
Scheduling for Numerical Scheduling for Numerical Scheduling for Numerical Scheduling for Numerical
Linear Algebra Library at ScaleLinear Algebra Library at Scale

kJack Dongarra
INNOVATIVE COMP ING LABORATORY

U i i f TUniversity of Tennessee
Oak Ridge National Laboratory

University of Manchester

5/19/2008 1

Something’s Happening Here…Something’s Happening Here…
• In the “old

days” it was:
h

From K. Olukotun, L. Hammond, H.
Sutter, and B. Smith

each year
processors
would become
fasterfaster

• Today the clock
speed is fixed or
getting slowergetting slower

• Things are still
doubling every
18 24 months18 -24 months

• Moore’s Law
reinterpretated.

Number of cores Number of cores
double every
18-24 months 07 2

500 Fastest Computers Over Time500 Fastest Computers Over Time

6.96 PF/s

1 Pflop/s
478 TF/s

NEC Earth Simulator

SUM
100 Tflop/s

1 Pflop/s IBM BlueGene/L

1.17 TF/s

59.7 GF/s

5.9 TF/s

Intel ASCI Red

IBM ASCI White
N=1

1 Tflop/s

10 Tflop/s

Fujitsu 'NWT'

N=500

100 Gflop/s

10 Gflop/s

0.4 GF/s

3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

1 Gflop/s

100 Mflop/s

3

19
93

19
94

19
9

19
9 6

19
97

19
98

19
99

20
00

20
0

20
0 2

20
03

20
04

20
0

20
0 6

20
07

Hybrid Design (2 kinds of chips & 3 kinds of cores)

172,800 cores

07
4

1152 AMD cores / cluster each core with a Cell processor

Performance Development & Projections
10 Efl /10 Eflop/s

1 Eflop/s
100 Pflop/s

10 Pflop/s10 Pflop/s
1 Pflop/s

100 Tflop/s
10 Tflop/s

SUM
10 Tflop/s

1 Tflop/s
100 Gflop/s

10 Gflop/s
N=1

N=500

10 Gflop/s
1 Gflop/s

100 Mflop/s
10 Mflop/s

19 80
19 82
19 84
19 86
19 88
19 90
19 92
19 94
19 96
19 98
20 00
20 02
20 04
20 06
20 08
20 10
20 12
20 14
20 16
20 18
20 20

N=50010 Mflop/s
1 Mflop/s

1 Tflop/s1 Gflop/s 1 Eflop/s

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0

1 Pflop/s

O(106)ThreadsO(103) ThreadsO(1) Thread O(109) Threads

ORNL/UTK Computer Power Cost Projections
2007-2012

• Over the next 5
years ORNL/UTK
will deploy 2 large
Petascale systems

• Using 4 MW today• Using 4 MW today,
going to 15MW
before year end

• By 2012 could be
using more than
50MW!!50MW!!

• Cost estimates
based on $0.07 per
KwH

Includes both DOE and NSF systems.

What’s Next?What’s Next?
All Large CoreAll Large Core

Mixed LargeMixed Large
andand
Small CoreSmall Core Many Small CoresMany Small CoresS all Co eS all Co e Many Small CoresMany Small Cores

All Small CoreAll Small Core

Different Classes of Chips
H

+ 3D Stacked Many Floating-

Home
Games / Graphics
Business
Scientific

SRAMSRAM

MemoryPoint Cores
The question is not whether this will
happen but whether we are ready

What Will a What Will a PetascalePetascale System Looks Like?System Looks Like?

Possible Petascale System

1. # of cores per nodes 10 – 100 cores,
possibly hybridpossibly hybrid

2. Performance per nodes 100 – 1,000 GFlop/s

3. Number of nodes 1,000 - 10,000 nodes

4. Latency inter-nodes 1 μsec

5. Bandwidth inter-nodes 10 GB/s

6. Memory per nodes 100 – 1,000 GB

• In general would like high…
2. performance per node 5. bandwidth inter-nodes 6. memory per nodes

• Algorithms for multicore and need for latency avoiding

y p ,

Algorithms for multicore and need for latency avoiding
algorithms

1. Number of cores per node 2. performance per node 4. Latency inter-
nodes

I i l i g f lt t l• Issues involving fault tolerance
Motivation in:

1. Number of cores per node 3. number of nodes

Major Changes to SoftwareMajor Changes to Software
• Must rethink the design of our

softwaresoftware
Another disruptive technology
• Similar to what happened with cluster

computing and message passing
Rethink and rewrite the applications,
algorithms and softwarealgorithms, and software

• Numerical libraries for example will
changechange

For example, both LAPACK and
ScaLAPACK will undergo major changes

9

g j g
to accommodate this

LAPACK and LAPACK and ScaLAPACKScaLAPACK

ScaLAPACK

LAPACK

PBLAS

Threaded
BLAS

parallelism
PBLAS

Global
Local

BLACS

PThreads OpenMP Mess Passing
(MPI , PVM, ...)

About 1 million lines of code

Coding for an Coding for an Abstract Abstract MMulticoreulticore

Parallel software for multicores should have
two characteristics:two characteristics:
• Fine granularity:

• High level of parallelism is neededHigh level of parallelism is needed
• Cores will probably be associated with relatively small local

memories. This requires splitting an operation into tasks that
operate on small portions of data in order to reduce bus trafficoperate on small portions of data in order to reduce bus traffic
and improve data locality.

• Asynchronicity:
A th d f th d l l ll li d l it• As the degree of thread level parallelism grows and granularity
of the operations becomes smaller, the presence of
synchronization points in a parallel execution seriously affects
the efficiency of an algorithmthe efficiency of an algorithm.

ManyCoreManyCore -- Parallelism for the Parallelism for the
MassesMasses

• We are looking at the following g g
concepts in designing the next
numerical library implementationy p

Dynamic Data Driven Execution
Self Adaptingp g
Block Data Layout
Mixed Precision in the AlgorithmMixed Precision in the Algorithm
Exploit Hybrid Architectures
Fault Tolerant Methods Fault Tolerant Methods

12

Steps in the LAPACK LUSteps in the LAPACK LU
DGETF2 LAPACK

(Factor a panel)

DLSWP LAPACK
(B k d)

DLSWP LAPACK

(Backward swap)

DLSWP LAPACK
(Forward swap)

DTRSM BLAS
(Triangular solve)

13
DGEMM BLAS

(Matrix multiply)

LU Timing Profile (4 LU Timing Profile (4 core core system)system)
Threads – no lookahead

Time for each component
DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

DGETF2

DLSWP

DLSWP

DTRSM

DGEMMBulk Sync PhasesBulk Sync Phases

Adaptive Lookahead Adaptive Lookahead -- DynamicDynamic

Event DrivenEvent DrivenEvent Driven Event Driven
MultithreadingMultithreading

Ideas not new.Ideas not new.

Many papers use theMany papers use the
DAG approach.DAG approach.

15

Reorganizing
algorithms to use

this approach

Achieving Fine GranularityAchieving Fine Granularity
Fine granularity may require novel data formats to
overcome the limitations of BLAS on small chunks

Column-Major

o e co e e a o s o S o s a c u s
of data.

Achieving Fine GranularityAchieving Fine Granularity
Fine granularity may require novel data formats to
overcome the limitations of BLAS on small chunks

Column-Major Blocked

o e co e e a o s o S o s a c u s
of data.

70
LU -- 8-way dual Opteron -- MKL-9.1

60 LAPACK
MKL-9.1

50

MKL 9.1
Tiled+asynch.

30

40

G
flo

p/
s

20

30

10

33 18
2000 4000 6000 8000 10000 12000

0

problem size

33 19

33 20

CholeskyCholesky on the CELLon the CELL

• 1 CELL (8 SPEs)
186 Gflop/s• 186 Gflop/s

• 91 % peak
• 97 % SGEMM peak

2 CELL (16 SPE)• 2 CELLs (16 SPEs)
• 365 Gflop/s
• 89 % peak

k• 95 % SGEMM peak

Single precision results on the Cell

If We Had A Small Matrix ProblemIf We Had A Small Matrix Problem

• We would generate the DAG,
find the critical path and p
execute it.

• DAG too large to generate ahead
of timeof time

Not explicitly generate
Dynamically generate the DAG as
we go

• Machines will have large
number of cores in a distributed number of cores in a distributed
fashion

Will have to engage in message
passingpassing
Distributed management
Locally have a run time system

Each Node or Core Will HaveEach Node or Core Will Have

some dependencies
satisfied
waiting for all dependencies

BIN 1

all dependencies
satisfied
some data deliveredsome data delivered
waiting for all dataBIN 2

all data delivered
waiting for execution

23

waiting for execution

BIN 3

DAG and RuntimeDAG and Runtime
Bin 1: Waiting for dependencies to be satisfied
Bin 2: All dependencies satisfied, waiting for

data
Bin 3: dependencies and data available; ready to

execute

• Execute task in Bin 3Execute task in Bin 3
Task with all data and dependencies satisfied
After execution report to children done and
dependencies satisfied and send data
Steal task if noneSteal task if none

• Check Bin 1 to see if new dependencies
satisfied for tasks

If new dependency satisfied update and post
receive of datareceive of data
If all dependencies and data available satisfied
move to Bin 2

• Check Bin 2 to see data arrival
Ch k f d t i l If ll d t il bl Check for data arrival; If all data available
move to Bin 3

• If needed place new task from my part of the
DAG into Bin 1

24

DAG and SchedulingDAG and Scheduling

• DAG is
dynamically

• Run time
• Bin 1dynamically

generated and
implicit

• Exec a task that’s ready
• Notify children of

completionimplicit
• Everything

d i d f

completion
• Send data to children
• If no work do work

stealingdesigned for
distributed

stealing

• Bin 2
• See if new dependences

memory systems
• Runtime system

are satisfied
• If so move task to Bin 3

• Bin 3
on each node or
core

Bin 3
• See if new data has

arrived 25

dep dep
dep

req
d t

req
data

reqdata req
data

data
data

data data

execute

notify

notify
notify

Looking Into a Number of ThingsLooking Into a Number of Things

• DAG must be dynamic• DAG must be dynamic
Some of the algorithms are iterative i.e.
eigenvalue problemeigenvalue problem

• Parameterized Task Graph
C d d JCosnard and Jeannot

• DAG has to be handled in a
distributed fashion

27

Some QuestionsSome Questions
• What’s the best way to represent the DAG?
• What’s the best approach to dynamically generating pp y y g g

the DAG?
• What run time system should we use?

W ill b bl b ild thi th t ld t t t th We will probably build something that we would target to the
underlying system’s RTS.

• What about work stealing?
Can we do better than nearest neighbor work stealing?

• What does the program look like?
Experimented with Cilk Charm++ UPC Intel ThreadsExperimented with Cilk, Charm++, UPC, Intel Threads
I would like to reuse as much of the existing software as
possible

28

Collaborators / SupportCollaborators / Support

Alfredo Buttari,
ENS/INRIAENS/INRIA

Julien Langou,
U Colorado, Denver
lJulie Langou,

UTK
Piotr Luszczek Piotr Luszczek,

MathWorks
Jakub Kurzak,

UTKUTK
Stan Tomov,

UTK

