
Toward a Fully Decentralized Algorithm for
Multiple Bag-of-tasks Application Scheduling

on Grids

Rémi Bertin, Arnaud Legrand, Corinne Touati

Laboratoire LIG, CNRS-INRIA Grenoble, France

Aussois Workshop

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling 1 / 24

Outline

1 Framework

2 Lagrangian Optimization

3 Simulations: Early Results

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling 2 / 24

Motivation

Large-scale distributed computing platforms result from the collab-
oration of many users:

I Sharing resources amongst users should somehow be fair.

I The size of these systems prevents the use of centralized ap-
proaches ; need for distributed scheduling.

I Task regularity (SETI@home, BOINC, . . .) ; steady-state
scheduling.

Designing a Fair and Distributed scheduling algorithm for this
framework.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling 3 / 24

Motivation

Large-scale distributed computing platforms result from the collab-
oration of many users:

I Sharing resources amongst users should somehow be fair.

I The size of these systems prevents the use of centralized ap-
proaches ; need for distributed scheduling.

I Task regularity (SETI@home, BOINC, . . .) ; steady-state
scheduling.

Designing a Fair and Distributed scheduling algorithm for this
framework.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling 3 / 24

Motivation

Large-scale distributed computing platforms result from the collab-
oration of many users:

I Sharing resources amongst users should somehow be fair.

I The size of these systems prevents the use of centralized ap-
proaches ; need for distributed scheduling.

I Task regularity (SETI@home, BOINC, . . .) ; steady-state
scheduling.

Designing a Fair and Distributed scheduling algorithm for this
framework.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling 3 / 24

Motivation

Large-scale distributed computing platforms result from the collab-
oration of many users:

I Sharing resources amongst users should somehow be fair.

I The size of these systems prevents the use of centralized ap-
proaches ; need for distributed scheduling.

I Task regularity (SETI@home, BOINC, . . .) ; steady-state
scheduling.

Designing a Fair and Distributed scheduling algorithm for this
framework.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling 3 / 24

Outline

1 Framework

2 Lagrangian Optimization

3 Simulations: Early Results

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 4 / 24

Platform Model

Bi→j

Wi

Wj

I General platform graph G = (N,E,W,B).

I Speed of Pn ∈ N : Wn (in MFlops/s).

I Bandwidth of (Pi → Pj): Bi,j (in MB/s).

I Linear-cost communication and computa-
tion model: X/Bi,j time units to send a
message of size X from Pi to Pj .

I Communications and computations can be
overlapped.

I Multi-port communication model.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 5 / 24

Platform Model

Bi→j

Wi

Wj

I General platform graph G = (N,E,W,B).

I Speed of Pn ∈ N : Wn (in MFlops/s).

I Bandwidth of (Pi → Pj): Bi,j (in MB/s).

I Linear-cost communication and computa-
tion model: X/Bi,j time units to send a
message of size X from Pi to Pj .

I Communications and computations can be
overlapped.

I Multi-port communication model.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 5 / 24

Platform Model

Bi→j

Wi

Wj

I General platform graph G = (N,E,W,B).

I Speed of Pn ∈ N : Wn (in MFlops/s).

I Bandwidth of (Pi → Pj): Bi,j (in MB/s).

I Linear-cost communication and computa-
tion model: X/Bi,j time units to send a
message of size X from Pi to Pj .

I Communications and computations can be
overlapped.

I Multi-port communication model.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 5 / 24

Platform Model

Bi→j

Wi

Wj

I General platform graph G = (N,E,W,B).

I Speed of Pn ∈ N : Wn (in MFlops/s).

I Bandwidth of (Pi → Pj): Bi,j (in MB/s).

I Linear-cost communication and computa-
tion model: X/Bi,j time units to send a
message of size X from Pi to Pj .

I Communications and computations can be
overlapped.

I Multi-port communication model.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 5 / 24

Platform Model

Bi→j

Wi

Wj

I General platform graph G = (N,E,W,B).

I Speed of Pn ∈ N : Wn (in MFlops/s).

I Bandwidth of (Pi → Pj): Bi,j (in MB/s).

I Linear-cost communication and computa-
tion model: X/Bi,j time units to send a
message of size X from Pi to Pj .

I Communications and computations can be
overlapped.

I Multi-port communication model.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 5 / 24

Platform Model

Bi→j

Wi

Wj

I General platform graph G = (N,E,W,B).

I Speed of Pn ∈ N : Wn (in MFlops/s).

I Bandwidth of (Pi → Pj): Bi,j (in MB/s).

I Linear-cost communication and computa-
tion model: X/Bi,j time units to send a
message of size X from Pi to Pj .

I Communications and computations can be
overlapped.

I Multi-port communication model.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 5 / 24

Application Model

Multiple applications:

I A set A of K applications A1, . . . , AK .

I Each consisting in a large number of same-size independent
tasks ; each application is defined by a communication cost
wk (in MFlops) and a communication cost bk (in MB).

I Different communication and computation demands for differ-
ent applications.

A3A2A1

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 6 / 24

Application Model

Multiple applications:

I A set A of K applications A1, . . . , AK .

I Each consisting in a large number of same-size independent
tasks ; each application is defined by a communication cost
wk (in MFlops) and a communication cost bk (in MB).

I Different communication and computation demands for differ-
ent applications.

A3A2A1

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 6 / 24

Application Model

Multiple applications:

I A set A of K applications A1, . . . , AK .

I Each consisting in a large number of same-size independent
tasks ; each application is defined by a communication cost
wk (in MFlops) and a communication cost bk (in MB).

I Different communication and computation demands for differ-
ent applications.

A3A2A1

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 6 / 24

Hierarchical Deployment

Pm(1)

Pm(2)

I Each application originates from a master
node Pm(k) that initially holds all the input
data necessary for each application Ak.

I Communication are only required outwards
from the master nodes: the amount of data
returned by the worker is negligible.

I Each application Ak is deployed on the
platform as a tree.

Therefore if an application k wants to use a
node Pn, all its data will use a single path from
Pm(k) to Pn denoted by (Pm(k) ; Pn).

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 7 / 24

Hierarchical Deployment

Pm(1)

Pm(2)

I Each application originates from a master
node Pm(k) that initially holds all the input
data necessary for each application Ak.

I Communication are only required outwards
from the master nodes: the amount of data
returned by the worker is negligible.

I Each application Ak is deployed on the
platform as a tree.

Therefore if an application k wants to use a
node Pn, all its data will use a single path from
Pm(k) to Pn denoted by (Pm(k) ; Pn).

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 7 / 24

Hierarchical Deployment

Pm(1)

Pm(2)

I Each application originates from a master
node Pm(k) that initially holds all the input
data necessary for each application Ak.

I Communication are only required outwards
from the master nodes: the amount of data
returned by the worker is negligible.

I Each application Ak is deployed on the
platform as a tree.

Therefore if an application k wants to use a
node Pn, all its data will use a single path from
Pm(k) to Pn denoted by (Pm(k) ; Pn).

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 7 / 24

Steady-State Scheduling and Utility

I All tasks of a given application are identical and independent
; we do not really need to care about where and when (as
opposed to classical scheduling problems).

I We only need to focus on average values in steady-state.
I Steady-state values:

I Variables: average number of tasks of type k processed by pro-
cessor n per time unit: %n,k.

I Throughput of application k : %k =
∑

n∈N %n,k.

Theorem 1.

From “feasible” %n,k, it is possible to build an optimal periodic infi-
nite schedule (i.r. whose steady-state rates are exactly the %n,k).
Such a schedule is asymptotically optimal for the makespan.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 8 / 24

Steady-State Scheduling and Utility

I All tasks of a given application are identical and independent
; we do not really need to care about where and when (as
opposed to classical scheduling problems).

I We only need to focus on average values in steady-state.

I Steady-state values:

I Variables: average number of tasks of type k processed by pro-
cessor n per time unit: %n,k.

I Throughput of application k : %k =
∑

n∈N %n,k.

Theorem 1.

From “feasible” %n,k, it is possible to build an optimal periodic infi-
nite schedule (i.r. whose steady-state rates are exactly the %n,k).
Such a schedule is asymptotically optimal for the makespan.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 8 / 24

Steady-State Scheduling and Utility

I All tasks of a given application are identical and independent
; we do not really need to care about where and when (as
opposed to classical scheduling problems).

I We only need to focus on average values in steady-state.
I Steady-state values:

I Variables: average number of tasks of type k processed by pro-
cessor n per time unit: %n,k.

I Throughput of application k : %k =
∑

n∈N %n,k.

Theorem 1.

From “feasible” %n,k, it is possible to build an optimal periodic infi-
nite schedule (i.r. whose steady-state rates are exactly the %n,k).
Such a schedule is asymptotically optimal for the makespan.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 8 / 24

Steady-State Scheduling and Utility

I All tasks of a given application are identical and independent
; we do not really need to care about where and when (as
opposed to classical scheduling problems).

I We only need to focus on average values in steady-state.
I Steady-state values:

I Variables: average number of tasks of type k processed by pro-
cessor n per time unit: %n,k.

I Throughput of application k : %k =
∑

n∈N %n,k.

Theorem 1.

From “feasible” %n,k, it is possible to build an optimal periodic infi-
nite schedule (i.r. whose steady-state rates are exactly the %n,k).
Such a schedule is asymptotically optimal for the makespan.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 8 / 24

Steady-State Scheduling and Utility

I All tasks of a given application are identical and independent
; we do not really need to care about where and when (as
opposed to classical scheduling problems).

I We only need to focus on average values in steady-state.
I Steady-state values:

I Variables: average number of tasks of type k processed by pro-
cessor n per time unit: %n,k.

I Throughput of application k : %k =
∑

n∈N %n,k.

Theorem 1.

From “feasible” %n,k, it is possible to build an optimal periodic infi-
nite schedule (i.r. whose steady-state rates are exactly the %n,k).
Such a schedule is asymptotically optimal for the makespan.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 8 / 24

Steady-State Scheduling and Utility

I All tasks of a given application are identical and independent
; we do not really need to care about where and when (as
opposed to classical scheduling problems).

I We only need to focus on average values in steady-state.
I Steady-state values:

I Variables: average number of tasks of type k processed by pro-
cessor n per time unit: %n,k.

I Throughput of application k : %k =
∑

n∈N %n,k.

Theorem 1.

From “feasible” %n,k, it is possible to build an optimal periodic infi-
nite schedule (i.r. whose steady-state rates are exactly the %n,k).
Such a schedule is asymptotically optimal for the makespan.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 8 / 24

Decentralized Scheduling

The rates %n,k are sufficient to help simple demand-driven scheduling
algorithms.

I Dispatch incoming tasks of
type k to the queues (n, k)
with “proportion” %n,k.

I Request tasks from your fa-
ther when incomming queue
sizes get below a fixed thresh-
old.

Deviation =
%
(th)
k − %(exp)

k

%
(th)
k

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

F
re

qu
en

cy

Deviation from theoretical throughput

; We can focus on finding the %n,k.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 9 / 24

Utility and Optimization Problem

I Let Uk(%k) be the utility associated to application k. We aim
at maximizing

∑
k∈K Uk(%k).

I It has been shown that different values of Uk leads to different
kind of fairness. Typically, or Uk(%k) = %αk/(1−α) (α-fairness).

I Maximize
∑

k log(%k) under the constraints:

%k =
∑
n

%n,k

∀n,
∑
k

%n,kwk 6 Wn

∀(Pi → Pj),
∑
k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)

%n,kbk 6 Bi,j

I Can be solved in polynomial time with semi-definite program-
ming [Touati.et.al.06]. It is very centralized though.

Can we solve it in a distributed way?

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 10 / 24

Utility and Optimization Problem

I Let Uk(%k) be the utility associated to application k. We aim
at maximizing

∑
k∈K Uk(%k).

I It has been shown that different values of Uk leads to different
kind of fairness. Typically, Uk(%k) = log(%k) (proportional
fairness) or Uk(%k) = %αk/(1− α) (α-fairness).

I Maximize
∑

k log(%k) under the constraints:

%k =
∑
n

%n,k

∀n,
∑
k

%n,kwk 6 Wn

∀(Pi → Pj),
∑
k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)

%n,kbk 6 Bi,j

I Can be solved in polynomial time with semi-definite program-
ming [Touati.et.al.06]. It is very centralized though.

Can we solve it in a distributed way?

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 10 / 24

Utility and Optimization Problem

I Let Uk(%k) be the utility associated to application k. We aim
at maximizing

∑
k∈K Uk(%k).

I It has been shown that different values of Uk leads to different
kind of fairness. Typically, Uk(%k) = log(%k) (proportional
fairness) or Uk(%k) = %αk/(1− α) (α-fairness).

I Maximize
∑

k log(%k) under the constraints:

%k =
∑
n

%n,k

∀n,
∑
k

%n,kwk 6 Wn

∀(Pi → Pj),
∑
k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)

%n,kbk 6 Bi,j

I Can be solved in polynomial time with semi-definite program-
ming [Touati.et.al.06]. It is very centralized though.

Can we solve it in a distributed way?

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 10 / 24

Utility and Optimization Problem

I Let Uk(%k) be the utility associated to application k. We aim
at maximizing

∑
k∈K Uk(%k).

I It has been shown that different values of Uk leads to different
kind of fairness. Typically, Uk(%k) = log(%k) (proportional
fairness) or Uk(%k) = %αk/(1− α) (α-fairness).

I Maximize
∑

k log(%k) under the constraints:

%k =
∑
n

%n,k

∀n,
∑
k

%n,kwk 6 Wn

∀(Pi → Pj),
∑
k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)

%n,kbk 6 Bi,j

I Can be solved in polynomial time with semi-definite program-
ming [Touati.et.al.06]. It is very centralized though.

Can we solve it in a distributed way?

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 10 / 24

Utility and Optimization Problem

I Let Uk(%k) be the utility associated to application k. We aim
at maximizing

∑
k∈K Uk(%k).

I It has been shown that different values of Uk leads to different
kind of fairness. Typically, Uk(%k) = log(%k) (proportional
fairness) or Uk(%k) = %αk/(1− α) (α-fairness).

I Maximize
∑

k log(%k) under the constraints:

%k =
∑
n

%n,k

∀n,
∑
k

%n,kwk 6 Wn

∀(Pi → Pj),
∑
k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)

%n,kbk 6 Bi,j

I Can be solved in polynomial time with semi-definite program-
ming [Touati.et.al.06]. It is very centralized though.

Can we solve it in a distributed way?

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 10 / 24

Utility and Optimization Problem

I Let Uk(%k) be the utility associated to application k. We aim
at maximizing

∑
k∈K Uk(%k).

I It has been shown that different values of Uk leads to different
kind of fairness. Typically, Uk(%k) = log(%k) (proportional
fairness) or Uk(%k) = %αk/(1− α) (α-fairness).

I Maximize
∑

k log(%k) under the constraints:

%k =
∑
n

%n,k

∀n,
∑
k

%n,kwk 6 Wn

∀(Pi → Pj),
∑
k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)

%n,kbk 6 Bi,j

I Can be solved in polynomial time with semi-definite program-
ming [Touati.et.al.06]. It is very centralized though.

Can we solve it in a distributed way?

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Framework 10 / 24

Outline

1 Framework

2 Lagrangian Optimization

3 Simulations: Early Results

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Lagrangian Optimization 11 / 24

Lagrangian Optimization: Basics

I Designed to solve non linear optimization problems:
I Let α→ f(α) be a function to maximize.
I Let (Ci(α) > 0)i∈[1..n] be a set of n constraints.
I We wish to solve:

(P)

{
maximize f(α)
∀i ∈ [1..n], Ci(α) > 0, and α > 0

I The Lagrangian function: L(α, λ) = f(α)−
∑

i∈[1..n]

λiCi(α).

I The dual functional: d(λ) = max
α>0
L(α, λ).

I Under some weak hypothesis, solving (P) is equivalent to solve
the dual problem:

(D)

{
minimize d(λ)
λ > 0

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Lagrangian Optimization 12 / 24

Lagrangian Optimization: Basics

I Designed to solve non linear optimization problems:
I Let α→ f(α) be a function to maximize.
I Let (Ci(α) > 0)i∈[1..n] be a set of n constraints.
I We wish to solve:

(P)

{
maximize f(α)
∀i ∈ [1..n], Ci(α) > 0, and α > 0

I The Lagrangian function: L(α, λ) = f(α)−
∑

i∈[1..n]

λiCi(α).

I The dual functional: d(λ) = max
α>0
L(α, λ).

I Under some weak hypothesis, solving (P) is equivalent to solve
the dual problem:

(D)

{
minimize d(λ)
λ > 0

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Lagrangian Optimization 12 / 24

Lagrangian Optimization: Basics

I Designed to solve non linear optimization problems:
I Let α→ f(α) be a function to maximize.
I Let (Ci(α) > 0)i∈[1..n] be a set of n constraints.
I We wish to solve:

(P)

{
maximize f(α)
∀i ∈ [1..n], Ci(α) > 0, and α > 0

I The Lagrangian function: L(α, λ) = f(α)−
∑

i∈[1..n]

λiCi(α).

I The dual functional: d(λ) = max
α>0
L(α, λ).

I Under some weak hypothesis, solving (P) is equivalent to solve
the dual problem:

(D)

{
minimize d(λ)
λ > 0

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Lagrangian Optimization 12 / 24

Lagrangian Optimization: Basics

I Designed to solve non linear optimization problems:
I Let α→ f(α) be a function to maximize.
I Let (Ci(α) > 0)i∈[1..n] be a set of n constraints.
I We wish to solve:

(P)

{
maximize f(α)
∀i ∈ [1..n], Ci(α) > 0, and α > 0

I The Lagrangian function: L(α, λ) = f(α)−
∑

i∈[1..n]

λiCi(α).

I The dual functional: d(λ) = max
α>0
L(α, λ).

I Under some weak hypothesis, solving (P) is equivalent to solve
the dual problem:

(D)

{
minimize d(λ)
λ > 0

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Lagrangian Optimization 12 / 24

Lagrangian Optimization: Basics

I Designed to solve non linear optimization problems:
I Let α→ f(α) be a function to maximize.
I Let (Ci(α) > 0)i∈[1..n] be a set of n constraints.
I We wish to solve:

(P)

{
maximize f(α)
∀i ∈ [1..n], Ci(α) > 0, and α > 0

I The Lagrangian function: L(α, λ) = f(α)−
∑

i∈[1..n]

λiCi(α).

I The dual functional: d(λ) = max
α>0
L(α, λ).

I Under some weak hypothesis, solving (P) is equivalent to solve
the dual problem:

(D)

{
minimize d(λ)
λ > 0

So what?..

I Two coupled problems with simple constraints.

I The structure of constraints is transposed to (D)
and a gradient descent algorithm is a natural way
to solve these two problems.

I This technique has been used successfully for
network resource sharing [Kelly.98], TCP anal-
ysis [Low.03], flow control in multi-path net-
work [Hang.et.al.03], . . .

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Lagrangian Optimization 12 / 24

Trying to use Lagrangian optimization

I What does the Lagrangian function look like ?

L(α, λ, µ) =
∑
k∈K

log

(∑
i

%i,k

)
+
∑
i

λi

(
Wi −

∑
k

%i,kwk

)

+
∑

(Pi→Pj)

µi,j

Bi,j −∑
k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)

%n,kbk

I Remember, we want to compute minλ,µ>0 max%>0 L(α, λ, µ).
We can solve this problem by simply doing a “alternate” gra-
dient descent (I’m skipping a few details here to keep it simple
and just present the general idea):

%i,k ← %i,k + γ ∂L
∂%i,k

λi ← λi − γ ∂L∂λi

µi,j ← µi,j − γ ∂L
∂µi,j

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Lagrangian Optimization 13 / 24

Trying to use Lagrangian optimization

I What does the Lagrangian function look like ?

L(α, λ, µ) =
∑
k∈K

log

(∑
i

%i,k

)
+
∑
i

λi

(
Wi −

∑
k

%i,kwk

)

+
∑

(Pi→Pj)

µi,j

Bi,j −∑
k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)

%n,kbk

I Remember, we want to compute minλ,µ>0 max%>0 L(α, λ, µ).

We can solve this problem by simply doing a “alternate” gra-
dient descent (I’m skipping a few details here to keep it simple
and just present the general idea):

%i,k ← %i,k + γ ∂L
∂%i,k

λi ← λi − γ ∂L∂λi

µi,j ← µi,j − γ ∂L
∂µi,j

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Lagrangian Optimization 13 / 24

Toward a Distributed Algorithm...

I %i,k is “private” to the agent of application k running on node
i.

I λi is attached to node i and µi,j is attached to (Pi → Pj).
λi and µi,j are called shadow variables or shadow prices. They
can naturally thought of as the price to pay to use the corre-
sponding resource.

I A gradient descent algorithm on the primal-dual problem can
thus be seen as a bargain between applications and resources.

I We need to find an efficient way to implement this bargain,
i.e., to compute the update. To this end, the following quanti-
ties are useful and easy to compute via recursive propagation:

σnk =
∑

p such that n∈(Pm(k);Pp)

%p,k

{
aggregate throughput

of a subtree.

ηnk =
∑

(Pi→Pj)∈(Pm(k);Pn)

µi,j

{
aggregate communication

price

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Lagrangian Optimization 14 / 24

Toward a Distributed Algorithm...

I %i,k is “private” to the agent of application k running on node
i.

I λi is attached to node i and µi,j is attached to (Pi → Pj).
λi and µi,j are called shadow variables or shadow prices. They
can naturally thought of as the price to pay to use the corre-
sponding resource.

I A gradient descent algorithm on the primal-dual problem can
thus be seen as a bargain between applications and resources.

I We need to find an efficient way to implement this bargain,
i.e., to compute the update. To this end, the following quanti-
ties are useful and easy to compute via recursive propagation:

Hierarchical deployment

%k

%i,k

µi,j

σnk =

∑
p such that n∈(Pm(k);Pp)

%p,k

{
aggregate throughput

of a subtree.

ηnk =
∑

(Pi→Pj)∈(Pm(k);Pn)

µi,j

{
aggregate communication

price

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Lagrangian Optimization 14 / 24

Toward a Distributed Algorithm...

I %i,k is “private” to the agent of application k running on node
i.

I λi is attached to node i and µi,j is attached to (Pi → Pj).
λi and µi,j are called shadow variables or shadow prices. They
can naturally thought of as the price to pay to use the corre-
sponding resource.

I A gradient descent algorithm on the primal-dual problem can
thus be seen as a bargain between applications and resources.

I We need to find an efficient way to implement this bargain,
i.e., to compute the update. To this end, the following quanti-
ties are useful and easy to compute via recursive propagation:

Hierarchical deployment

σik

%k

%i,k

µi,j

σnk =

∑
p such that n∈(Pm(k);Pp)

%p,k

{
aggregate throughput

of a subtree.

ηnk =
∑

(Pi→Pj)∈(Pm(k);Pn)

µi,j

{
aggregate communication

price

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Lagrangian Optimization 14 / 24

Toward a Distributed Algorithm...

I %i,k is “private” to the agent of application k running on node
i.

I λi is attached to node i and µi,j is attached to (Pi → Pj).
λi and µi,j are called shadow variables or shadow prices. They
can naturally thought of as the price to pay to use the corre-
sponding resource.

I A gradient descent algorithm on the primal-dual problem can
thus be seen as a bargain between applications and resources.

I We need to find an efficient way to implement this bargain,
i.e., to compute the update. To this end, the following quanti-
ties are useful and easy to compute via recursive propagation:

Hierarchical deployment

ηik

%k

%i,k

µi,j

σnk =

∑
p such that n∈(Pm(k);Pp)

%p,k

{
aggregate throughput

of a subtree.

ηnk =
∑

(Pi→Pj)∈(Pm(k);Pn)

µi,j

{
aggregate communication

price

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Lagrangian Optimization 14 / 24

Toward a Distributed Algorithm...

Prices and rates can thus be propagated and aggregated to perform
the following updates:

pik(t+ 1)← bkη
i
k(t) + wkλi(t)

%k(t+ 1)← σ
m(k)
k (t+ 1)

%i,k(t+ 1)←
[
%i,k(t) + γ%(U ′k(%k(t))− pik(t))

]+
λi(t+ 1)←

[
λi(t) + γλ

(∑
k

wk%i,k −Wi

)]+

µi,j(t+ 1)←

[
µi,j(t) + γµ

(∑
k

bkσ
i
k −Bi,j

)]+

I This algorithm is fully distributed and converges to the optimal
solution provided a good choice of γ%, γλ and γµ is done.

I This algorithm seamlessly adapts to application/node arrival
and to load variations.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Lagrangian Optimization 15 / 24

Outline

1 Framework

2 Lagrangian Optimization

3 Simulations: Early Results

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 16 / 24

Experimental Setting

I The simulator is SimGrid.

I Fully synchronous gradient.

I Checking the correctness of the results using semi-definite pro-
gramming.

I Very simple platform and applications:

B = 5.108

W = 5.108

m(3) m(1)

m(2)

C

A

B

ED

We used three kinds of applications of respective (b, w): (1000, 5000),
(2000, 800), and (1500, 1500).

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 17 / 24

Experimental Setting

I The simulator is SimGrid.

I Fully synchronous gradient.

I Checking the correctness of the results using semi-definite pro-
gramming.

I Very simple platform and applications:

B = 5.108

W = 5.108

m(3) m(1)

m(2)

C

A

B

ED

We used three kinds of applications of respective (b, w): (1000, 5000),
(2000, 800), and (1500, 1500).

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 17 / 24

Experimental Setting

I The simulator is SimGrid.

I Fully synchronous gradient.

I Checking the correctness of the results using semi-definite pro-
gramming.

I Very simple platform and applications:

B = 5.108

W = 5.108

m(3) m(1)

m(2)

C

A

B

ED

We used three kinds of applications of respective (b, w): (1000, 5000),
(2000, 800), and (1500, 1500).

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 17 / 24

Experimental Setting

I The simulator is SimGrid.

I Fully synchronous gradient.

I Checking the correctness of the results using semi-definite pro-
gramming.

I Very simple platform and applications:

B = 5.108

W = 5.108

m(3) m(1)

m(2)

C

A

B

ED

We used three kinds of applications of respective (b, w): (1000, 5000),
(2000, 800), and (1500, 1500).

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 17 / 24

Basic Version of the Algorithm

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400

 35

 36

 37

 38

 39

 40

 0 50 100 150 200 250 300 350 400

Objective function
∑

k log %k: numerical instabilities and global in-
efficiencies.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 18 / 24

Basic Version of the Algorithm

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400

 35

 36

 37

 38

 39

 40

 0 50 100 150 200 250 300 350 400

Objective function
∑

k log %k: using a smaller steps γ% ; no more
instability but slow convergence.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 18 / 24

Basic Version of the Algorithm

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 50 100 150 200 250 300 350 400

%1
%2
%3

Throughput of each of the three applications: between two itera-
tions, a decrease or increase of magnitude five or more can happen!

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 18 / 24

Basic Version of the Algorithm

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 50 100 150 200 250 300 350 400

%B,1
%E,1

%D,1
%A,1
%C,1

Detailing the rates for application 1.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 18 / 24

Basic Version of the Algorithm

 0

 50000

 100000

 150000

 200000

 0

 200

 400

 600

 800

 1000

 1200

 1400

µE,D

%E,k

Correlation between the rate of an application on a given node and
the price it experiences.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 18 / 24

Scaling!

The original update equation for % is:

%i,k(t+ 1)←
[
%i,k(t) + γ%

(
1

%k(t)
− pik(t)

)]+

A small value of % leads to huge updates and thus to severe oscil-
lations.

This is a known issue and, as mentioned in [Hang.et.al.03],
one can normalize as follows:

%i,k(t+ 1)←
[
%i,k(t) + γ%

(
1− %k(t).pik(t)

)]+
.

Unfortunately, it does not help (the previous experiments actually
use this normalized update). It merely avoids division by 0 but is
insufficient to damp oscillations.
Updating % has an impact on the prices λ and µ, which in turn
impact on the %’s update. The second update of % should have the
same order of magnitude (or be smaller) as the first one to avoid
numerical instabilities that prevent convergence of the algorithm.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 19 / 24

Scaling!

The original update equation for % is:

%i,k(t+ 1)←
[
%i,k(t) + γ%

(
1

%k(t)
− pik(t)

)]+

A small value of % leads to huge updates and thus to severe oscil-
lations. This is a known issue and, as mentioned in [Hang.et.al.03],
one can normalize as follows:

%i,k(t+ 1)←
[
%i,k(t) + γ%

(
1− %k(t).pik(t)

)]+
.

Unfortunately, it does not help (the previous experiments actually
use this normalized update). It merely avoids division by 0 but is
insufficient to damp oscillations.

Updating % has an impact on the prices λ and µ, which in turn
impact on the %’s update. The second update of % should have the
same order of magnitude (or be smaller) as the first one to avoid
numerical instabilities that prevent convergence of the algorithm.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 19 / 24

Scaling!

The original update equation for % is:

%i,k(t+ 1)←
[
%i,k(t) + γ%

(
1

%k(t)
− pik(t)

)]+

A small value of % leads to huge updates and thus to severe oscil-
lations. This is a known issue and, as mentioned in [Hang.et.al.03],
one can normalize as follows:

%i,k(t+ 1)←
[
%i,k(t) + γ%

(
1− %k(t).pik(t)

)]+
.

Unfortunately, it does not help (the previous experiments actually
use this normalized update). It merely avoids division by 0 but is
insufficient to damp oscillations.
Updating % has an impact on the prices λ and µ, which in turn
impact on the %’s update.

The second update of % should have the
same order of magnitude (or be smaller) as the first one to avoid
numerical instabilities that prevent convergence of the algorithm.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 19 / 24

Scaling!

The original update equation for % is:

%i,k(t+ 1)←
[
%i,k(t) + γ%

(
1

%k(t)
− pik(t)

)]+

A small value of % leads to huge updates and thus to severe oscil-
lations. This is a known issue and, as mentioned in [Hang.et.al.03],
one can normalize as follows:

%i,k(t+ 1)←
[
%i,k(t) + γ%

(
1− %k(t).pik(t)

)]+
.

Unfortunately, it does not help (the previous experiments actually
use this normalized update). It merely avoids division by 0 but is
insufficient to damp oscillations.
Updating % has an impact on the prices λ and µ, which in turn
impact on the %’s update. The second update of % should have the
same order of magnitude (or be smaller) as the first one to avoid
numerical instabilities that prevent convergence of the algorithm.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 19 / 24

Scaling Again!

Assume that we have reached the equilibrium. Then increase λi by
∆λi. Then:

∆%i,k = −γ(2)
% wk∆λi%k.

In turn, such a variation incurs a variation of λi:∑
k

γλ.wk.∆%i,k = ∆λi.

(∑
k

γλ.γ
(2)
% w2

k%k

)
.

Thus, the solution of our gradient is stable only if∑
k

γλ.γ
(2)
% w2

k%k < 1.

Therefore, λ’s update should be replaced by

λi(t+ 1)←
[
λi(t) + γλ

∑
k wk%i,k −Wi∑

k w
2
k%k

]+

It doesn’t hurt and similar scaling can be done for the µ’s.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 20 / 24

Scaling Again!

Assume that we have reached the equilibrium. Then increase λi by
∆λi. Then:

∆%i,k = −γ(2)
% wk∆λi%k.

In turn, such a variation incurs a variation of λi:∑
k

γλ.wk.∆%i,k = ∆λi.

(∑
k

γλ.γ
(2)
% w2

k%k

)
.

Thus, the solution of our gradient is stable only if∑
k

γλ.γ
(2)
% w2

k%k < 1.

Therefore, λ’s update should be replaced by

λi(t+ 1)←
[
λi(t) + γλ

∑
k wk%i,k −Wi∑

k w
2
k%k

]+

It doesn’t hurt and similar scaling can be done for the µ’s.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 20 / 24

Scaling Again!

Assume that we have reached the equilibrium. Then increase λi by
∆λi. Then:

∆%i,k = −γ(2)
% wk∆λi%k.

In turn, such a variation incurs a variation of λi:∑
k

γλ.wk.∆%i,k = ∆λi.

(∑
k

γλ.γ
(2)
% w2

k%k

)
.

Thus, the solution of our gradient is stable only if∑
k

γλ.γ
(2)
% w2

k%k < 1.

Therefore, λ’s update should be replaced by

λi(t+ 1)←
[
λi(t) + γλ

∑
k wk%i,k −Wi∑

k w
2
k%k

]+

It doesn’t hurt and similar scaling can be done for the µ’s.
A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 20 / 24

Scaled Version of the Algorithm

 37

 38

 39

 40

 41

 42

 43

 44

 45

 0 10 20 30 40 50
 37

 38

 39

 40

 41

 42

 43

 44

 45

 0 50 100 150 200 250 300 350 400

The oscillations, due to a really badly chosen initialization value
quickly vanish (left graph).

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 21 / 24

Scaled Version of the Algorithm

 37

 38

 39

 40

 41

 42

 43

 44

 45

 0 10 20 30 40 50
 37

 38

 39

 40

 41

 42

 43

 44

 45

 0 50 100 150 200 250 300 350 400

The algorithm almost instantly reaches a decent value (5% of the
optimal value after 17 iterations), and relatively quickly to a good
value (1% of the optimal value after 83 iterations) (right plot).

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 21 / 24

Scaled Version of the Algorithm

 39

 39.2

 39.4

 39.6

 39.8

 40

 40.2

 40.4

 40.6

 0 500 1000 1500 2000 2500 3000 3500 4000

 39.5

 39.55

 39.6

 39.65

 39.7

 39.75

 39.8

 500 1000 1500 2000 2500 3000 3500 4000

High number of iterations: after 498 iterations, the performance
remains higher than 99.5% of the optimal and still further increase
with the number of iterations.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 21 / 24

Scaled Version of the Algorithm

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

 460000

 480000

 500000

 520000

 540000

 560000

 580000

 600000

 620000

 640000

 2000 2500 3000 3500 4000

%1

%2

%3

Convergence of %i with i = 1..3: no more oscillations occur. The
throughput of each application slowly converges to their “optimal”
values.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 21 / 24

Scaled Version of the Algorithm

 0

 2e−08

 4e−08

 6e−08

 8e−08

 1e−07

 1.2e−07

 1.4e−07

 0 50 100 150 200 250 300 350 400

λC
λE
λA

λD
λB

Prices evolve smoothly. As the number of iterations increase, they
converge to their optimal value while remaining positive, meaning
that the resources they refer to is neither under utilized nor over-
loaded.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 21 / 24

Conclusion

I Not enough time to present related work but this approach is
very inspired by Low’s work [Hang.et.al.03] on flow control in
multi-path network.

I The setting (BoT applications, grids) is different though and
new problem arise.

I The resulting algorithms are different (few sources and many
sinks here).

I The convergence issue is mainly due to the fact that the re-
source usage is not homogeneous (each application has its own
wk and bk). The previous scaling is effective and easy to im-
plement.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 22 / 24

Future Work

I There may be situations where the previous scaling may not be
sufficient though. When the optimal throughput of the appli-
cations do not have the same order of magnitude, it may be

necessary for each application to have its own step size γ
(2)
% .

We may need to find auto-scaling for the %’s update as well.

I The present convergence study is rather limited in term of scal-
ability. . .

I We target grid or desktop-grid-like platforms. What if the num-
ber of application has the same order of magnitude as the num-
ber of participants in the system (like in a peer-to-peer system)?
Would the steady-state approach still make sense (completion-
based metrics like stretch. . .)?

I We rely on steady-state. How does such a system react to high
churn?

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 23 / 24

Bibliography

Frank Kelly, Aman Maulloo, and David Tan.
Rate control in communication networks: shadow prices, pro-
portional fairness and stability.
Journal of the Operational Research Society, 49:237–252, 1998.

Steven Low.
A duality model of TCP and queue management algorithms.
IEEE/ACM Transactions on Networking, 11(4):525–536, 2003.

Corinne Touati, Eitan Altman, and Jérôme Galtier.
Generalized Nash bargaining solution for bandwidth allocation.
Computer Networks, 50(17):3242–3263, December 2006.

Wei-Hua Wang, Marimuthu Palaniswami, and Steven Low.
Optimal flow control and routing in multi-path networks.
Performance Evaluation, 52:119–132, 2003.

A. Legrand (CNRS-LIG) INRIA-MESCAL Fair and Distributed Scheduling Simulations: Early Results 24 / 24

	Framework
	Lagrangian Optimization
	Simulations: Early Results

