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Object of the Study

I Bags-of-tasks application
I independent tasks
I large number of similar tasks
I models embarrassingly parallel applications
I argues for the use of wide distributed platforms

I Online scheduling
I applications arrive at different times (release dates)
I no knowledge on the future
I no global makespan, try to lower the suffering of each user
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Building on our previous results

I Large number of tasks ⇒ steady-state scheduling

I designed for large applications
I suited for heterogeneous platforms, multiple applications

(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS’06)

I optimal platform utilization: throughput maximization
I neglect transient phases (initialization/clean-up)

I Online scheduling ⇒ maximum stretch minimization

I other metrics not suited
(Minimizing the stretch when scheduling flows of biological requests, SPAA ’06)

I stretch is a kind of price for sharing resources
I minimize the maximum stretch among applications:

give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory
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Simple idea to bring things together

I Suppose we want to reach the maximum stretch S
I For a given application, we can compute its makespan “if it

was alone”: MS

I This gives a deadline:

deadline = release date + S ×MS

I Each application has now a release date and a deadline.

I Dates define intervals. . .
where we can apply steady-state relaxation!
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Outline
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With a single bag-of-task application

Several bag-of-task applications: Offline case
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Single bag-of-task application – context

I Master-Slave platform (heterogeneous):

Network
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Links

Tasks

I Bunch of identical tasks

I Computing optimal makespan: already difficult problem

I Steady-state relaxation to get a lower bound
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Single bag-of-task application – steady-state

Motivations:

I Assume the number of tasks is huge

I Forget about makespan (meaningless)

I Concentrate on throughput (fluid framework)

How it works:

I Consider average values:
“master sends 5.3 tasks per second to worker 3”

I Write constraints on these variables

I Optimize total throughput under these constraints
(with the help of linear programming)

I Reconstruct near-optimal schedule from average values
(we skip this step for now)
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Single bag-of-task application – linear program



Maximize ρ =

p∑
u=1

ρu

subject to

∀Pu, ρu
w

su
≤ 1

∀Pu, ρu
δ

bu
≤ 1

p∑
u=1

ρu
δ

B
≤ 1

ρu: throughput of worker Pu

ρ: Total throughput

Analytical solution

ρ = min

{
B
δ
,

p∑
u=1

min

{
su

w
,
bu

w

}}

Estimated makespan (lower bound):

MS =
number of tasks

optimal throughput
=

Π

ρ



9/40

Single bag-of-task application – linear program



Maximize ρ =

p∑
u=1

ρu

subject to

∀Pu, ρu
w

su
≤ 1

∀Pu, ρu
δ

bu
≤ 1

p∑
u=1

ρu
δ

B
≤ 1

ρu: throughput of worker Pu

ρ: Total throughput

Analytical solution

ρ = min

{
B
δ
,

p∑
u=1

min

{
su

w
,
bu

w

}}

Estimated makespan (lower bound):

MS =
number of tasks

optimal throughput
=

Π

ρ



9/40

Single bag-of-task application – linear program



Maximize ρ =

p∑
u=1

ρu

subject to

∀Pu, ρu
w

su
≤ 1

∀Pu, ρu
δ

bu
≤ 1

p∑
u=1

ρu
δ

B
≤ 1

ρu: throughput of worker Pu

ρ: Total throughput

Analytical solution

ρ = min

{
B
δ
,

p∑
u=1

min

{
su

w
,
bu

w

}}

Estimated makespan (lower bound):

MS =
number of tasks

optimal throughput
=

Π

ρ



10/40

Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models
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Offline multi-application – framework

For each application k (task of sizes w (k), δ(k)), we have:

I a release date

I an estimated makespan MS∗(k) (lower bound)

We try to reach stretch S:

I deadline:

deadline(k) = release date(k) + S ×MS∗(k)
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Time-intervals for target stretch

If we try to reach stretch S = 2:
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Time-intervals for target stretch

If we try to reach stretch S = 2:

twithout change
time-interval
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Resolution for a target stretch S

New variables:

I communication throughput ρ
(k)
M→u(tj , tj+1)

I computation throughput ρ
(k)
u (tj , tj+1)

I state of buffers: B
(k)
u (tj )

(number of non-executed tasks at time tj )

New constraints:

I Complex (but straightforward) conservation laws between
throughputs and buffer state

I Assert that all tasks of an application are treated.

I Resource limitations

Set of linear constraints, defining a convex K (S). details

K (S) non-empty⇔ S feasible
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Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

I Basic binary search (with precision ε), or

I Involved search among stretch-intervals:

d (k)(S) = r (k) + S ×MS∗(k).

t
S1 = 1

S r1

d1
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between two critical values

- linear evolution
- no dates crossing
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Binary search between stretch-interval

I Consider a stretch-interval between two critical values [Sa;Sb]

I Deadlines have a linear evolution

I Everything is linear ? Not really:
when computing what receives a buffer during a time-interval:

ρ
(k)
M→u(tj , tj+1)× (Tend − Tstart)

Tend,Tstart: linear function in S
; quadratic constraints /

I Switch from throughput to amount variables:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj )

A
(k)
u (tj , tj+1) = ρ

(k)
u (tj , tj+1)× (tj+1 − tj )

I All the constraints are once again linear , details
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Discussion on models

I Which communication/computation model have we been
using from the beginning ?

I My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

I No! no schedule reconstructed from the linear programs /
I Solution of a linear program : fluid throughput ρ

(k)
u , assumes

I time-sharing for communication and computation
I “Synchronous Start” for communication and computation

I Nice model for scheduling, but far from reality:
I No data dependency (!)
I Concurrent applications
I Perfect time-sharing for computation and communication (!)

I We have to come back to the “reality”
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One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed
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At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled
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Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.
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termination of T in fluid schedule

termination of T in atomic schedule
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Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

Construction of 1D-inv schedule from a fluid schedule (M:
Makespan):

1. Reverse the time: t ; M − t

2. Apply 1D algorithm

3. Reverse the time once again

Lemma (1D-inv).

In the 1D-inv schedule, a task does not start earlier than in the
fluid schedule, and 1D-inv has a makespan ≤ M.
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Back to the one-port model

From a fluid schedule (of communications and computations):

1. Round every quantities down to integer values

2. Shift all computations by one task (to cope with
dependencies)

3. Apply 1D algorithm to communications
→ communications finish in time

4. Apply 1D-inv algorithm to computations
→ computations do not start in advance

Results:

I We guarantee that data dependencies are satisfied

I Some tasks may be forgotten
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Back to the one-port model

Bound on the number of tasks not sent to Pu at time dk :

I one per time-interval because of rounding

Time needed to send the remaining tasks:

n∑
u=1

Lkδ
(k)

bu

Bound on the number of tasks not processed at Pu at time dk :

I one per time-interval because of rounding (communications)

I one per time-interval because of rounding (computations)

I one because of shifting

Time needed to process these tasks:

(2Lk + 1)w (k)

s
(k)
u
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Back to the one-port model

Maximum delay for application Ak :

lateness(k) ≤
∑

k

(
n∑

u=1

Lkδ
(k)

bu
+ max

1≤u≤n

(2Lk + 1)w (k)

s
(k)
u

)
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Back to the one-port model: Asymptotic optimality

We introduce the granularity g :

Π
(k)
g =

Π(k)

g

w
(k)
g = g × w (k)

δ
(k)
g = g × δ(k)

I g = 1: no changes

I g → 0: many small tasks
(Divisible Load)

Theorem.

lateness(k) −−−−→
g→0

0

When the granularity of the application gets smaller (many small
tasks), the one-port makespan gets closer to the fluid makespan.

In practice:

I 1D schedule for communications

I Earliest Deadline First for computations
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Online multi-application – framework

I No available information about future submission

I Information for application k available at release date r (k)

Adaptation:

I Consider only available information (already submitted
applications)

I Restart offline algorithm at each release date (with updated
information)

I online heuristic named CBS3M-online

I we also test the offline algorithm: CBS3M-offline
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Online multi-application – framework

Classical heuristics to prioritize applications:

I First In First Out (FIFO)

I Shortest Processing Time (SPT)

I Shortest Remaining Processing Time (SRPT)

I Shortest Weighted Remaining Processing Time (SWRPT)

(× heuristic to chose workers: RR, MCT or DD)

Previous heuristics do not mix applications,

I Master-Worker Multi-Application (MWMA)
(previous work, designed for simultaneous submissions)
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Simulation and Experiment Settings

Experiments:

I GDSDMI cluster (8 workers)

I MPI communications

I Artificially slow-down communication and/or computations to
emulate heterogeneity

Simulation:

I SimGrid simulator
I Two scenarios:

1. simulate MPI experiments
2. extensive simulations with larger applications

parameters
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Simulations results

F
IF

O
R

R

F
IF

O
M

C
T

F
IF

O
D

D

S
P

T
R

R

S
P

T
M

C
T

S
P

T
D

D

S
R

P
T

R
R

S
R

P
T

M
C

T

S
R

P
T

D
D

S
W

R
P

T
R

R

S
W

R
P

T
M

C
T

S
W

R
P

T
D

D

M
W

M
A

N
B

T

M
W

M
A

M
S

C
B

S
3M

F
IF

O
O

N
L

IN
E

C
B

S
3M

E
D

F
O

N
L

IN
E

C
B

S
3M

F
IF

O
O

F
F

L
IN

E

C
B

S
3M

E
D

F
O

F
F

L
IN

E

0

10

20

30

40

50

60

70

re
la

ti
ve

m
ax

-s
tr

et
ch



29/40

Simulations results

F
IF

O
R

R

F
IF

O
M

C
T

F
IF

O
D

D

S
P

T
R

R

S
P

T
M

C
T

S
P

T
D

D

S
R

P
T

R
R

S
R

P
T

M
C

T

S
R

P
T

D
D

S
W

R
P

T
R

R

S
W

R
P

T
M

C
T

S
W

R
P

T
D

D

M
W

M
A

N
B

T

M
W

M
A

M
S

C
B

S
3M

F
IF

O
O

N
L

IN
E

C
B

S
3M

E
D

F
O

N
L

IN
E

C
B

S
3M

F
IF

O
O

F
F

L
IN

E

C
B

S
3M

E
D

F
O

F
F

L
IN

E

1

10

100

re
la

ti
ve

m
ax

-s
tr

et
ch



29/40

Simulations results

1

10

100

re
la

ti
ve

m
ax

-s
tr

et
ch

F
IF

O
R

R

F
IF

O
M

C
T

F
IF

O
D

D

S
P

T
R

R

S
P

T
M

C
T

S
P

T
D

D

S
R

P
T

R
R

S
R

P
T

D
D

S
W

R
P

T
R

R

S
W

R
P

T
D

D

M
W

M
A

N
B

T

M
W

M
A

M
S

C
B

S
3M

F
IF

O
O

N
L

IN
E

C
B

S
3M

F
IF

O
O

F
F

L
IN

E

S
R

P
T

M
C

T

S
W

R
P

T
M

C
T

C
B

S
3M

E
D

F
O

N
L

IN
E

C
B

S
3M

E
D

F
O

F
F

L
IN

E



30/40

Simulations results – variation with load
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Gantt chart example: FIFO + RR
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Gantt chart example: SRPT + MCT
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Gantt chart example: CBS3M + EDF (online)
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Simulations results – other metrics

Sum-stretch
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Simulations results – other metrics

Max-flow
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Simulations results – other metrics
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MPI experiments results
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MPI experiments results

Algorithm minimum average (± stddev) maximum (fraction of best result)
CBS3M EDF OFFLINE 1.04 1.30 (± 0.13) 1.63 (the best in 38.0%)
CBS3M EDF ONLINE 1.02 1.41 (± 0.30) 2.09 (the best in 30.0%)
CBS3M FIFO OFFLINE 1.04 1.38 (± 0.28) 2.97 (the best in 12.0%)
CBS3M FIFO ONLINE 1.02 1.46 (± 0.26) 1.96 (the best in 6.0%)

FIFO MCT 1.10 1.81 (± 0.60) 4.15 (the best in 4.0%)
FIFO RR 1.35 4.99 (± 3.46) 19.50 (the best in 0.0%)

MWMA MS 1.22 2.29 (± 0.56) 4.05 (the best in 0.0%)
MWMA NBT 1.13 1.50 (± 0.17) 2.06 (the best in 4.0%)

SPT DD 1.33 4.87 (± 3.10) 18.75 (the best in 0.0%)
SPT MCT 1.08 1.84 (± 0.61) 3.43 (the best in 4.0%)

SRPT MCT 1.09 1.87 (± 0.59) 3.38 (the best in 0.0%)
SWRPT MCT 1.08 1.88 (± 0.59) 3.38 (the best in 2.0%)
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MPI experiments vs simulations
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I average difference: 8.9%

I standard deviation: 9.5%

I median value: 5.5%
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Simulation and Experiment results – Summary

I CBS3M performs very well for max-stretch (best results in all
cases, average ratio to the theoretical fluid optimal: 1.3, worst
case: 2)

I CBS3M performs also well for other metrics: makespan,
max-flow, (sum-stretch, sum-flow)

I Explanation: makes good use of the platform (like MWMA)
and is aware of the priorities/deadlines (like SWRPT)

I Simulation/Experiments close enough: average relative
deviation 8.9%, median 5.5%
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Conclusion

I Key points:
I Realistic platform model
I Optimal offline algorithm

(asymptotically optimal in the one-port model)
I Efficient online algorithm based on offline study

I Extensions:
I Extend the simulation to larger platform
I Bi-criteria
I Robustness



Positive values

I Non-negative throughputs.

∀1 ≤ u ≤ p,∀1 ≤ k ≤ n,∀1 ≤ j ≤ 2n − 1,

ρ
(k)
M→u(tj , tj+1) ≥ 0 and ρ(k)

u (tj , tj+1) ≥ 0. (1)

I Non-negative buffers.

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p,∀1 ≤ j ≤ 2n,

B(k)
u (tj ) ≥ 0. (2)



Physical constraints

I Bounded link capacity.

∀1 ≤ j ≤ 2n − 1, ∀1 ≤ u ≤ p,
nX

k=1

ρ
(k)
M→u(tj , tj+1)

δ(k)

bu
≤ 1. (3)

I Limited sending capacity of master.

∀1 ≤ j ≤ 2n − 1,
pX

u=1

nX
k=1

ρ
(k)
M→u(tj , tj+1)

δ(k)

B ≤ 1. (4)

I Bounded computing capacity.

∀1 ≤ j ≤ 2n − 1, ∀1 ≤ u ≤ p,
nX

k=1

ρ(k)
u (tj , tj+1)

w (k)

s
(k)
u

≤ 1. (5)



Buffer constraints

I Buffer initialization.

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p,

B(k)
u (r (k)) = 0. (6)

I Emptying Buffer.

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p,

B(k)
u (d (k)) = 0. (7)

I Bounded size

∀1 ≤ u ≤ p,∀1 ≤ j ≤ 2n,
n∑

k=1

B(k)
u (tj )δ

(k) ≤ Mu. (8)



Tasks constraints

I Task conservation.

∀ 1 ≤ k ≤ n,∀1 ≤ j ≤ 2n − 1,∀1 ≤ u ≤ p,

B(k)
u (tj+1) = B(k)

u (tj )+
(
ρ

(k)
M→u(tj , tj+1)−ρ(k)

u (tj , tj+1)
)
×
(
tj+1−tj

)
.
(9)

I Total number of tasks.

∀ 1 ≤ k ≤ n,∑
1≤j≤2n−1

tj ≥ r (k)

tj+1 ≤ d (k)

p∑
u=1

ρ
(k)
M→u(tj , tj+1)× (tj+1 − tj ) = Π(k). (10)



Polyhedron


find ρ

(k)
M→u(tj , tj+1), ρ

(k)
u (tj , tj+1),

∀k , u, j such that 1 ≤ k ≤ n, 1 ≤ u ≤ p, 1 ≤ j ≤ 2n − 1

under the constraints (1), (2), (3), (4), (5), (6), (7), (8), (9) and (10)

(K )

A given max-stretch S ′ is achievable if and only if the
Polyhedron (K ) is not empty

In practice, we add a fictitious linear objective function. Back



New constraints

I Bounded link capacity.

∀1 ≤ j ≤ 2n − 1,∀1 ≤ u ≤ p,
n∑

k=1

A
(k)
M→u(tj , tj+1)

δ(k)

bu
≤ (αj+1 − αj )S + (βj+1 − βj )

Back



New constraints

I Bounded link capacity.

I Limited sending capacity of master.

∀1 ≤ j ≤ 2n − 1,
p∑

u=1

n∑
k=1

A
(k)
M→u(tj , tj+1)δ(k) ≤ B ×

(
(αj+1 − αj )S + (βj+1 − βj )

)

Back



New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

∀1 ≤ j ≤ 2n − 1,∀1 ≤ u ≤ p,
n∑

k=1

A(k)
u (tj , tj+1)

w (k)

s
(k)
u

≤ (αj+1 − αj )S + (βj+1 − βj )

Back



New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

I Total number of tasks.

∀ 1 ≤ k ≤ n, ∑
1≤j≤2n−1

tj ≥ r (k)

tj+1 ≤ d (k)

p∑
u=1

A
(k)
M→u(tj , tj+1) = Π(k)

Back



New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

I Total number of tasks.

I Task conservation.

∀ 1 ≤ k ≤ n,∀1 ≤ j ≤ 2n − 1,∀1 ≤ u ≤ p,

B(k)
u (tj+1) = B(k)

u (tj ) + A
(k)
M→u(tj , tj+1)− A(k)

u (tj , tj+1)

Back



New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

I Total number of tasks.

I Task conservation.

I Non-negative buffer.

I Buffer initialization.

I Emptying Buffer.

Back



New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

I Total number of tasks.

I Task conservation.

I Non-negative buffer.

I Buffer initialization.

I Emptying Buffer.

I Bounded stretch
Sa ≤ S ≤ Sb (11)

Back



Parameters for the MPI experiments and for the SimGrid simulations.

parameter experiments simulations
general number of workers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 10

number of applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 20
arrival dates mean of the distribution in the log space . . . . . . . . . . . . . . . . . 4.0 4.0

standard deviation in the log space . . . . . . . . . . . . . . . . . . . . . . 1.2 1.2
computations maximum amount of work application (Gflops) . . . . . . . . . . . 76.8 409

minimum amount of work per task (Gflops) . . . . . . . . . . . . . . 3.1 3.1
communications maximum amount of communication per application (MB) 800 6,000

minimum amount of communication per task (MB) . . . . . . 40 40
number of tasks minimum number of tasks per application. . . . . . . . . . . . . . . . 10 20

Back
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