
2nd "Scheduling in Aussois" Workshop 1

An Efficient Implementation
of Data-Parallel Skeletons
on Multicore Processors

Kiminori Matsuzaki
University of Tokyo

Joint work with Kazutoshi Kariya, Zhenjiang Hu, Masato Takeichi

2nd "Scheduling in Aussois" Workshop 2

Skeletal Parallelism [Cole 89]
Parallel Skeletons (Algorithmic Skeletons)

Well-known patterns in parallel computation
Sequential interface & Parallel implementation

Several merits
Productivity
Efficiency
Portability

Parallel Program
= Parallel Patterns + (Sequential) Details

<Skeletons>

2nd "Scheduling in Aussois" Workshop 3

Two Important Skeletons
Map:

Apply function to each
element

Reduce:
Reduction by an
associative operator

13 02 44 21

19 04 1616 41

19 04 1616 41

51

2nd "Scheduling in Aussois" Workshop 4

Example: Computing Variance

An skeletal program
Var(array, n) {

ave = reduce(+, array) / n;
array’ = map(–ave, array);
array’’ = map(^2, array’);
return reduce(+, array’’) / n;

}

We need not consider parallelism: No send&recv!

2nd "Scheduling in Aussois" Workshop 5

SkeTo (Skeleton Library in Tokyo)
助っ人 (Supporter or relief)

A parallel skeleton library for non-specialist
Implemented in C++ & MPI
For distributed-memory parallel computers
Support for (1D or 2D) arrays, trees
Fusion transformation optimizer

Available online from
http://www.ipl.t.u-tokyo.ac.jp/sketo/
(ver 1.0 will be available soon)

2nd "Scheduling in Aussois" Workshop 6

Topics in This Talk
Question: Is the implementation also efficient

on multicore CPUs?
Answer: No, unfortunately

Proposal: another impl. for multicore CPUs
Utilize (shared) cache more efficiently
Dynamic scheduling by runtime system

Result: New impl. achieves better scalability
on multicore CPUs

2nd "Scheduling in Aussois" Workshop 7

Multicore CPUs
Trend toward multicore/manycore CPUs

Limitation by law of physics
Gain higher performance/energy ratio
Achieving performance by parallelism

Multicore CPUs are now widely available
Intel: Core2 Duo/Quad, Xeon
AMD: Athlon 64 X2, Phenom, Opetoron

2nd "Scheduling in Aussois" Workshop 8

Difficulties on Multicore CPUs
Parallelism is necessary

So far, not a big problem for small number of cores
Even for 4-core CPUs, parallelism gains performance

More complicated cache
Gap between CPU speed and
memory bandwidth
Shared-cache architecture

L2 in Intel Core2
L3 in AMD Phenom

P P P P

L1 L1 L1 L1

L2L2

Memory

FSB

Core2Quad CPU

2nd "Scheduling in Aussois" Workshop 9

Implementation of Skeletons
for Distributed-Memory Computers

Divide an array into segments of equal size
Distribute them to processors
Compute independently in parallel

0 2 3 1 3 1 0 0 2 2 1 01 3 2 0

map(+1)

reduce(+)

1 3 4 2 4 2 1 1 3 3 2 12 4 3 1

10 8 910

37

2nd "Scheduling in Aussois" Workshop 10

Speedup on Multicore CPUs
Example: Apply the map skeleton 200 times

Environment:
2x quadcore Xeon CPUs
8x 1GB Memory

Not enough speedup
2 times with 8 cores
No speedup over 4 cores

For (c = 0; c < 200; ++c) {
for (i = 0; i < 200,000,000; ++i) {

a[i] += 1; } }

Corresponding
sequential code

0

20

40

60

80

100

1 2 3 4 5 6 7 8

of Cores

Time (s)

2nd "Scheduling in Aussois" Workshop 11

What is the Problem?
Bandwidth of memory is insufficient (saturated)

Requires more than 4GB/s in total

Utilize cache and avoid memory access

0

20

40

60

80

100

1 2 3 4 5 6

of Cores

Time (s)

2GB/s

4GB/s

P P P P

L1 L1 L1 L1

L2L2

Memory

FSB

P P P P

L1 L1 L1 L1

L2L2

2nd "Scheduling in Aussois" Workshop 12

Illustrating Execution (1)
Naive Implementation

Memory bandwidth = 2
Size of block = cache-size / 4

The speedup achieved is only 2 (=36/18)

1 13 35 5 2 24 46 6

7 79 9 10 1011 11 12 12

13 15 17 14 15 17 14 16 18 14 16 18

8 8

map

map

map

2nd "Scheduling in Aussois" Workshop 13

Illustrating Execution (2)
Cache-efficient implementation

Memory bandwidth = 2
Size of block = cache-size / 4

Speedup achieved is 3.6 (=36/10)

1 1 22

2 2

3 3

33

44

4 4

5

5 5

5 6 6

66 7

7 87 8

8 98 9

4 109 109

7

8

7

9

8

77

8

7

9

8

7 7

8

7

9

8

7 8

9

8

10

9

8

7

map

map

map

2nd "Scheduling in Aussois" Workshop 14

Illustrating Execution (3)
Execution with a runtime scheduling

Consider the case that dependencies exist
We can achieve some speedups even such a case

7

7

1

1

11 11

10

103

3

2

2

9 9

shift→

zip

←shift
4

4

5

5

6

6

8 8

8

8

13 15 17

1614

16 14

17 15

12

13

12

2nd "Scheduling in Aussois" Workshop 15

Overview of the Framework
Program: Write it using skeletons
Skeletons: C++ templates and function objects

Generate a dependency graph of skeletons
Split data into small blocks smaller than cache size

Runtime: Scheduling computation on blocks
Implementation: On pthread library
Select a block whose input is given
Scheduling Policy: Queue (FIFO) / Priority queue

2nd "Scheduling in Aussois" Workshop 16

Program Code
Almost the same as the usual skeleton programs

Inside of loop: update by xt+1[i] = c * xt[i] + d * xt[i-1]

The skeletons just generate dependency graph
and eval() perform the actual computation.

skel<double>* as = mcs::generator(zero, N);
skel<double>* as_left;
for (int t = 0; t < count; t++) {

as_left = mcs::shift(c, as);
as = mcs::zipwith(f, as, as_left);

}
as->eval();

2nd "Scheduling in Aussois" Workshop 17

Experiments: Map 200 times
Compared the system with two others

Distributed: implementation for distributed-memory
Hand-written: A specialized one using L1 cache

Results
Speedup up to 6 cores
3 times faster
on 6 cores or over
Some overhead

lock in pthread
0

20

40

60

80

100

1 2 3 4 5 6 7 8

Distributed

Proposed

Hand-written

of cores

time (s)

2nd "Scheduling in Aussois" Workshop 18

Experiments: Differential Equation
Simulation of simple differential equation

100M elements
200 updates by xt+1[i] = c * xt[i] + d * xt[i-1]
The code presented before

Result
Speedup up to 5 cores
(almost linear)
Some overhead again

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8

2nd "Scheduling in Aussois" Workshop 19

Conclusion
Classic implementation of data-parallel skeletons
may be not efficient on multicore CPUs

Due to shared resource (memory bandwidth)
Utilizing cache hierarchy is necessary

Proposed an efficient implementation of data-
parallel skeletons on multicore CPUs

By runtime scheduling system
Prototype implemented with C++ templates
Good scalability for several applications

2nd "Scheduling in Aussois" Workshop 20

Ongoing and Future Work
Developing framework/runtime-system
for cluster of multicore PCs

How to divide into independent tasks?
Mixture of message-passing and threads

Dynamic scheduling vs. Static scheduling
Current runtime system has (not small) overhead
Can we develop good scheduling from
a DAG of restricted shape (by skeletons)?

