Scheduling unreliable jobs on parallel machines

Alessandro Agnetis, Paolo Detti, Marco Pranzo

Università di Siena

Manbir S. Sodhi
University of Rhode Island

Assois, May 18-21, 2008

Overview

- The Unreliable Jobs Scheduling Problem
- Related problems and applications
- Complexity analysis
- Approximation analysis
- Computational results

Stochastic activities

- There are a number of activities (projects, jobs) to execute, and there is a probability $\boldsymbol{p}_{\boldsymbol{i}}$ to successfully carry out activity i
- Upon failure of a job, the unit (machine) currently in charge of its execution can't perform any other activity

The problem

- The problem is to arrange the jobs in an order that maximizes an utility index, accounting for the possibility of machine breakdowns (due to job failure)

Application context: Unsupervised systems

- In certain highly automated systems, production (at least during the night shift) is unattended
- When planning unattended activities, the chances of failures leading to machine breakdown should be taken into account
- If a machine stops, no immediate intervention is possible

The Unreliable Jobs Scheduling Problem (UJSP)

We are given:

- J=\{1,...,n\} job set
- a single machine or a set of \boldsymbol{m} identical parallel machines
- $\boldsymbol{p}_{\boldsymbol{i}} \quad$ success probability of job \boldsymbol{i}
- $\boldsymbol{r}_{\boldsymbol{i}}$ reward for job i, if completed

UJSP

- Single machine case

Let σ be a schedule of the \boldsymbol{n} jobs on the machine, and $\sigma(j)$ be the job in j-th position
the total expected reward is

$$
\begin{aligned}
& \mathrm{ER}(\sigma)=\mathrm{p}_{\sigma(1)} \mathrm{r}_{\sigma(1)}+\mathrm{p}_{\sigma(1)} \mathrm{p}_{\sigma(2)} \mathrm{r}_{\sigma(2)}+\ldots+ \\
& \mathrm{p}_{\sigma(1)} \mathrm{p}_{\sigma(2)} \ldots \mathrm{p}_{\sigma(\mathrm{n}-1)} \mathrm{p}_{\sigma(\mathrm{n})} \mathrm{r}_{\sigma(\mathrm{n})}
\end{aligned}
$$

UJSP

- Parallel machine case

Let $\phi=\left\{\sigma_{1}, \ldots, \sigma_{m}\right\}$ be a schedule of the \boldsymbol{n} jobs on a the \boldsymbol{m} machines, where σ_{k} is the schedule of the jobs assigned to the \boldsymbol{k}-th machine
the total expected reward is

$$
E R(\phi)=E R\left(\sigma_{I}\right)+E R\left(\sigma_{2}\right)+\ldots+E R\left(\sigma_{m}\right)
$$

A related problem

Total Weighted Discounted Completion Time (TWDCT)
 $$
\mathrm{P} / / \sum \mathrm{w}_{i} \mathrm{e}^{-\mathrm{r} \mathrm{c}_{i}}
$$

$\boldsymbol{n} \quad$ jobs must be scheduled on \boldsymbol{m} parallel machines
$\boldsymbol{t}_{\boldsymbol{i}} \quad$ processing time of job \boldsymbol{i}
$\boldsymbol{w}_{\boldsymbol{i}} \quad$ reward of job \boldsymbol{i}
$r>0$ a fixed discount rate
$\boldsymbol{w}_{\boldsymbol{i}} \boldsymbol{e}^{-r t}$ reward of job \boldsymbol{i} if completed at time \boldsymbol{t}
$\boldsymbol{C}_{\boldsymbol{i}} \quad$ completion time of job i in some schedule ϕ
The present value of the total reward (to maximize) is

$$
\mathrm{PV}(\phi)=\sum_{i} w_{i} \mathrm{e}^{-\mathrm{r} \mathrm{C}_{\mathrm{i}}}
$$

Equivalence between TWDCT and UJSP

Given an instance of TWDCT with \boldsymbol{n} jobs and \boldsymbol{m} parallel machines
we build an instance of UJSP with jobs \boldsymbol{n} and \boldsymbol{m} machines setting:

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{i}}=e^{-r_{i}} \\
& \mathrm{r}_{\mathrm{i}}=\mathrm{w}_{\mathrm{i}}
\end{aligned}
$$

The expected reward to maximize is

$$
E R(\phi)=\sum_{k=1}^{m} E R\left(\sigma_{k}\right)=P V(\phi)
$$

The Weighted Sum Completion Time (WSCT) $\mathrm{P}\left|\mid \sum \mathrm{w}_{\mathrm{i}} \mathrm{C}_{i}\right.$

$\boldsymbol{n} \quad$ jobs must be scheduled on \boldsymbol{m} parallel machines
$\boldsymbol{t}_{\boldsymbol{i}} \quad$ processing time of job \boldsymbol{i}
$\boldsymbol{w}_{\boldsymbol{i}} \quad$ weight of job \boldsymbol{i}
$C_{i} \quad$ completion time of job i in some schedule ϕ

The function to minimize is

$$
\mathrm{WC}(\phi)=\sum \mathrm{w}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}
$$

WSCT is a special case of TWDCT $\left(P\left|\mid \sum w_{i} C_{i}\right) \quad\left(P\left|\mid \sum w_{i} e^{-1 C_{i}}\right)\right.\right.$

When $\mathrm{r} \ll 1$ we have

$$
e^{-r C_{i}}=1-r C_{i}+\frac{\left(r C_{i}\right)^{2}}{2!}-\frac{\left(r C_{i}\right)^{3}}{3!}+\frac{\left(r C_{i}\right)^{4}}{4!}+\ldots \approx 1-r C_{i}
$$

Hence
$\max P V(\phi) \approx \max \sum_{i} w_{i}\left(1-C_{i}\right) \equiv \sum_{i} w_{i}-\min \sum_{i} w_{i} C_{i} \equiv$ $\equiv \min W C(\phi)$

Single machine case

UJSP, TWDCT and WSCT problems can be optimally solved by the following ordering rules

Related problems and application contexts (single machine case)

- Component testing (Monma and Sidney, 1979)
- Data acquisition and processing problems in sensor networks (Srivastava et al., 2005).
- Management of queries in databases (Hellerstein and Stonebraker, 1993)

UJSP with identical parallel machines

UJSP with 2 parallel machine is strongly NP-hard

Approximation results for two simple heuristics when $m=2$:

- Round Robin heuristic (RR)
- "Highest probability" heuristic (HP)

Round robin heuristic (RR)

- Order the jobs according to the ratio $z_{i}=\frac{p_{r} r_{i}}{1-p_{i}}$
- Assign jobs to the machines in a round robin way: To machine \boldsymbol{h} are assigned jobs i<n

$$
i=m \times k+h \text { for } k=0,1, \ldots\left\lfloor\frac{n}{m}\right\rfloor
$$

Highest probability heuristic (HP)

- Order the jobs according to the ratio $z_{i}=\frac{p_{r} r_{i}}{1-p_{i}}$ if jobs have the same Z-ratio sequence first the job with the smallest success probability
- Assign the next job to the machine having the highest cumulative probability, i.e., the highest product of the probabilities of the jobs already assigned to it.

HP heuristic

An approximation result

In problem UJSP with \boldsymbol{m} parallel machines, any schedule ϕ in which the jobs are sequenced according to the ratios $z_{i}=\frac{p_{i} r_{i}}{1-p_{i}}$ on each machine is at least

1/m-approximate.

$$
\frac{E R(\phi)}{E R^{*}} \geq \frac{1}{m}
$$

How bad is RR heuristic?

A 3-job 2-machine instance

	p_{i}	r_{i}	Z_{i}
1	ε	$1 / \varepsilon$	$1 /(1-\varepsilon)$
2	$1-\varepsilon$	$\varepsilon /(1-\varepsilon)$	1
3	ε	$(1-\varepsilon) / \varepsilon$	1

Round robin solution

$E R\left(\sigma_{1}^{R R}\right)=\square p_{1} r_{1}+p_{1} p_{3} r_{3}=1+\varepsilon(1-\varepsilon)=1+\varepsilon-\varepsilon$ $E R\left(\sigma_{2}^{R R}\right)=p_{2} r_{2}=\varepsilon$
$E R^{R R}=E R\left(\sigma_{1}^{R R}\right)+E R\left(\sigma_{2}^{R R}\right)=1+2 \varepsilon-\varepsilon^{2}$

Optimal solution

\square

2	3

$E R\left(\sigma_{1}{ }^{*}\right)=p_{1} r_{1}=1$
$E R\left(\sigma_{2}{ }^{*}\right)=p_{2} r_{2}+p_{2} p_{3} r_{3}=\varepsilon+(1-\varepsilon)^{2}=$

$$
=\varepsilon+1+\varepsilon^{2}-2 \varepsilon
$$

$E R^{*}=E R\left(\sigma_{1}^{*}\right)+E R\left(\sigma_{2}^{*}\right)=2-\varepsilon+\varepsilon^{2}$

Approximation ratio

$\underset{E R^{*}}{E R^{R R}}=\frac{1+2 \varepsilon-\varepsilon^{2}}{2-\varepsilon+\varepsilon^{2}} \longrightarrow 0.5$

$\mathbf{R R}$ is 1/2-approximate.

How bad is HP heuristic?

When $\boldsymbol{m}=\mathbf{2}$ HP is 0.81 -approximate $\frac{E R_{H P}}{E R^{?}} \geq 0.81$

A first (high multiplicity) upper bound for UJSP

- A special case is when there exist several identical jobs of few different types
- If exactly \boldsymbol{m} copies exist of each job, then the optimal solution consists in assigning one job of each type on each of the \boldsymbol{m} machines, and sequencing according to the \boldsymbol{Z}-ratio

A first (high multiplicity) upper bound for UJSP

- The HM case can be exploited to devise an upper bound for the general case
- Given an instance of UJSP, replace each job \boldsymbol{i} with \boldsymbol{m} identical jobs \boldsymbol{k} :

$$
p_{k}=\sqrt[m]{p_{i}} \quad r_{k}=\frac{\left(1-\sqrt[m]{p_{i}}\right) p_{i}}{\left(1-p_{i}\right) \sqrt[m]{p_{i}}} r_{i}
$$

$$
U B_{\text {HM }}=m \sum_{i=1}^{n} \frac{1-\sqrt[m]{p_{i}}}{1-p_{i}} p_{i} r_{i} \sqrt[m]{\prod_{k=1}^{i-1} p_{k}}
$$

A first lower bound for UJSP

- The HP heuristic schedules at each step a job on the machine having the maximum cumulative probability. It can be proved that in HP the contribution of the i-th job is at least

$$
p_{i} r_{i} \sqrt{\prod_{k=1}^{i-1} p_{k}}
$$

- A lower bound for HP solution is then

$$
L B_{1}=\sum_{i=1}^{n} p_{i} r_{i} \sqrt{\prod_{k=1}^{i-1} p_{k}}
$$

A first ratio

- W.I.o.g. let 1 be the job with the smallest probability \boldsymbol{p}_{1}, we have

$$
\frac{E R_{H P}}{E R^{*}} \geq \frac{L B_{1}}{U B_{H M}}=\frac{\sum_{i=1}^{n} p_{i} r_{i} r_{i} \prod_{k=1}^{i-1} p_{k}}{m \sum_{i=1}^{n} \frac{1-\sqrt[m]{p_{i}}}{1-p_{i}} p_{i} r_{i} \sqrt[m]{\prod_{k=1}^{i-1} p_{k}}} \geq \frac{1}{\frac{m\left(1-\sqrt[m]{p_{i}}\right)}{1-p_{1}}}
$$

New upper and lower bounds when all jobs have the same Z-ratio and $\boldsymbol{m}=2$

- Consider a UJSP instance in which all jobs have the same ratio Z
- Let $\boldsymbol{S}_{\boldsymbol{k}}$ be the set of jobs scheduled on machine \boldsymbol{k}
- The expected reward on machine \boldsymbol{k} is then

$$
E R_{k}=Z\left(1-\prod_{i \in S_{k}} p_{i}\right)
$$

Expected reward of a schedule ($m=2$) (all jobs have the same ratio Z)

- Given a schedule $\phi=\left\{\sigma_{1}, \sigma_{2}\right\}$ for $\boldsymbol{m}=2$, w.l.o.g. suppose that job 1 (with the smallest probability) is assigned to machine 1.
- let $p_{1} P_{A}$ and P_{B} be the cumulative probabilities of jobs assigned to machine 1 and 2, respectively.
- If all jobs have the same ratio Z, the total expected reward of ϕ is

$$
E R(\phi)=Z\left(1-p_{1} P_{A}\right)+Z\left(1-P_{B}\right)
$$

A second lower bound ($m=2$) (all jobs have the same ratio Z)

- Consider the schedule $\phi=\left\{\sigma_{1}, \sigma_{2}\right\}$ in which job 1 is assigned to machine 1 and all other jobs are assigned to machine 2.
- Let $\boldsymbol{P}_{\boldsymbol{B}}^{\prime}$ the product of the probabilities of all other jobs (assigned to machine 2). Hence, $P_{B}^{\prime}=P_{A} P_{B}$
- Note that the HP heuristic produces a schedule not worse than ϕ^{\prime} (ϕ^{\prime} provides a lower bound to HP sol.)
- If all jobs have the same ratio Z, a lower bound to the solution provided by HP is

$$
L B_{2}=Z\left(1-p_{1}\right)+Z\left(1-P_{B}^{\prime}\right)
$$

A second ratio ($m=2$)

- By definition $P_{B}^{\prime}=P_{A} P_{B}$, hence we have:

$$
\frac{E R_{H P}}{E R^{\prime}} \geq \frac{L B_{2}}{E R(\phi)} \geq \frac{Z\left(1-p_{1}\right)+Z\left(1-P_{A} P_{B}\right)}{Z\left(1-p_{1} P_{A}\right)+Z\left(1-P_{B}\right)}
$$

- Which is minimized when $\boldsymbol{P}_{A}=\boldsymbol{P}_{\mathrm{B}}=\mathbf{0}$
- Hence

$$
\frac{E R_{H P}}{E R^{*}} \geq \frac{L B 2}{E R(\phi)} \geq 1-p_{1} / 2
$$

This result holds even when jobs have different Z-values

An approximation result for HP when $m=2$

- The minimum of maximum between

$$
\frac{E R_{H P}}{E R^{*}} \geq \frac{L B 1}{U B_{H M}} \geq \frac{1-p_{1}}{2\left(1-\sqrt{p_{1}}\right)}
$$

and

$$
\frac{E R_{H P}}{E R^{*}} \geq \frac{L B 2}{E R^{*}} \geq 1-p_{1} / 2
$$

is about 0.81 (for $\boldsymbol{p}_{1}=0.37$)
HP is 0.81 -approximate

Experimental results

- $\boldsymbol{n}=50,100,500$
- $\boldsymbol{m}=2,5,10,20$
- $\boldsymbol{p}_{\boldsymbol{i}} \sim$ U[0.7, 0.99]
- $\boldsymbol{p}_{\boldsymbol{i}} \sim 4[0.3,0.99]$
- $p_{i} \sim 4[0.3,0.7]$
- $r_{i} \sim 4[10,40]$
- 100 randomly generated instances for each setting

Average gap of RR $100 * \frac{U B_{H M}-E R_{R R}}{U B_{H M}}$

jobs										
		$U[0.7,0.99]$			$U[0.3,0.99]$			$U[0.3,0.7]$		
	$\mathbf{n}=\mathbf{5 0}$	$\mathbf{n}=\mathbf{1 0 0}$	$\mathbf{n}=\mathbf{5 0 0}$	$\mathbf{n}=\mathbf{5 0}$	$\mathbf{n}=\mathbf{1 0 0}$	$\mathbf{n}=\mathbf{5 0 0}$	$\mathbf{n}=\mathbf{5 0}$	$\mathbf{n}=\mathbf{1 0 0}$	$\mathbf{n}=\mathbf{5 0 0}$	
2										
5	0.126	0.072	0.027	0.258	0.147	0.046	0.312	0.210	0.101	
10	0.760	0.235	0.074	0.723	0.406	0.124	1.055	0.617	0.228	
20	1.362	0.801	0.123	1.541	0.799	0.219	2.053	1.173	0.382	

Average gap of HP $100 * \frac{U B_{H M}-E R_{H P}}{U B_{H M}}$

jobs									
	$U[0.7,0.99]$			$U[0.3,0.99]$			$U[0.3,0.7]$		
	$\mathbf{n = 5 0}$	$\mathbf{n}=\mathbf{1 0 0}$	$\mathbf{n}=\mathbf{5 0 0}$	$\mathbf{n}=\mathbf{5 0}$	$\mathbf{n}=\mathbf{1 0 0}$	$\mathbf{n}=\mathbf{5 0 0}$	$\mathbf{n}=\mathbf{5 0}$	$\mathbf{n}=\mathbf{1 0 0}$	$\mathbf{n}=\mathbf{5 0 0}$
2									
5	0.069	0.034	0.007	0.162	0.082	0.017	0.285	0.186	0.089
10	0.547	0.114	0.022	0.557	0.266	0.052	0.936	0.569	0.203
20	1.133	0.552	0.045	1.272	0.577	0.107	1.809	1.023	0.348

