work

Does trim analysis apply in other domains?
I A G A S bl d ith i l tIs A-GREEDY or A-STEAL provably good with incomplete 
information about the job’s utilization history?
How do you provide parallelism feedback when theHow do you provide parallelism feedback when the 
individual jobs are not independent?

Parse 
MPEG 
Stream

Inverse 
Quantization

Saturation & 
Mismatch Control

Inverse Discrete 
Cosine Transform Saturation

Motion Vector 
Decode

Luminescence 
Channel Processing

Chrominance
Channel Processing

Chrominance
Channel Processing
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Processing



Experimental Results

We simulated a large multiprogrammed multiprocessor and 
used synthetic jobs to assess the performance of A-STEAL.used synthetic jobs to assess the performance of A STEAL.
A-STEAL provides nearly perfect linear speedup and wastes 
less than 20% of the allotted processor cycles.
We compared the utilization provided by A-STEAL and ABP, 
a work-stealing scheduler that does not employ parallelism 
feedback When manyfeedback.  When many 
synthetic jobs share a large 
server, and jobs arrive and 
l d i ll A Sleave dynamically, A-STEAL
consistently provided higher 
utilization than ABP for a 
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variety of job mixes. 



The Simulation Environment

The simulated large multiprogrammed multiprocessors, 
and the simulation environment is built using Desmo Jand the simulation environment is built using Desmo-J.  

We simulated the execution of synthetic jobs.
The jobs are scheduled using work-stealing On eachThe jobs are scheduled using work stealing.  On each 
discrete time step, a processer can complete either a 
work-cycle, a steal-cycle or a mug-cycle.
W d A S ABP ABP t d bWe compared A-STEAL or ABP.  ABP, presented by 
Arora, Blumofe and Plaxton, is an adaptive work-
stealing scheduler that does not provide parallelism g p p
feedback. 
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The work, critical path, and 
the rate of change of 
parallelism of the jobs can 
b h d b h i
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be changed by changing w1, 
w2 and h.



Job Schedulers

The job scheduler allocates processors to individual jobs.

An equipartitioning (EQ) job scheduler simply allots the 
same number of processors to all the jobs in the systemsame number of processors to all the jobs in the system.
A dynamic equipartitioning (DEQ) is a dynamic version of 
the equipartitioning job scheduler, which allots equal 
number of processors to all jobs with the constraint that 
no job gets more processors than it desires.  Thus, it 
requires parallelism feedbackrequires parallelism feedback.
For profile-based job schedulers, we pre-computed the 
sequence of processor availabilities for each quantum of 
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the job’s execution using workload archives [Feitelson].



Utilization Experiment
Comparing the utilization provided by A-Steal and ABP on a 
simulated 1000 processor server, where jobs enter dynamically 

ith mean inter arri al time of 1000 time stepswith mean inter-arrival time of 1000 time steps.  
We considered 9 sets of 
jobs with the three 

Uniform distribution

j
distributions on each 
parallelism and critical path.

Uniform distribution
Heavy tailed I: 
Pr{x} ~1/x.{ }
Heavy tailed II: 
Pr{x} ~ 1/√x.
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A-STEAL consistently provides higher utilization.  The mean 
completion time of the jobs is about 50% faster using A-STEAL



Time-Waste Experiments I  

Comparing the completion 
time and waste on a simulated 
P = 128 processor machine 
using predetermined 
availability profiles with meanavailability profiles with mean 
availability P = 30,60.  

A STEAL wastes fewerA-STEAL wastes fewer 
processor cycles, since it 
uses parallelism feedback 

lto control excess 
allotment.
But A-STEAL completes
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But A STEAL completes 
the jobs slightly slower.



Time-Waste Experiment II

This experiment is similar to the 
previous one, except that we ran p , p
the jobs on a larger (P = 512
processor) machine.

Again, A-STEAL wastes fewer 
processor cycles.
Paradoxically in this case A-Paradoxically, in this case A-
STEAL also completes faster.

A-STEAL may be a better optionA STEAL may be a better option 
on heavily loaded large machines 
where each job gets a small 
fraction of the total processors
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fraction of the total processors.


