An Efficient Implementation
of Data-Parallel Skeletons
on Multicore Processors

Kiminori Matsuzaki
University of Tokyo

Joint work with Kazutoshi Kariya, Zhenjiang Hu, Masato Takeichi
-

. -

2nd "Scheduling in Aussois" Workshop

i-E Skeletal Parallelism [Cole 89]

o Parallel Skeletons (Algorithmic Skeletons)
Well-known patterns in parallel computation
Sequential interface & Parallel implementation

Parallel Program
= Parallel Patterns + (Sequential) Details
<Skeletons>

o Several merits
Productivity
Efficiency
Portability

2nd "Scheduling in Aussois" Workshop

Lp Two Important Skeletons

Map: Reduce:

o Apply function to each o Reduction by an
element associative operator

3(1]1210(4]4]|1(2 9(1]4|0(16]16|/1(4

O(1]|4|0(16]16|1(4 51

for (i=0: im; =+l | [&20 \
BielEn g e i -
Lil = alijalil: ke bl e

g J \} J

2nd "Scheduling in Aussois" Workshop

Lp Example: Computing Variance

2 1
var = — E — ave)® where ave = — E a;
n

o An skeletal program

Var(array, n) {
ave = reduce(+, array) / n;
array’ = map(-ave, array);
array’” = map(”2, array’);
return reduce(+, array’’) / n;

}

We need not consider parallelism: No send&recv!

2nd "Scheduling in Aussois" Workshop

P

SkeTo (Skeleton Library in Tokyo)
B> A (Supporter or relief)

o A parallel skeleton library for non-specialist

Implemented in C++ & MPI

For distributed-memory parallel computers
Support for (1D or 2D) arrays, trees
Fusion transformation optimizer

nnnnnnnn

oooooooooo

Links

SkeTo

Skeleton Library in Tokyo

I Available online from
http://www.ipl.t.u-tokyo.ac.jp/sketo/
(ver 1.0 will be available soon)

2nd "Scheduling in Aussois" Workshop

Topics in This Talk

Question: Is the Implementation also efficient
on multicore CPUS?

Answer: No, unfortunately

Proposal: another impl. for multicore CPUs
Utilize (shared) cache more efficiently
Dynamic scheduling by runtime system

Result: New impl. achieves better scalability
on multicore CPUs

2nd "Scheduling in Aussois" Workshop

Lp Multicore CPUs

e Trend toward multicore/manycore CPUs
Limitation by law of physics
Gain higher performance/energy ratio
Achieving performance by parallelism

o Multicore CPUs are now widely available
Intel: Core2 Duo/Quad, Xeon
AMD: Athlon 64 X2, Phenom, Opetoron

2nd "Scheduling in Aussois" Workshop

o Parallelism Is necessary

i-! Difficulties on Multicore CPUs

So far, not a big problem for small number of cores
Even for 4-core CPUs, parallelism gains performance

o More complicated cache Core2Quad CPU

Gap between CPU speed and
memory bandwidth

Shared-cache architecture
v L2 In Intel Core2

v L3 In AMD Phenom I |

2nd "Scheduling in Aussois" Workshop

Implementation of Skeletons
Lp for Distributed-Memory Computers

e Divide an array into segments of equal size
o Distribute them to processors
o Compute independently in parallel

113120402 (3|1{3|1(0]|0(2)|2

map(+1)

I I I
reduce(+) 10 | 10 | 8 | d

2nd "Scheduling in Aussois" Workshop

Lp Speedup on Multicore CPUs

o Example: Apply the map skeleton 200 times

For (c = 0; ¢ < 200; ++¢) {
for (i =0; i <200,000,000; ++i) {

Corresponding

sequential code afi] += 1: 3}
e Environment: |
Time (S)
2x quadcore Xeon CPUS 100
8x 1GB Memory 80
o Not enough speedup O _ -

2 times with 8 cores al W

No speedup over 4 cores

20 u

0
1 2 3 4 5 6 7 8
of Cores

2nd "Scheduling in Aussois" Workshop 10

What Is the Problem?

o Bandwidth of memory is insufficient (saturated)
Requires more than 4GB/s in total

ApllP|lP|lPlilP]lP||P]|lP] 100

| : 2GB/s
| ¥ : 80 '
fLn ||| ||| di]| el _
S I 60 [
i . v | 0 | B |
------------------------------- s

|

Memory 0

1 2 3 4 3] 6

of Cores

=» Utilize cache and avoid memory access

2nd "Scheduling in Aussois" Workshop 11

[llustrating Execution (1)

o Naive Implementation
Memory bandwidth = 2
Size of block = cache-size / 4

map@
1[3[5]1]3[5]2]4]6]2]4

/197117191118 1]10]12] 8 |10

131151724 115|17 |14 16|18 |14 |16

The speedup achieved is only 2 (=36/18)

2nd "Scheduling in Aussois" Workshop

o Cache-efficient implementation
Memory bandwidth = 2
Size of block = cache-size / 4

[llustrating Execution (2)

8 | 8
212|133]5]5[6]6]8 919
31314466 | 7719 10 | 10

Speedup achieved is 3.6 (=36/10)

2nd "Scheduling in Aussois" Workshop

Lp lllustrating Execution (3)

o EXxecution with a runtime scheduling
Consider the case that dependencies exist
We can achieve some speedups even such a case

shift—

1611411210 8 | 716 [5]14]3]12]1

@1234567810121416
% shift

1711511311 |9 |18 | 8 | 9 |11[13]15]|1/

2nd "Scheduling in Aussois" Workshop 14

P

Overview of the Framework

e Program: Write it using skeletons

o Skeletons: C++ templates and function objects
Generate a dependency graph of skeletons
Split data into small blocks smaller than cache size
e Runtime: Scheduling computation on blocks
Implementation: On pthread library
Select a block whose Input is given
Scheduling Policy: Queue (FIFO) / Priority queue

2nd "Scheduling in Aussois" Workshop

15

P

Program Code

o Almost the same as the usual skeleton programs
Inside of loop: update by xt*1[i] = ¢ * x![i] + d * x![i-1]

skel<double>* as = mcs::generator(zero, N);
skel<double>* as_|left;
for (intt=0; t < count; t++) {

as_left = mcs::shift(c, as);

as = mcs::.zipwith(f, as, as_left);

¥

as->eval();

The skeletons just generate dependency graph
and eval() perform the actual computation.

2nd "Scheduling in Aussois" Workshop

16

Lp Experiments: Map 200 times

o Compared the system with two others
Distributed: implementation for distributed-memory
Hand-written: A specialized one using L1 cache

time (s)
e Results 100 O Distributed
Speedupupto 6 cores ¥ I e o
3 times faster il 7 I
on 6 cores or over 1 |]
Some overhead 20_ h iThw LL LL
+~ lock in pthread 0 2 3 4 5 6 7 8

of cores

2nd "Scheduling in Aussois" Workshop 17

P Experiments: Differential Equation

o Simulation of simple differential equation
100M elements
200 updates by x™*1[i] = ¢ * x![i] + d * x![i-1]
The code presented before

140
120 | []
o Result dll
Speedup up to 5 cores s [[
(almost linear) jg) B
Some overhead again 20 | Py —F

0

2nd "Scheduling in Aussois" Workshop 18

P

Conclusion

o Classic implementation of data-parallel skeletons
may be not efficient on multicore CPUSs
Due to shared resource (memory bandwidth)
Utilizing cache hierarchy Is necessary

o Proposed an efficient implementation of data-
parallel skeletons on multicore CPUs
By runtime scheduling system
Prototype implemented with C++ templates
Good scalability for several applications

2nd "Scheduling in Aussois" Workshop

19

P

Ongoing and Future Work

o Developing framework/runtime-system
for cluster of multicore PCs

How to divide into independent tasks?
Mixture of message-passing and threads

e Dynamic scheduling vs. Static scheduling
Current runtime system has (not small) overhead

Can we develop good scheduling from
a DAG of restricted shape (by skeletons)?

2nd "Scheduling in Aussois" Workshop

20

