Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material

Scheduling pipeline workflows to optimize throughput, latency and reliability

Anne Benoit, Veronika Rehn-Sonigo, Yves Robert

GRAAL team, LIP École Normale Supérieure de Lyon France

Scheduling in Aussois May 21, 2008

Anne.Benoit@ens-lyon.fr

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material

• Mapping applications onto parallel platforms Difficult challenge

- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping pipeline skeletons onto heterogeneous platforms

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping pipeline skeletons onto heterogeneous platforms

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping pipeline skeletons onto heterogeneous platforms

 Introduction
 Framework
 Mono-criterion
 Bi-criteria
 LP
 Experiments
 Conclusion
 Extra material

 Multi-criteria
 scheduling
 of
 workflows

 Workflow
 Image: Scheduling of Scheduling o

Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period \mathcal{P} : time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L} : maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP} , probability of failure of the application (i.e. some data-sets will not be processed)

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material
Multi-criteria scheduling of workflows
Workflow

Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period \mathcal{P} : time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L} : maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP} , probability of failure of the application (i.e. some data-sets will not be processed)

 Introduction
 Framework
 Mono-criterion
 Bi-criteria
 LP
 Experiments
 Conclusion
 Extra material

 Multi-criteria scheduling of workflows

 Workflow

Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period \mathcal{P} : time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L} : maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP} , probability of failure of the application (i.e. some data-sets will not be processed)

 Introduction
 Framework
 Mono-criterion
 Bi-criteria
 LP
 Experiments
 Conclusion
 Extra material

 Multi-criteria scheduling of workflows

Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period \mathcal{P} : time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L} : maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP} , probability of failure of the application (i.e. some data-sets will not be processed)

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material
Multi-criteria scheduling of workflows
Workflow

Several consecutive data-sets enter the application graph.

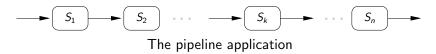
Criteria to optimize?

Period \mathcal{P} : time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L} : maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP} , probability of failure of the application (i.e. some data-sets will not be processed)

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies



- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

 Replication (one interval onto several processors) in order to increase reliability only: each data-set is processed by several processors Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Major contributions

Theory

Definition of multi-criteria mappings Problem complexity Linear programming formulation

Practice

Heuristics for INTERVAL MAPPING on clusters Experiments: compare heuristics, evaluate their performance Simulation of a JPEG encoder application Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Major contributions

Theory

Definition of multi-criteria mappings Problem complexity Linear programming formulation

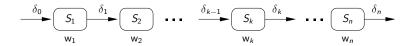
Practice

Heuristics for INTERVAL MAPPING on clusters Experiments: compare heuristics, evaluate their performance Simulation of a JPEG encoder application

1 Framework

- 2 Mono-criterion complexity results
- Bi-criteria complexity results
- 4 Linear programming formulation
- 5 Heuristics and Experiments, Period/Latency

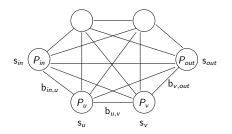
6 Conclusion



• n stages \mathcal{S}_k , $1 \leq k \leq$ n

• \mathcal{S}_k :

- receives input of size δ_{k-1} from \mathcal{S}_{k-1}
- performs w_k computations
- outputs data of size δ_k to \mathcal{S}_{k+1}
- S_0 and S_{n+1} : virtual stages representing the outside world
- Classical application schema



- p processors P_u , $1 \le u \le p$, fully interconnected
- s_u : speed of processor P_u
- bidirectional link link_{u,v} : $P_u \rightarrow P_v$, bandwidth b_{u,v}
- fp_u: failure probability of processor P_u (independent of the duration of the application, meant to run for a long time)
- one-port model: each processor can either send, receive or compute at any time-step

8/49

Fully Homogeneous – Identical processors $(s_u = s)$ and links $(b_{u,v} = b)$: typical parallel machines

Communication Homogeneous – Different-speed processors $(s_u \neq s_v)$, identical links $(b_{u,v} = b)$: networks of workstations, clusters

$$\label{eq:fully Heterogeneous} \begin{split} & \textit{Fully Heterogeneous} - \textit{Fully heterogeneous architectures, } \mathsf{s}_u \neq \mathsf{s}_v \\ & \text{and } \mathsf{b}_{u,v} \neq \mathsf{b}_{u',v'} \text{: hierarchical platforms, grids} \end{split}$$

Fully Homogeneous – Identical processors $(s_u = s)$ and links $(b_{u,v} = b)$: typical parallel machines

Failure Homogeneous- Identically reliable processors ($fp_u = fp_v$)

Communication Homogeneous – Different-speed processors $(s_u \neq s_v)$, identical links $(b_{u,v} = b)$: networks of workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, $s_u \neq s_v$ and $b_{u,v} \neq b_{u',v'}$: hierarchical platforms, grids Failure Heterogeneous – Different failure probabilities ($fp_u \neq fp_v$)

• • = • • = •

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Mapping problem: INTERVAL MAPPING

- Several consecutive stages onto the same processor(s)
- Increase computational load, reduce communications
- Partition of [1..n] into *m* intervals $I_j = [d_j, e_j]$ (with $d_j \le e_j$ for $1 \le j \le m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \le j \le m - 1$ and $e_m = n$) $(s_1 - s_2 - s_3 - s_4 - s_5 - s_5 - s_6 - s_6$
- Interval I_j mapped onto set of processors alloc(j) (replication)
- $k_j = |\operatorname{alloc}(j)|$ processors executing I_j , $k_j \ge 1$.

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Objective function?

Mono-criterion

- Minimize period ${\cal P}$
- Minimize latency $\mathcal L$
- Minimize failure probability \mathcal{FP}

э

- \bullet Minimize period ${\cal P}$
- \bullet Minimize latency ${\cal L}$
- $\bullet\,$ Minimize failure probability \mathcal{FP}

- How to define it? Minimize $\alpha . \mathcal{P} + \beta . \mathcal{L} + \gamma . \mathcal{FP}$?
- Values which are not comparable

- Minimize period ${\cal P}$
- \bullet Minimize latency ${\cal L}$
- $\bullet\,$ Minimize failure probability \mathcal{FP}

- How to define it? Minimize $\alpha . \mathcal{P} + \beta . \mathcal{L} + \gamma . \mathcal{FP}$?
- Values which are not comparable
- \bullet Minimize ${\cal P}$ for a fixed latency and failure
- \bullet Minimize ${\cal L}$ for a fixed period and failure
- \bullet Minimize \mathcal{FP} for a fixed period and latency

- $\bullet\,$ Minimize period ${\cal P}$
- Minimize latency ${\cal L}$
- $\bullet\,$ Minimize failure probability \mathcal{FP}

Bi-criteria

- Period and Latency:
- Minimize \mathcal{P} for a fixed latency
- Minimize \mathcal{L} for a fixed period

- \bullet Minimize period ${\cal P}$
- Minimize latency ${\cal L}$
- Minimize failure probability \mathcal{FP}

Bi-criteria

- Failure and Latency:
- Minimize \mathcal{FP} for a fixed latency
- Minimize \mathcal{L} for a fixed failure

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Interval Mapping problem - Period/Latency

- Period/Latency: no replication
- alloc(j) reduced to a single processor
- Communication Homogeneous platforms (easy to extend)

$$\mathcal{P} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b} \right\}$$

$$\mathcal{L} = \sum_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{s_{\mathsf{alloc}}(j)} \right\} + \frac{\delta_n}{b}$$

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Interval Mapping problem - Period/Latency

- Period/Latency: no replication
- alloc(j) reduced to a single processor
- Communication Homogeneous platforms (easy to extend)

$$\mathcal{P} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b} \right\}$$

$$\mathcal{L} = \sum_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{s_{\mathsf{alloc}}(j)} \right\} + \frac{\delta_n}{b}$$

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Interval Mapping problem - Period/Latency

- Period/Latency: no replication
- alloc(j) reduced to a single processor
- Communication Homogeneous platforms (easy to extend)

$$\mathcal{P} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{\mathsf{b}} + \frac{\sum_{i = d_j}^{\mathsf{e}_j} \mathsf{w}_i}{\mathsf{s}_{\mathsf{alloc}(j)}} + \frac{\delta_{\mathsf{e}_j}}{\mathsf{b}} \right\}$$

$$\mathcal{L} = \sum_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{\mathsf{b}} + \frac{\sum_{i = d_j}^{e_j} \mathsf{w}_i}{\mathsf{s}_{\mathsf{alloc}(j)}} \right\} + \frac{\delta_n}{\mathsf{b}}$$

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Interval Mapping problem - Latency/Reliability

- Latency/Reliability
- alloc(j) is a set of k_j processors
- Communication Homogeneous platforms
- Output by only one processor (consensus between working processors)

$$\mathcal{L} = \sum_{1 \le j \le m} \left\{ k_j \times \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{\min_{u \in \text{alloc}(j)}(s_u)} \right\} + \frac{\delta_n}{b}$$

$$\mathcal{FP} = 1 - \prod_{1 \leq j \leq m} (1 - \prod_{u \in \text{alloc}(j)} \text{fp}_u)$$

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Interval Mapping problem - Latency/Reliability

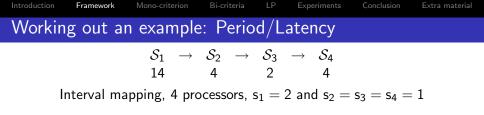
- Latency/Reliability
- alloc(j) is a set of k_j processors
- Communication Homogeneous platforms
- Output by only one processor (consensus between working processors)

$$\mathcal{L} = \sum_{1 \le j \le m} \left\{ k_j \times \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{\min_{u \in \text{alloc}(j)}(\mathsf{s}_u)} \right\} + \frac{\delta_n}{b}$$
$$\mathcal{FP} = 1 - \prod_{1 \le j \le m} (1 - \prod_{u \in \text{alloc}(j)} \mathsf{fp}_u)$$

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Interval Mapping problem - Latency/Reliability

- Latency/Reliability
- alloc(j) is a set of k_j processors
- Communication Homogeneous platforms
- Output by only one processor (consensus between working processors)

$$\mathcal{L} = \sum_{1 \le j \le m} \left\{ k_j \times \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{\min_{u \in \mathsf{alloc}(j)}(\mathsf{s}_u)} \right\} + \frac{\delta_n}{b}$$
$$\mathcal{FP} = 1 - \prod_{1 \le j \le m} (1 - \prod_{u \in \mathsf{alloc}(j)} \mathsf{fp}_u)$$



Optimal period?

3

Introduction Framework Mono-criterion Conclusion Working out an example: Period/Latency $\mathcal{S}_1 \rightarrow \mathcal{S}_2 \rightarrow \mathcal{S}_3 \rightarrow \mathcal{S}_4$ 14 4 2 4 Interval mapping, 4 processors, $s_1 = 2$ and $s_2 = s_3 = s_4 = 1$ **Optimal period?** $\mathcal{P} = 7, S_1 \rightarrow P_1, S_2S_3 \rightarrow P_2, S_4 \rightarrow P_3 (\mathcal{L} = 17)$ **Optimal latency?**

3

Introduction Framework Mono-criterion Experiments Conclusion Extra material Working out an example: Period/Latency $\mathcal{S}_1 \rightarrow \mathcal{S}_2 \rightarrow \mathcal{S}_3 \rightarrow \mathcal{S}_4$ 14 4 2 4 Interval mapping, 4 processors, $s_1 = 2$ and $s_2 = s_3 = s_4 = 1$ **Optimal period?** $\mathcal{P} = 7, S_1 \rightarrow P_1, S_2S_3 \rightarrow P_2, S_4 \rightarrow P_3 (\mathcal{L} = 17)$ **Optimal latency**? $\mathcal{L} = 12, \ \mathcal{S}_1 \mathcal{S}_2 \mathcal{S}_3 \mathcal{S}_4 \rightarrow P_1 \ (\mathcal{P} = 12)$ Min. latency if $\mathcal{P} < 10$?

Framework Mono-criterion Extra material Working out an example: Period/Latency $\mathcal{S}_1 \rightarrow \mathcal{S}_2 \rightarrow \mathcal{S}_3 \rightarrow \mathcal{S}_4$ 14 4 2 4 Interval mapping, 4 processors, $s_1 = 2$ and $s_2 = s_3 = s_4 = 1$ **Optimal period?** $\mathcal{P} = 7, \mathcal{S}_1 \rightarrow P_1, \mathcal{S}_2 \mathcal{S}_3 \rightarrow P_2, \mathcal{S}_4 \rightarrow P_3 \ (\mathcal{L} = 17)$ **Optimal latency**? $\mathcal{L} = 12, \ \mathcal{S}_1 \mathcal{S}_2 \mathcal{S}_3 \mathcal{S}_4 \rightarrow \mathcal{P}_1 \ (\mathcal{P} = 12)$ Min. latency if $\mathcal{P} \leq 10$?

 $\mathcal{L}=$ 14, $\mathcal{S}_1\mathcal{S}_2\mathcal{S}_3
ightarrow P_1$, $\mathcal{S}_4
ightarrow P_2$

1 Framework

2 Mono-criterion complexity results

3 Bi-criteria complexity results

- 4 Linear programming formulation
- 5 Heuristics and Experiments, Period/Latency

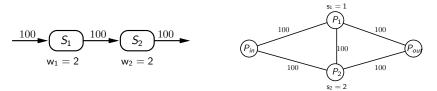
6 Conclusion

Complexity results: Latency - Com Hom

Lemma

On *Fully Homogeneous* and *Communication Homogeneous* platforms, the optimal interval mapping which minimizes latency can be determined in polynomial time.

- Assign whole pipeline to fastest processor!
- No intra communications to pay in this case.
- Only input and output com, identical for each mapping.

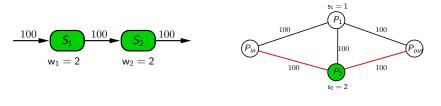


Complexity results: Latency - Com Hom

Lemma

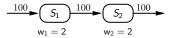
On *Fully Homogeneous* and *Communication Homogeneous* platforms, the optimal interval mapping which minimizes latency can be determined in polynomial time.

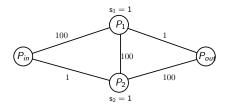
- Assign whole pipeline to fastest processor!
- No intra communications to pay in this case.
- Only input and output com, identical for each mapping.



Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Complexity results: Latency - Het

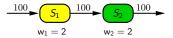
- Fully Heterogeneous platforms
- The interval of stages may need to be split

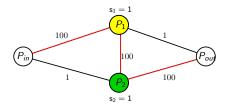




Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Complexity results: Latency - Het

- Fully Heterogeneous platforms
- The interval of stages may need to be split





On *Fully Heterogeneous* platforms, the optimal general mapping which minimizes latency can be determined in polynomial time.

Dynamic programming algorithm

Lemma

On *Fully Heterogeneous* platforms, finding an optimal one-to-one mapping which minimizes latency is NP-hard.

Reduction from the Traveling Salesman Problem TSP

Still an open problem for interval mappings (but we conjecture it is NP-hard)

On *Fully Heterogeneous* platforms, the optimal general mapping which minimizes latency can be determined in polynomial time.

Dynamic programming algorithm

Lemma

On *Fully Heterogeneous* platforms, finding an optimal one-to-one mapping which minimizes latency is NP-hard.

Reduction from the Traveling Salesman Problem TSP

Still an open problem for interval mappings (but we conjecture it is NP-hard)

On *Fully Heterogeneous* platforms, the optimal general mapping which minimizes latency can be determined in polynomial time.

Dynamic programming algorithm

Lemma

On *Fully Heterogeneous* platforms, finding an optimal one-to-one mapping which minimizes latency is NP-hard.

Reduction from the Traveling Salesman Problem TSP

Still an open problem for interval mappings (but we conjecture it is NP-hard) Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Complexity results: Period

- Minimize the period on Fully Homogeneous platforms:
 - classical chains-on-chains problem
 - polynomial complexity
- Communication Homogeneous platforms: chains-on-chains, but with different speed processors!
 - the problem becomes NP-hard
 - involved reduction

Definition (HETERO-1D-PARTITION-DEC)

Given n elements a_1, a_2, \ldots, a_n , p values s_1, s_2, \ldots, s_p and a bound K, can we find a partition of [1..n] into p intervals $\mathcal{I}_1, \mathcal{I}_2, \ldots, \mathcal{I}_p$, and a permutation σ of $\{1, 2, \ldots, p\}$, such that $\max_{1 \le k \le p} \frac{\sum_{i \in \mathcal{I}_k} a_i}{s_{\sigma(k)}} \le K$?

Minimizing the failure probability can be done in polynomial time.

- Formula computing global failure probability
- Minimum reached by replicating whole pipeline as a single interval on all processors
- True for all platform types

Minimizing the failure probability can be done in polynomial time.

- Formula computing global failure probability
- Minimum reached by replicating whole pipeline as a single interval on all processors
- True for all platform types



- 2 Mono-criterion complexity results
- 3 Bi-criteria complexity results
 - 4 Linear programming formulation
- 5 Heuristics and Experiments, Period/Latency

6 Conclusion

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Complexity results - Latency/Period

- Interval mapping, Fully Homogeneous platforms
- Polynomial: dynamic programming algorithm
- Interval mapping, Communication Homogeneous platforms
- Period minimization: NP-hard
- Bi-criteria problems: NP-hard

- Interval mapping, Fully Homogeneous platforms
- Polynomial: dynamic programming algorithm
- Interval mapping, Communication Homogeneous platforms
- Period minimization: NP-hard
- Bi-criteria problems: NP-hard

Summary of Latency/Failure complexity results

Bi-criteria

Experiments

Extra material

Mono-criterion

Framework

- Lemma-NoSplit: On *Fully Homogeneous* and *Communication Homogeneous-Failure Homogeneous* platforms, there is a mapping of the pipeline as a single interval which minimizes the failure probability (resp. latency) under a fixed latency (resp. failure probability) threshold.
- Communication Homogeneous-Failure Homogeneous: polynomial algorithms based on Lemma-NoSplit.
- Communication Homogeneous-Failure Heterogeneous: lemma not true, open complexity (probably NP-hard)
- *Fully Heterogeneous*: bi-criteria (decision problems associated to the) optimization problems are NP-hard.

□ ▶ ▲ □ ▶ ▲ □

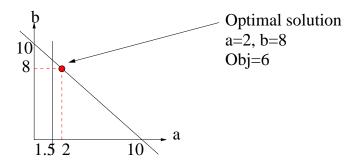
1 Framework

- 2 Mono-criterion complexity results
- Bi-criteria complexity results
- 4 Linear programming formulation
- 5 Heuristics and Experiments, Period/Latency

6 Conclusion

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Integer linear program

- Integer variables a, b
- Constraints $a \ge 0$, $b \ge 0$, $a + b \le 10$, $2a \ge 3$
- Objective function: Maximize (b a)



Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Integer linear program for our problems

- Latency/Period problem
- Integer LP to solve INTERVAL MAPPING on *Communication Homogeneous* platforms
- Many integer variables: no efficient algorithm to solve
- Approach limited to small problem instances
- Absolute performance of the heuristics for such instances
- Latency/Failure problem: no linear formulation because of strong non-linearity of failure probability formula

▶ skip

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Integer linear program for our problems

- Latency/Period problem
- Integer LP to solve INTERVAL MAPPING on *Communication Homogeneous* platforms
- Many integer variables: no efficient algorithm to solve
- Approach limited to small problem instances
- Absolute performance of the heuristics for such instances
- Latency/Failure problem: no linear formulation because of strong non-linearity of failure probability formula

▶ skip

• *T*_{opt}: period or latency of the pipeline, depending on the objective function

Boolean variables:

- $x_{k,u}$: 1 if S_k on P_u
- $y_{k,u}$: 1 if S_k and S_{k+1} both on P_u
- $z_{k,u,v}$: 1 if S_k on P_u and S_{k+1} on P_v

Integer variables:

• first_u and last_u: integer denoting first and last stage assigned to P_u (to enforce interval constraints)

• *T*_{opt}: period or latency of the pipeline, depending on the objective function

Boolean variables:

- $x_{k,u}$: 1 if S_k on P_u
- $y_{k,u}$: 1 if S_k and S_{k+1} both on P_u
- $z_{k,u,v}$: 1 if S_k on P_u and S_{k+1} on P_v

Integer variables:

 first_u and last_u: integer denoting first and last stage assigned to P_u (to enforce interval constraints)

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Linear program: constraints

Constraints on procs and links:

•
$$\forall k \in [0..n+1], \qquad \sum_{u} x_{k,u} = 1$$

•
$$\forall k \in [0..n], \qquad \sum_{u \neq v} z_{k,u,v} + \sum_{u} y_{k,u} = 1$$

- $\forall k \in [0..n], \forall u, v \in [1..p] \cup \{in, out\}, u \neq v, x_{k,u} + x_{k+1,v} \le 1 + z_{k,u,v}$
- $\forall k \in [0..n], \forall u \in [1..p] \cup \{in, out\}, \quad x_{k,u} + x_{k+1,u} \le 1 + y_{k,u}$

Constraints on intervals:

- $\forall k \in [1..n], \forall u \in [1..p], \quad \text{first}_u \leq k.x_{k,u} + n.(1 x_{k,u})$
- $\forall k \in [1..n], \forall u \in [1..p],$ last_u $\geq k.x_{k,u}$
- $\forall k \in [1..n-1], \forall u, v \in [1..p], u \neq v,$ last_u $\leq k.z_{k,u,v} + n.(1 - z_{k,u,v})$
- $\forall k \in [1..n-1], \forall u, v \in [1..p], u \neq v, \text{ first}_{v} \geq (k+1).z_{k,u,v}$

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Linear program: constraints

Constraints on procs and links:

•
$$\forall k \in [0..n+1], \qquad \sum_{u} x_{k,u} = 1$$

•
$$\forall k \in [0..n], \qquad \sum_{u \neq v} z_{k,u,v} + \sum_{u} y_{k,u} = 1$$

- $\forall k \in [0..n], \forall u, v \in [1..p] \cup \{in, out\}, u \neq v, x_{k,u} + x_{k+1,v} \le 1 + z_{k,u,v}$
- $\forall k \in [0..n], \forall u \in [1..p] \cup \{in, out\}, \quad x_{k,u} + x_{k+1,u} \le 1 + y_{k,u}$

Constraints on intervals:

- $\forall k \in [1..n], \forall u \in [1..p], \quad \text{first}_u \leq k.x_{k,u} + n.(1 x_{k,u})$
- $\forall k \in [1..n], \forall u \in [1..p],$ last_u $\geq k.x_{k,u}$

•
$$\forall k \in [1..n-1], \forall u, v \in [1..p], u \neq v,$$

last_u $\leq k.z_{k,u,v} + n.(1 - z_{k,u,v})$

• $\forall k \in [1..n-1], \forall u, v \in [1..p], u \neq v, \text{ first}_{v} \geq (k+1).z_{k,u,v}$

$$\forall u \in [1..p], \sum_{k=1}^{n} \left\{ \left(\sum_{t \neq u} \frac{\delta_{k-1}}{b} z_{k-1,t,u} \right) + \frac{w_k}{s_u} x_{k,u} + \left(\sum_{v \neq u} \frac{\delta_k}{b} z_{k,u,v} \right) \right\} \leq \mathcal{P}$$

$$\sum_{u=1}^{p} \sum_{k=1}^{n} \left[\left(\sum_{t \neq u, t \in [1..p] \cup \{in,out\}} \frac{\delta_{k-1}}{b} z_{k-1,t,u} \right) + \frac{w_k}{s_u} x_{k,u} \right] + \left(\sum_{u \in [1..p] \cup \{in\}} \frac{\delta_n}{b} z_{n,u,out} \right) \leq \mathcal{L}$$

$T_{opt} = \mathcal{P}$	$T_{ ext{opt}} = \mathcal{L}$
${\cal L}$ is fixed	${\mathcal P}$ is fixed

3

$$\forall u \in [1..p], \sum_{k=1}^{n} \left\{ \left(\sum_{t \neq u} \frac{\delta_{k-1}}{b} z_{k-1,t,u} \right) + \frac{\mathsf{w}_{k}}{\mathsf{s}_{u}} \mathsf{x}_{k,u} + \left(\sum_{v \neq u} \frac{\delta_{k}}{b} z_{k,u,v} \right) \right\} \leq \mathcal{P}$$

$$\sum_{u=1}^{p} \sum_{k=1}^{n} \left[\left(\sum_{t \neq u, t \in [1..p] \cup \{in,out\}} \frac{\delta_{k-1}}{b} z_{k-1,t,u} \right) + \frac{\mathsf{w}_{k}}{\mathsf{s}_{u}} \mathsf{x}_{k,u} \right] + \left(\sum_{u \in [1..p] \cup \{in\}} \frac{\delta_{n}}{b} z_{n,u,out} \right) \leq \mathcal{L}$$

æ

1 Framework

- 2 Mono-criterion complexity results
- Bi-criteria complexity results
- 4 Linear programming formulation
- 5 Heuristics and Experiments, Period/Latency

6 Conclusion

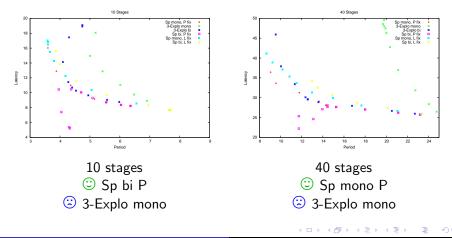
- Back to the problem Period/Latency
- Target clusters: *Communication Homogeneous* platforms and INTERVAL MAPPING

Two sets of heuristics

- Minimizing latency for a fixed period
- Minimizing period for a fixed latency
- Key idea: map the pipeline as a single interval then split the interval until stop criterion is reached
- Split: decreases period but increases latency

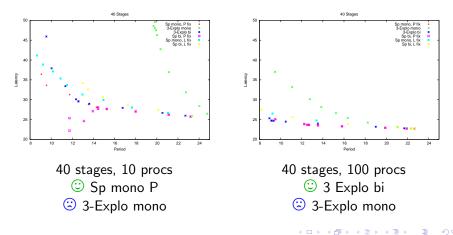
Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Heuristics comparison

- communication time $\delta_i = 10$, computation time $1 \le w_i \le 20$
- 10 processors



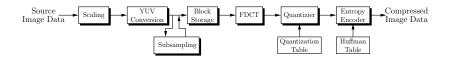
Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Heuristics comparison

- communication time $\delta_i = 10$, computation time $1 \le w_i \le 20$
- 10 vs. 100 processors

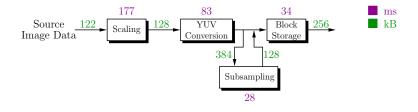


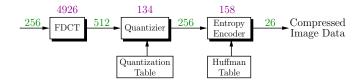
The JPEG encoder

- Image processing application
- JPEG: standardized interchange format
- Data compression
- 7 stages



• Joint work with Harald Kosch, University of Passau, Germany



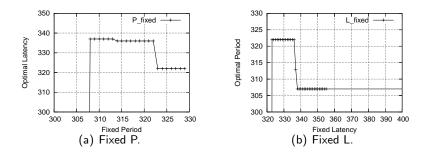


34/49

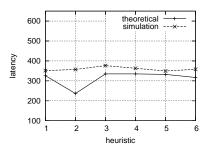
3

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Simulation environment & bucket behavior

- MPI application, Message passing + sleep()
- (Homogeneous processors) simulation of heterogeneity
- Mapping 7 stages on 10 processors



- Heuristics vs LP: a simple heuristic always finds the optimal solution
- Comparison theory/experience: good except for one heuristic which violates threshold



1 Framework

- 2 Mono-criterion complexity results
- Bi-criteria complexity results
- 4 Linear programming formulation
- 5 Heuristics and Experiments, Period/Latency

6 Conclusion

Subhlok and Vondran- Extension of their work (pipeline on hom platforms)

Mapping pipelined computations onto clusters and grids- DAG [Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations [Melhem et al.], three-criteria optimization

Mapping pipelined computations onto special-purpose architectures– FPGA arrays [Fabiani et al.]. Fault-tolerance for embedded systems [Zhu et al.]

Mapping skeletons onto clusters and grids– Use of stochastic process algebra [Benoit et al.]

N 4 1 N 4 1

Theoretical side

- Pipeline structured applications
- Multi-criteria mapping problem
- Complexity study: latency/period & latency/failure
- period/failure: mix difficulties of period (NP-hard) and failure (non-linear)

Practical side

- Design of several polynomial heuristics
- Extensive simulations to compare their performance
- Simulation of a real world application
- Evaluation

Theory

- Extension to stage replication and data-parallelism
- Extension to fork, fork-join and tree workflows

Practice

- Real experiments on heterogeneous clusters with bigger pipeline applications, using MPI
- Comparison of effective performance against theoretical performance

RobSched'08

First International Workshop on Robust Scheduling part of ICPADS'08, the 14th Int. Conf. on Parallel and Distributed Systems December 8-10, 2008, Melbourne, Australia

- Scheduling algorithms for heterogeneous platforms
- Performance models
- Models of platform/application failures
- Fault tolerance issues
- Resource discovery and management
- Task and communication scheduling
- Task coordination and workflow
- Job scheduling
- Stochastic scheduling
- Scheduling applications for clusters and grids

Areas of scheduling, performance evaluation and fault tolerance. Original, unpublished papers, as well as work-in-progress contributions.

July 4 - Full paper due (6 IEEE-2-col. pages) Aug. 22 - Notification Sep. 9 - Final paper due Dec. 8-10 - Workshop

Marco Aldinucci, **Anne Benolt**, Rajkumar Buyya, Henri Casanova, Anthony Chronopoulos, Murray Cole, Bruno Gaujal, Mourad Hakem, Aaron Harwood, Emmanuel Jeannot, Leila Kloul, Domenico Laforenza, Kiminori Matsuzaki, Rami Melhem, Gregory Mounie, Jean-Marc Nicod, Rajiv Ranjan, Yves Robert, Arnold Rosenberg, Uwe Schwiegelshohn, Oliver Sinnen, Magda Slawinska.

http://graal.ens-lyon.fr/~abenoit/conf/robsched08.html

41/49

LP E>

Experiments

Extra material

Conclusion

Complexity results - Latency/Failure

Lemma NoSplit

Framework

On Fully Homogeneous and Communication Homogeneous-Failure Homogeneous platforms, there is a mapping of the pipeline as a single interval which minimizes the failure probability (resp. latency) under a fixed latency (resp. failure probability) threshold.

From an existing optimal solution consisting of more than one interval: easy to build a new optimal solution with a single interval

Mono-criterion Complexity results - Latency/Failure

Framework

- Communication Homogeneous-Failure Homogeneous: Minimizing \mathcal{FP} for a fixed \mathcal{L}
- Order processors in non-increasing order of s_i
- Find k maximum, such that

$$k \times \frac{\delta_0}{b} + \frac{\sum_{1 \le j \le n} \mathsf{w}_j}{\mathsf{s}_k} + \frac{\delta_n}{b} \le \mathcal{L}$$

Experiments

Conclusion

- Replicate the whole pipeline as a single interval onto the fastest k processors
- Note that at any time s_k is the speed of the slowest processor used in the replication scheme

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Complexity results - Latency/Failure

- Communication Homogeneous platforms-Failure Homogeneous: Minimizing \mathcal{L} for a fixed \mathcal{FP}
- Find k minimum, such that

$$1-(1-\mathsf{fp}^k) \leq \mathcal{FP}$$

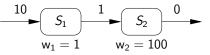
• Replicate the whole pipeline as a single interval onto the fastest *k* processors

Mono-criterion

• Communication Homogeneous-Failure Heterogeneous

Bi-criteria

- Lemma NoSplit not true: example
- \bullet One slow and reliable processor, $s=1,\,fp=0.1$
- $\bullet\,$ Ten fast and unreliable processors, $s=100,\,fp=0.8$
- $\mathcal{L} \leq 22$, minimize \mathcal{FP}



- One interval: $\mathcal{FP} = (1 (1 0.8^2)) = 0.64$
- Two intervals: $\mathcal{FP} = 1 (1 0.1) \cdot (1 0.8^{10}) < 0.2$
- Open complexity (probably NP-hard)

Introduction

Framework

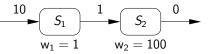
Conclusion

Mono-criterion

• Communication Homogeneous-Failure Heterogeneous

Bi-criteria

- Lemma NoSplit not true: example
- \bullet One slow and reliable processor, $s=1,\,fp=0.1$
- $\bullet\,$ Ten fast and unreliable processors, $s=100,\,fp=0.8$
- $\mathcal{L} \leq 22$, minimize \mathcal{FP}



- One interval: $\mathcal{FP} = (1 (1 0.8^2)) = 0.64$
- Two intervals: $\mathcal{FP} = 1 (1 0.1) \cdot (1 0.8^{10}) < 0.2$
- Open complexity (probably NP-hard)

Introduction

Framework

Conclusion

Mono-criterion

• Communication Homogeneous-Failure Heterogeneous

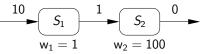
Bi-criteria

Experiments

Conclusion

Extra material

- Lemma NoSplit not true: example
- \bullet One slow and reliable processor, $s=1,\,fp=0.1$
- $\bullet\,$ Ten fast and unreliable processors, $s=100,\,fp=0.8$
- $\mathcal{L} \leq 22$, minimize \mathcal{FP}



- One interval: $\mathcal{FP} = (1 (1 0.8^2)) = 0.64$
- Two intervals: $\mathcal{FP} = 1 (1 0.1) \cdot (1 0.8^{10}) < 0.2$
- Open complexity (probably NP-hard)

Introduction

Framework

Mono-criterion

• Communication Homogeneous-Failure Heterogeneous

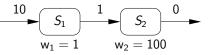
Bi-criteria

Experiments

Conclusion

Extra material

- Lemma NoSplit not true: example
- \bullet One slow and reliable processor, $s=1,\,fp=0.1$
- $\bullet\,$ Ten fast and unreliable processors, $s=100,\,fp=0.8$
- $\mathcal{L} \leq 22$, minimize \mathcal{FP}



- One interval: $\mathcal{FP} = (1 (1 0.8^2)) = 0.64$
- Two intervals: $\mathcal{FP} = 1 (1 0.1).(1 0.8^{10}) < 0.2$
- Open complexity (probably NP-hard)

Introduction

Framework

• Fully Heterogeneous platforms

Theorem

On *Fully Heterogeneous* platforms, the bi-criteria (decision problems associated to the) optimization problems are NP-hard.

• Reduction from 2-PARTITION: one single stage, processors of identical speed and $fp_i = e^{-a_j}$, $b_{in,j} = 1/a_j$ and $b_{j,out} = 1$

▲ Back

• Fully Heterogeneous platforms

Theorem

On *Fully Heterogeneous* platforms, the bi-criteria (decision problems associated to the) optimization problems are NP-hard.

• Reduction from 2-PARTITION: one single stage, processors of identical speed and $fp_j = e^{-a_j}$, $b_{in,j} = 1/a_j$ and $b_{j,out} = 1$

▲ Back

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Minimizing Latency for a Fixed Period (1/2)

Sp mono P: Splitting mono-criterion

- Map the whole pipeline on the fastest processor.
- At each step, select used processor *j* with largest period.
- Try to split its stage interval, giving some stages to the next fastest processor j' in the list (not yet used).
- Split interval at any place, and either assign the first part of the interval on j and the remainder on j', or the other way round. Solution which minimizes max(period(j), period(j')) is chosen if better than original solution.
- Break-conditions: Fixed period is reached or period cannot be improved anymore.

Minimizing Latency for a Fixed Period (2/2)

3-Explo mono: 3-Exploration mono-criterion – Select used processor *j* with largest period and split its interval into three parts.

Bi-criteria

3-Explo bi: 3-Exploration bi-criteria – More elaborated choice where to split: split the interval with largest period so that $max_{i \in \{j,j',j''\}} \left(\frac{\Delta | atency}{\Delta period(i)}\right)$ is minimized.

Sp bi P: Splitting bi criteria – Binary search over latency: at each step choose split that minimizes $\max_{i \in \{j,j'\}} \left(\frac{\Delta latency}{\Delta period(j)}\right)$ within the authorized latency increase.

 $\begin{aligned} \Delta \textit{latency} &: \mathcal{L} \text{ after split - } \mathcal{L} \text{ before split} \\ \Delta \textit{period} &: \mathcal{P}(j) \text{ before split - } \mathcal{P}(j) \text{ after split} \end{aligned}$

Introduction

Framework

Conclusion

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Extra material Minimizing Period for a Fixed Latency

Sp mono L: Splitting mono-criterion – Similar to **Sp mono P** with different break condition: splitting is performed as long as fixed latency is not exceeded.

Sp bi L: Splitting bi criteria – Similar to **Sp mono L**, but at each step choose solution that minimizes $max_{i \in \{j,j'\}} \left(\frac{\Delta latency}{\Delta period(i)}\right)$ while fixed latency is not exceeded.

▲ Back