
Scheduling for Numerical Scheduling for Numerical Scheduling for Numerical Scheduling for Numerical 
Linear Algebra Library at ScaleLinear Algebra Library at Scale

kJack Dongarra
INNOVATIVE  COMP    ING  LABORATORY

U i i  f TUniversity of Tennessee
Oak Ridge National Laboratory

University of Manchester

5/19/2008 1



Something’s Happening Here…Something’s Happening Here…
• In the “old 

days” it was: 
h  

From K. Olukotun, L. Hammond, H. 
Sutter, and B. Smith

each year 
processors 
would become 
fasterfaster

• Today the clock 
speed is fixed or 
getting slowergetting slower

• Things are still 
doubling every 
18 24 months18 -24 months

• Moore’s Law 
reinterpretated.

Number of cores Number of cores 
double every 
18-24 months 07 2



500 Fastest Computers Over Time500 Fastest Computers Over Time
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Hybrid Design (2 kinds of chips & 3 kinds of cores)

172,800 cores

07
4

1152 AMD cores / cluster each core with a Cell processor



Performance Development & Projections
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ORNL/UTK Computer Power Cost Projections 
2007-2012

• Over the next 5 
years ORNL/UTK 
will deploy 2 large 
Petascale systems

• Using 4 MW today• Using 4 MW today, 
going to 15MW 
before year end

• By 2012 could be 
using more than 
50MW!!50MW!!

• Cost estimates 
based on $0.07 per 
KwH

Includes both DOE and NSF systems.



What’s Next?What’s Next?
All Large CoreAll Large Core

Mixed LargeMixed Large
andand
Small CoreSmall Core Many Small CoresMany Small CoresS all Co eS all Co e Many Small CoresMany Small Cores

All Small CoreAll Small Core

Different Classes of Chips
H

+ 3D Stacked Many Floating-

Home
Games / Graphics
Business 
Scientific

SRAMSRAM

MemoryPoint Cores
The question is not whether this will
happen but whether we are ready



What Will a What Will a PetascalePetascale System Looks Like?System Looks Like?

Possible Petascale System

1. # of cores per nodes 10 – 100 cores, 
possibly hybridpossibly hybrid

2. Performance per nodes 100 – 1,000 GFlop/s

3. Number of nodes 1,000 - 10,000 nodes

4. Latency inter-nodes 1 μsec

5. Bandwidth inter-nodes 10 GB/s

6. Memory per nodes 100 – 1,000 GB

• In general would like high…
2. performance per node     5. bandwidth inter-nodes     6. memory per nodes 

• Algorithms for multicore and need for latency avoiding 

y p ,

Algorithms for multicore and need for latency avoiding 
algorithms

1. Number of cores per node     2. performance per node     4. Latency inter-
nodes

I  i l i g f lt t l• Issues involving fault tolerance
Motivation in:

1. Number of cores per node     3. number of nodes



Major Changes to SoftwareMajor Changes to Software
• Must rethink the design of our 

softwaresoftware
Another disruptive technology
• Similar to what happened with cluster 

computing and message passing
Rethink and rewrite the applications, 
algorithms  and softwarealgorithms, and software

• Numerical libraries for example will 
changechange

For example, both LAPACK and 
ScaLAPACK will undergo major changes 
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g j g
to accommodate this



LAPACK and LAPACK and ScaLAPACKScaLAPACK

ScaLAPACK

LAPACK

PBLAS

Threaded
BLAS

parallelism
PBLAS

Global
Local

BLACS

PThreads OpenMP Mess Passing
(MPI , PVM, ...)

About 1 million lines of code



Coding for an Coding for an Abstract Abstract MMulticoreulticore

Parallel software for multicores should have 
two characteristics:two characteristics:
• Fine granularity: 

• High level of parallelism is neededHigh level of parallelism is needed
• Cores will probably be associated with relatively small local 

memories. This requires splitting an operation into tasks that 
operate on small portions of data in order to reduce bus trafficoperate on small portions of data in order to reduce bus traffic 
and improve data locality.

• Asynchronicity: 
A th d f th d l l ll li d l it• As the degree of thread level parallelism grows and granularity 
of the operations becomes smaller, the presence of 
synchronization points in a parallel execution seriously affects 
the efficiency of an algorithmthe efficiency of an algorithm.



ManyCoreManyCore -- Parallelism for the Parallelism for the 
MassesMasses

• We are looking at the following g g
concepts in designing the next 
numerical library implementationy p

Dynamic Data Driven Execution
Self Adaptingp g
Block Data Layout
Mixed Precision in the AlgorithmMixed Precision in the Algorithm
Exploit Hybrid Architectures
Fault Tolerant Methods Fault Tolerant Methods 
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Steps in the LAPACK LUSteps in the LAPACK LU
DGETF2 LAPACK

(Factor a panel)

DLSWP LAPACK
(B k d )

DLSWP LAPACK

(Backward swap)

DLSWP LAPACK
(Forward swap)

DTRSM BLAS
(Triangular solve)

13
DGEMM BLAS

(Matrix multiply)



LU Timing Profile (4 LU Timing Profile (4 core core system)system)
Threads – no lookahead

Time for each component
DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

DGETF2

DLSWP

DLSWP

DTRSM

DGEMMBulk Sync PhasesBulk Sync Phases



Adaptive Lookahead Adaptive Lookahead -- DynamicDynamic

Event DrivenEvent DrivenEvent Driven Event Driven 
MultithreadingMultithreading

Ideas not new.Ideas not new.

Many papers use theMany papers use the
DAG approach.DAG approach.

15

Reorganizing 
algorithms to use 

this approach



Achieving Fine GranularityAchieving Fine Granularity
Fine granularity may require novel data formats to 
overcome the limitations of BLAS on small chunks 

Column-Major

o e co e e a o s o S o s a c u s
of data.



Achieving Fine GranularityAchieving Fine Granularity
Fine granularity may require novel data formats to 
overcome the limitations of BLAS on small chunks 

Column-Major Blocked

o e co e e a o s o S o s a c u s
of data.
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CholeskyCholesky on the CELLon the CELL

• 1 CELL (8 SPEs)
186 Gflop/s• 186 Gflop/s

• 91 % peak
• 97 % SGEMM peak

2 CELL  (16 SPE )• 2 CELLs (16 SPEs)
• 365 Gflop/s
• 89 % peak

k• 95 % SGEMM peak

Single precision results on the Cell



If We Had A Small Matrix ProblemIf We Had A Small Matrix Problem

• We would generate the DAG, 
find the critical path and p
execute it.

• DAG too large to generate ahead 
of timeof time

Not explicitly generate
Dynamically generate  the DAG as 
we go

• Machines will have large 
number of cores in a distributed number of cores in a distributed 
fashion

Will have to engage in message 
passingpassing
Distributed management
Locally have a run time system



Each Node or Core Will HaveEach Node or Core Will Have

some dependencies 
satisfied
waiting for all dependencies

BIN 1

all dependencies 
satisfied
some data deliveredsome data delivered
waiting for all dataBIN 2

all data delivered
waiting for execution

23

waiting for execution

BIN 3



DAG and RuntimeDAG and Runtime
Bin 1: Waiting for dependencies to be satisfied 
Bin 2: All dependencies satisfied, waiting for 

data
Bin 3: dependencies and data available; ready to 

execute 

• Execute task in Bin 3Execute task in Bin 3
Task with all data and dependencies satisfied
After execution report to children done and 
dependencies satisfied and send data
Steal task if noneSteal task if none

• Check Bin 1 to see if new dependencies 
satisfied for tasks 

If new dependency satisfied update and post 
receive of datareceive of data
If all dependencies and data available satisfied 
move to Bin 2

• Check Bin 2 to see data arrival
Ch k f  d t  i l  If ll d t  il bl  Check for data arrival; If all data available 
move to Bin 3

• If needed place new task from my part of the 
DAG into Bin 1

24



DAG and SchedulingDAG and Scheduling

• DAG is 
dynamically 

• Run time
• Bin 1dynamically 

generated and 
implicit

• Exec a task that’s ready
• Notify children of 

completionimplicit
• Everything 

d i d f  

completion
• Send data to children
• If no work do work 

stealingdesigned for 
distributed 

 

stealing

• Bin 2
• See if new dependences 

memory systems
• Runtime system 

are satisfied
• If so move task to Bin 3

• Bin 3
on each node or 
core

Bin 3
• See if new data has 

arrived  25



dep dep
dep

req
d t

req
data

reqdata req
data

data
data

data data

execute

notify

notify
notify



Looking Into a Number of ThingsLooking Into a Number of Things

• DAG must be dynamic• DAG must be dynamic
Some of the algorithms are iterative i.e. 
eigenvalue problemeigenvalue problem

• Parameterized Task Graph
C d d JCosnard and Jeannot

• DAG has to be handled in a  
distributed fashion

27



Some QuestionsSome Questions
• What’s the best way to represent the DAG?
• What’s the best approach to dynamically generating pp y y g g

the DAG?
• What run time system should we use?

W  ill b bl  b ild thi  th t  ld t t t  th  We will probably build something that we would target to the 
underlying system’s RTS.

• What about work stealing?
Can we do better than nearest neighbor work stealing?

• What does the program look like?
Experimented with Cilk  Charm++  UPC  Intel ThreadsExperimented with Cilk, Charm++, UPC, Intel Threads
I would like to reuse as much of the existing software as 
possible

28
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