
May 2008 Scheduling in Aussois workshop

Scheduling: today and tomorrow

Larry Carter

Scheduling in Aussois workshop2

Apologies for

• Misrepresenting your work

• Not knowing very much

• Taking extreme positions

• …

NFS/INRIA Workshop3

Market-based systems are inevitable

A “convergence of technologies” is needed:
– Electronic money

– Allocatable resources

– Trust

– …

Once this happens, compute power will either be:
- Abundant

- Scarce

Moore’s law will eventually fail; people’s imagination
won’t
.

from 2005 workshop

NSF/INRIA Workshop4

Issues for market-based scheduling
User’s quality measure:

Makespan, stretch, or steady-state throughput

User-specific “utility”

Server’s goal:
Maximize throughput

Maximize profit (“structural unemployment” may be beneficial)

System wide goal:
Fairness

Equal access to market, but “money talks”

User’s motivation:
Altruism Profit

New opportunities:
Brokers, publicists, insurers, …

$

Completion time

from 2005 workshop

Scheduling in Aussois workshop5

Towards more generality
Computational platform

– Homogeneous heterogeneous platform

– Processor time communication, memory, … times

– Centralized distributed decision making

– Reliable unreliable or collusive processors

– One multiple administrative domains

Applicaton model

– Independent tasks Job = DAG of tasks

– Constant changing resource needs

– Uniform tasks multiple bags of tasks

Objective of optimization

– single goal individual utility functions

red = new since
Aussois 2004

Scheduling in Aussois workshop6

Combating NP-completeness

NP complete result adaptive approximation
algorithms (simgrid) simulations

Makespan Steady state Trim analysis

Scheduling in Aussois workshop7

Non-traditional features

maximize ||-ismDAGRosenberg

…ET CETERA…

on-line versus off-
line

stretchmultiple bagsheterogeneousMarchal

crashes possiblereliabilityDetti

multiple, divisible heterogeneousBeaumont

adversarial allocatorvarying allocationAgrawal

multiplemultiple domainsTrystram

(real)supercomputerDongarra

colluding usersreduce errors Jeannot

user-specified(real)supercomputerLee

symbiosismulti-level
memory

Weinberg

Other featuresObjective
function

Application
model

Platform
model

Scheduling in Aussois workshop8

What we’re accomplishing

Breadth-first search of new models

– Driven by technology changes

• Multicore, unreliable processors, …

– Improving constant from 9/7 to 5/4

Introducing (potentially important) new paradigms,
e.g.

– IC-optimality

– Symbiosis

– Collusion-resistance

– Nash equilibrium

– …

Scheduling in Aussois workshop9

What we’re not accomplishing

New algorithms implemented in “real”
system

(Perhaps if we were that successful, we wouldn’t be attending this workshop)

Scheduling in Aussois workshop10

What should we be
accomplishing ??

Computer science is not a natural science

We get to invent our own models

Discovering properties of random models isn’t
nearly as interesting as discovering “nature”

We should work towards having an
influence

(Well, that’s my opinion)

Scheduling in Aussois workshop11

How to have an influence

“Throw great idea over the wall”

i.e. publish paper

If it’s good enough, people will pick it up

example: randomized routine

But what’s on the other side?

“Not invented here”

Usually, we must do (much) more

Scheduling in Aussois workshop12

A not-yet influential idea

Bandwidth-centric scheduling

“A parent node responding to requests from
multiple children should give first priority to
child with highest bandwidth.”

Why hasn’t this been adapted by BOINC ??

Bandwidths don’t follow one-port model

BOINC doesn’t even know the bandwidths

Scheduling in Aussois workshop13

A not-yet influential idea

Bandwidth-centric scheduling

“A parent node responding to requests from
multiple children should give first priority to
child with highest bandwidth.”

Why hasn’t this been adapted by BOINC ??

Bandwidths don’t follow one-port model

BOINC doesn’t even know the bandwidths

Scheduling in Aussois workshop14

The other side of the wall

“Not invented here”
Learning our language and sifting many

papers is very difficult

People have their own ideas they think are
good

To overcome these barriers, we need to
Learn about their world

Demonstrate effectiveness on their data

My experience: this effort benefits me
new problems

new ideas

Scheduling in Aussois workshop15

Other ways to have influence

Often, our ideas are discovered independently by
others

At best, our theory can help assure others that the
ideas are valid (a constructive interaction)

At worst, we can get into big fights over who
deserves the credit or patents

Our work can suggest what general directions are
more or less promising (if we can get ourselves in
an advisory position).

Perhaps we can demonstrate value of:
Collecting extra information

Providing new capability

Scheduling in Aussois workshop16

Influence-aware research

Suppose we want to do research on desktop
grids for DAG applications

What is a potential application?

What information would be readily available to
scheduler in such an application.

Can we argue that our technique is so good it’s worth
the effort to collect needed parameters?

Can we envision a path towards implementation

Possible target: Chess or Go on BOINC

Scheduling in Aussois workshop17

Multi-core: a new opportunity

Jack Dongarra’s problem (LAPACK)
Even easily parallelized applications will need to

tolerate variable execution times and failures

Scheduling for more general progams (e.g.
threaded programs) will be needed
Adaptive, self-scheduling techniques are easiest to get

adapted

Locality will be very important in future
The cost of moving data is MUCH more than the cost of

computation

We must learn to live with unreliable cores

Scheduling in Aussois workshop18

Conclusion

We’re doing excellent work

I’m not suggesting you totally change your
research

Perhaps we could do more to get work
used

Discussion

Scheduling in Aussois workshop19

Backup slides

Scheduling in Aussois workshop20

Symbiotic Scheduling
Symbiosis: Two applications run concurrently take less time

than running one then the other.

– “Timesharing” on uniprocessors usually isn’t symbiotic.

– Symbiosis has been demonstrated for multithreaded
processors (Snavely)

Typical node:

– Multiple processors

– Shared memory (but separate caches)

– Communication network to other nodes

– I/O channel to disks

Opportunity for symbiosis when different applications have
different bottlenecks.

Scheduling in Aussois workshop21

Symbiosis

Processor ops/sec

Disk bytes/sec

DRAM bytes/sec

Network bytes/sec

Application #1
(compute-bound)

Application #2
(I/O-bound)

bottleneck

Scheduling in Aussois workshop22

Symbiosis

Processor ops/sec

Disk bytes/sec

DRAM bytes/sec

Network bytes/sec

Application #1 Application #2

bottleneck

Symbiotic schedule

savings

