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Overview

• The Unreliable Jobs Scheduling Problem
• Related problems and applications 
• Complexity analysis• Complexity analysis
• Approximation analysis
• Computational results



Stochastic activities

• There are a number of activities 
(projects, jobs) to execute, and there is 
a probability pi to successfully carry out 
activity iactivity i

• Upon failure of a job, the unit (machine) 
currently in charge of its execution can’t 
perform any other activity



The problem

• The problem is to arrange the jobs in an 
order that maximizes an utility index, 
accounting for the possibility of machine 
breakdowns (due to job failure)breakdowns (due to job failure)



Application context: Unsupervised 
systems

• In certain highly automated systems, 
production (at least during the night 
shift) is unattended

• When planning unattended activities, • When planning unattended activities, 
the chances of failures leading to 
machine breakdown should be taken 
into account

• If a machine stops, no immediate 
intervention is possible



We are given:
• J={1,…,n} job set 
• a single machine or a set of m identical 

parallel machines

The Unreliable Jobs Scheduling 
Problem (UJSP) 

parallel machines
• pi success probability of job i
• ri reward for job i, if completed



UJSP

• Single machine case
Let σσσσ be a schedule of the n jobs on the machine, 

and σσσσ(j) be the job in j-th position

the total expected reward isthe total expected reward is
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UJSP

• Parallel machine case
Let φ={σφ={σφ={σφ={σ1111,..., σ,..., σ,..., σ,..., σm}}}} be a schedule of the n jobs on a 

the m machines, where σσσσk is the schedule of the 
jobs assigned to the k-th machine

the total expected reward is

ER(φ )= ER(σ1)+ER(σ2)+…+ER(σm ) 



A related problem
Total Weighted Discounted Completion Time 

(TWDCT) 

n jobs must be scheduled on m parallel machines
ti processing time of job i
wi reward of job i
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r>0  a fixed discount rate
wi e-rt reward of job i if completed at time t
Ci completion time of job i in some schedule φφφφ

The present value of the total reward (to maximize) is
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Equivalence between TWDCT and UJSP

Given an instance of TWDCT with n jobs and m 
parallel machines

we build an instance of UJSP with jobs n and m
machines setting: p = − irtemachines setting:
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The Weighted Sum Completion Time 
(WSCT) 

n jobs must be scheduled on m parallel machines
ti processing time of job i
w weight of job i
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The function to minimize is

wi weight of job i
Ci completion time of job i in some schedule φ
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WSCT is a special case of TWDCT 

When r<<1 we have
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Single machine case
UJSP, TWDCT and WSCT problems can be 

optimally solved by the following ordering rules

Ratio Ordering

UJP nonincreasing

Index Ordering Ref.

UJSP nonincreasing Mitten
1960i
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LFCD nondecreasing

TDWCT nondecreasing

1960

TWDCT nondecreasing Rothkopf
1966

WSCT nonincreasing Smith
1956
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Related problems and application 
contexts (single machine case)

• Component testing (Monma and Sidney, 1979)

• Data acquisition and processing problems in 
sensor networks (Srivastava et al., 2005).sensor networks (Srivastava et al., 2005).

• Management of queries in databases 
(Hellerstein and Stonebraker, 1993)



UJSP with identical parallel 
machines

UJSP with 2 parallel machine is strongly NP-hard

Approximation results for two simple heuristics when 
m=2:m=2:

- Round Robin heuristic (RR) 
- “Highest probability” heuristic (HP) 



Round robin heuristic (RR) 

� Order the jobs according to the ratio

� Assign jobs to the machines in a round 
robin way: To machine h are assigned 
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robin way: To machine h are assigned 
jobs i<n
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Highest probability heuristic (HP) 

� Order the jobs according to the ratio              
if jobs have the same Z-ratio sequence first 
the job with the smallest success probability                        
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� Assign the next job to the machine having 
the highest cumulative probability, i.e., the 
highest product of the probabilities of the 
jobs already assigned to it.
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An approximation result

In problem UJSP with m parallel machines, 
any schedule φφφφ in which the jobs are 
sequenced according to the ratios 
on each machine is at least 
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A 3-job 2-machine instance

pi ri Zi

How bad is RR heuristic? 
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Round robin solution

1 3

2
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Optimal solution
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Approximation ratio

ERRR        1 +2εεεε � εεεε�

ER*                                            2 – ε ε ε ε �εεεε�= 0.5

RR is 1/2-approximate.



When m=2 HP is 0.81-approximate

How bad is HP heuristic? 

A first (high multiplicity) upper bound for 
UJSP 

81.0* ≥
ER
ERHP

� A special case is when there exist several 
identical jobs of few different types

� If exactly m copies exist of each job, then the 
optimal solution consists in assigning one job 
of each type on each of the m machines, and 
sequencing according to the Z-ratio

UJSP 



� The HM case can be exploited to devise 
an upper bound for the general case

� Given an instance of UJSP, replace each 
job i with m identical jobs k:

A first (high multiplicity) upper bound for 
UJSP 
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A first lower bound for UJSP 

� The HP heuristic schedules at each step a job 
on the machine having the maximum 
cumulative probability. It can be proved that  in 
HP the contribution of the   i-th job is at least
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� A lower bound for HP solution is then
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A first ratio

�W.l.o.g. let 1 be the job with the smallest 
probability p1, we have
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New upper and lower bounds when all 
jobs have the same Z-ratio and m=2

� Consider a UJSP instance in which all jobs have the 
same ratio Z

� Let Sk be the set of jobs scheduled on machine k
� The expected reward on machine k is then� The expected reward on machine k is then
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Expected reward of a schedule (m=2)
(all jobs have the same ratio Z)

� Given a schedule φφφφ={={={={σσσσ1111,,,,σσσσ2222}}}} for m=2, w.l.o.g. suppose 
that job 1 (with the smallest probability) is assigned 
to machine 1.

� let p1PA and PB be the cumulative probabilities of � let p1PA and PB be the cumulative probabilities of 
jobs assigned to machine 1 and 2, respectively.

� If all jobs have the same ratio Z, the total expected 
reward of φφφφ is
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A second lower bound (m=2) 
(all jobs have the same ratio Z)

� Consider the schedule φφφφ’={σ={σ={σ={σ1111,σ,σ,σ,σ2222}}}} in which job 1 is 
assigned to machine 1 and all other jobs are 
assigned to machine 2.

� Let P’B the product of the probabilities of all other 
jobs (assigned to machine 2). Hence, P’ =P P

B
jobs (assigned to machine 2). Hence, P’B=PAPB

� Note that the HP heuristic produces a schedule not 
worse than φφφφ’ (φφφφ’ provides a lower bound to HP sol.)

� If all jobs have the same ratio Z, a lower bound to the 
solution provided by HP is
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A second ratio (m=2)
� By definition P’B=PAPB ,  hence we have:

�Which is minimized when P =P =0
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�Which is minimized when PA=PB=0
� Hence 

This result holds even when jobs have different 
Z-values
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� The minimum of maximum between 

and
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An approximation result for HP when m=2

and

is about 0.81 (for p1=0.37) 
HP is 0.81-approximate
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Experimental results

� n = 50, 100, 500
�m = 2, 5, 10, 20 

�pi ~ U[0.7, 0.99]

�p�pi ~ U[0.3, 0.99]

�pi ~ U[0.3, 0.7]

� ri ~ U[10, 40]
� 100 randomly generated instances for 

each setting
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