
Offline and Online Master-Worker Scheduling
of Concurrent Bags-of-Tasks
on Heterogeneous Platforms

Loris MARCHAL,

joint work with Anne BENOIT, Jean-François PINEAU,
Yves ROBERT and Frédéric VIVIEN

CNRS
Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon, France

Scheduling in Aussois,
May, 18 - 21 2008.

1/40

2/40

Object of the Study

I Bags-of-tasks application
I independent tasks
I large number of similar tasks
I models embarrassingly parallel applications
I argues for the use of wide distributed platforms

I Online scheduling
I applications arrive at different times (release dates)
I no knowledge on the future
I no global makespan, try to lower the suffering of each user

2/40

Object of the Study

I Bags-of-tasks application
I independent tasks
I large number of similar tasks
I models embarrassingly parallel applications
I argues for the use of wide distributed platforms

I Online scheduling
I applications arrive at different times (release dates)
I no knowledge on the future
I no global makespan, try to lower the suffering of each user

3/40

Building on our previous results

I Large number of tasks ⇒ steady-state scheduling

I designed for large applications
I suited for heterogeneous platforms, multiple applications

(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS’06)

I optimal platform utilization: throughput maximization
I neglect transient phases (initialization/clean-up)

I Online scheduling ⇒ maximum stretch minimization

I other metrics not suited
(Minimizing the stretch when scheduling flows of biological requests, SPAA ’06)

I stretch is a kind of price for sharing resources
I minimize the maximum stretch among applications:

give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

3/40

Building on our previous results

I Large number of tasks ⇒ steady-state scheduling

I designed for large applications
I suited for heterogeneous platforms, multiple applications

(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS’06)

I optimal platform utilization: throughput maximization
I neglect transient phases (initialization/clean-up)

I Online scheduling ⇒ maximum stretch minimization

I other metrics not suited
(Minimizing the stretch when scheduling flows of biological requests, SPAA ’06)

I stretch is a kind of price for sharing resources
I minimize the maximum stretch among applications:

give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

3/40

Building on our previous results

I Large number of tasks ⇒ steady-state scheduling

I designed for large applications
I suited for heterogeneous platforms, multiple applications

(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS’06)

I optimal platform utilization: throughput maximization
I neglect transient phases (initialization/clean-up)

I Online scheduling ⇒ maximum stretch minimization

I other metrics not suited
(Minimizing the stretch when scheduling flows of biological requests, SPAA ’06)

I stretch is a kind of price for sharing resources
I minimize the maximum stretch among applications:

give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

4/40

Simple idea to bring things together

I Suppose we want to reach the maximum stretch S
I For a given application, we can compute its makespan “if it

was alone”: MS

I This gives a deadline:

deadline = release date + S ×MS

I Each application has now a release date and a deadline.

I Dates define intervals. . .
where we can apply steady-state relaxation!

4/40

Simple idea to bring things together

I Suppose we want to reach the maximum stretch S
I For a given application, we can compute its makespan “if it

was alone”: MS

I This gives a deadline:

deadline = release date + S ×MS

I Each application has now a release date and a deadline.

I Dates define intervals. . .
where we can apply steady-state relaxation!

4/40

Simple idea to bring things together

I Suppose we want to reach the maximum stretch S
I For a given application, we can compute its makespan “if it

was alone”: MS

I This gives a deadline:

deadline = release date + S ×MS

I Each application has now a release date and a deadline.

I Dates define intervals. . .
where we can apply steady-state relaxation!

4/40

Simple idea to bring things together

I Suppose we want to reach the maximum stretch S
I For a given application, we can compute its makespan “if it

was alone”: MS

I This gives a deadline:

deadline = release date + S ×MS

I Each application has now a release date and a deadline.

I Dates define intervals. . .
where we can apply steady-state relaxation!

4/40

Simple idea to bring things together

I Suppose we want to reach the maximum stretch S
I For a given application, we can compute its makespan “if it

was alone”: MS

I This gives a deadline:

deadline = release date + S ×MS

I Each application has now a release date and a deadline.

I Dates define intervals. . .
where we can apply steady-state relaxation!

5/40

Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models

Several bag-of-task applications: Online case

Simulations and Experiments

Conclusion

6/40

Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models

Several bag-of-task applications: Online case

Simulations and Experiments

Conclusion

7/40

Single bag-of-task application – context

I Master-Slave platform (heterogeneous):

Network

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Master

Workers

Links

Tasks

I Bunch of identical tasks

I Computing optimal makespan: already difficult problem

I Steady-state relaxation to get a lower bound

7/40

Single bag-of-task application – context

I Master-Slave platform (heterogeneous):

Network

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Worker Pu

Master

bandwidth bu (MB/s)

speed su (MFlop/s)

output bandwidth B (MB/s)

communication size: δ (MB)
computation size: w (MFlop)
number of tasks: Π

Master

Workers

Links

Tasks

I Bunch of identical tasks

I Computing optimal makespan: already difficult problem

I Steady-state relaxation to get a lower bound

7/40

Single bag-of-task application – context

I Master-Slave platform (heterogeneous):

Network

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Worker Pu

Master

bandwidth bu (MB/s)

speed su (MFlop/s)

output bandwidth B (MB/s)

communication size: δ (MB)
computation size: w (MFlop)
number of tasks: Π

Master

Workers

Links

Tasks

I Bunch of identical tasks

I Computing optimal makespan: already difficult problem

I Steady-state relaxation to get a lower bound

7/40

Single bag-of-task application – context

I Master-Slave platform (heterogeneous):

Network

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Worker Pu

Master

bandwidth bu (MB/s)

speed su (MFlop/s)

output bandwidth B (MB/s)

communication size: δ (MB)
computation size: w (MFlop)
number of tasks: Π

Master

Workers

Links

Tasks

I Bunch of identical tasks

I Computing optimal makespan: already difficult problem

I Steady-state relaxation to get a lower bound

7/40

Single bag-of-task application – context

I Master-Slave platform (heterogeneous):

Network

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Worker Pu

Master

bandwidth bu (MB/s)

speed su (MFlop/s)

output bandwidth B (MB/s)

communication size: δ (MB)
computation size: w (MFlop)
number of tasks: Π

Master

Workers

Links

Tasks

I Bunch of identical tasks

I Computing optimal makespan: already difficult problem

I Steady-state relaxation to get a lower bound

8/40

Single bag-of-task application – steady-state

Motivations:

I Assume the number of tasks is huge

I Forget about makespan (meaningless)

I Concentrate on throughput (fluid framework)

How it works:

I Consider average values:
“master sends 5.3 tasks per second to worker 3”

I Write constraints on these variables

I Optimize total throughput under these constraints
(with the help of linear programming)

I Reconstruct near-optimal schedule from average values
(we skip this step for now)

8/40

Single bag-of-task application – steady-state

Motivations:

I Assume the number of tasks is huge

I Forget about makespan (meaningless)

I Concentrate on throughput (fluid framework)

How it works:

I Consider average values:
“master sends 5.3 tasks per second to worker 3”

I Write constraints on these variables

I Optimize total throughput under these constraints
(with the help of linear programming)

I Reconstruct near-optimal schedule from average values
(we skip this step for now)

8/40

Single bag-of-task application – steady-state

Motivations:

I Assume the number of tasks is huge

I Forget about makespan (meaningless)

I Concentrate on throughput (fluid framework)

How it works:

I Consider average values:
“master sends 5.3 tasks per second to worker 3”

I Write constraints on these variables

I Optimize total throughput under these constraints
(with the help of linear programming)

I Reconstruct near-optimal schedule from average values
(we skip this step for now)

9/40

Single bag-of-task application – linear program



Maximize ρ =

p∑
u=1

ρu

subject to

∀Pu, ρu
w

su
≤ 1

∀Pu, ρu
δ

bu
≤ 1

p∑
u=1

ρu
δ

B
≤ 1

ρu: throughput of worker Pu

ρ: Total throughput

Analytical solution

ρ = min

{
B
δ
,

p∑
u=1

min

{
su

w
,
bu

w

}}

Estimated makespan (lower bound):

MS =
number of tasks

optimal throughput
=

Π

ρ

9/40

Single bag-of-task application – linear program



Maximize ρ =

p∑
u=1

ρu

subject to

∀Pu, ρu
w

su
≤ 1

∀Pu, ρu
δ

bu
≤ 1

p∑
u=1

ρu
δ

B
≤ 1

ρu: throughput of worker Pu

ρ: Total throughput

Analytical solution

ρ = min

{
B
δ
,

p∑
u=1

min

{
su

w
,
bu

w

}}

Estimated makespan (lower bound):

MS =
number of tasks

optimal throughput
=

Π

ρ

9/40

Single bag-of-task application – linear program



Maximize ρ =

p∑
u=1

ρu

subject to

∀Pu, ρu
w

su
≤ 1

∀Pu, ρu
δ

bu
≤ 1

p∑
u=1

ρu
δ

B
≤ 1

ρu: throughput of worker Pu

ρ: Total throughput

Analytical solution

ρ = min

{
B
δ
,

p∑
u=1

min

{
su

w
,
bu

w

}}

Estimated makespan (lower bound):

MS =
number of tasks

optimal throughput
=

Π

ρ

10/40

Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models

Several bag-of-task applications: Online case

Simulations and Experiments

Conclusion

11/40

Offline multi-application – framework

For each application k (task of sizes w (k), δ(k)), we have:

I a release date

I an estimated makespan MS∗(k) (lower bound)

We try to reach stretch S:

I deadline:

deadline(k) = release date(k) + S ×MS∗(k)

12/40

Time-intervals for target stretch

If we try to reach stretch S = 2:

t
m

ak
es

pa
n

al
on

e
re

lea
se

da
te

12/40

Time-intervals for target stretch

If we try to reach stretch S = 2:

t
de

ad
lin

e

m
ak

es
pa

n

al
on

e
re

lea
se

da
te

12/40

Time-intervals for target stretch

If we try to reach stretch S = 2:

t

12/40

Time-intervals for target stretch

If we try to reach stretch S = 2:

t

12/40

Time-intervals for target stretch

If we try to reach stretch S = 2:

t

12/40

Time-intervals for target stretch

If we try to reach stretch S = 2:

twithout change
time-interval

13/40

Resolution for a target stretch S

New variables:

I communication throughput ρ
(k)
M→u(tj , tj+1)

I computation throughput ρ
(k)
u (tj , tj+1)

I state of buffers: B
(k)
u (tj)

(number of non-executed tasks at time tj)

New constraints:

I Complex (but straightforward) conservation laws between
throughputs and buffer state

I Assert that all tasks of an application are treated.

I Resource limitations

Set of linear constraints, defining a convex K (S). details

K (S) non-empty⇔ S feasible

14/40

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

I Basic binary search (with precision ε), or

I Involved search among stretch-intervals:

d (k)(S) = r (k) + S ×MS∗(k).

t
S1 = 1

S r1

d1

14/40

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

I Basic binary search (with precision ε), or

I Involved search among stretch-intervals:

d (k)(S) = r (k) + S ×MS∗(k).

t
S1 = 1

S r2

d2

r1

d1

14/40

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

I Basic binary search (with precision ε), or

I Involved search among stretch-intervals:

d (k)(S) = r (k) + S ×MS∗(k).

t
S1 = 1

S

d3

r3r2

d2

r1

d1

14/40

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

I Basic binary search (with precision ε), or

I Involved search among stretch-intervals:

d (k)(S) = r (k) + S ×MS∗(k).

t
S1 = 1

S

S5

S4
S3

S2

d3

r3r2

d2

r1

d1

14/40

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

I Basic binary search (with precision ε), or

I Involved search among stretch-intervals:

d (k)(S) = r (k) + S ×MS∗(k).

t
S1 = 1

S

S5

S4
S3

S2

d3

r3r2

d2

r1

d1

between two critical values

- linear evolution
- no dates crossing

15/40

Binary search between stretch-interval

I Consider a stretch-interval between two critical values [Sa;Sb]

I Deadlines have a linear evolution

I Everything is linear ? Not really:
when computing what receives a buffer during a time-interval:

ρ
(k)
M→u(tj , tj+1)× (Tend − Tstart)

Tend,Tstart: linear function in S
; quadratic constraints /

I Switch from throughput to amount variables:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

A
(k)
u (tj , tj+1) = ρ

(k)
u (tj , tj+1)× (tj+1 − tj)

I All the constraints are once again linear , details

15/40

Binary search between stretch-interval

I Consider a stretch-interval between two critical values [Sa;Sb]

I Deadlines have a linear evolution

I Everything is linear ? Not really:
when computing what receives a buffer during a time-interval:

ρ
(k)
M→u(tj , tj+1)× (Tend − Tstart)

Tend,Tstart: linear function in S
; quadratic constraints /

I Switch from throughput to amount variables:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

A
(k)
u (tj , tj+1) = ρ

(k)
u (tj , tj+1)× (tj+1 − tj)

I All the constraints are once again linear , details

15/40

Binary search between stretch-interval

I Consider a stretch-interval between two critical values [Sa;Sb]

I Deadlines have a linear evolution

I Everything is linear ? Not really:
when computing what receives a buffer during a time-interval:

ρ
(k)
M→u(tj , tj+1)× (Tend − Tstart)

Tend,Tstart: linear function in S
; quadratic constraints /

I Switch from throughput to amount variables:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

A
(k)
u (tj , tj+1) = ρ

(k)
u (tj , tj+1)× (tj+1 − tj)

I All the constraints are once again linear , details

15/40

Binary search between stretch-interval

I Consider a stretch-interval between two critical values [Sa;Sb]

I Deadlines have a linear evolution

I Everything is linear ? Not really:
when computing what receives a buffer during a time-interval:

ρ
(k)
M→u(tj , tj+1)× (Tend − Tstart)

Tend,Tstart: linear function in S
; quadratic constraints /

I Switch from throughput to amount variables:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

A
(k)
u (tj , tj+1) = ρ

(k)
u (tj , tj+1)× (tj+1 − tj)

I All the constraints are once again linear , details

15/40

Binary search between stretch-interval

I Consider a stretch-interval between two critical values [Sa;Sb]

I Deadlines have a linear evolution

I Everything is linear ? Not really:
when computing what receives a buffer during a time-interval:

ρ
(k)
M→u(tj , tj+1)× (Tend − Tstart)

Tend,Tstart: linear function in S
; quadratic constraints /

I Switch from throughput to amount variables:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

A
(k)
u (tj , tj+1) = ρ

(k)
u (tj , tj+1)× (tj+1 − tj)

I All the constraints are once again linear , details

15/40

Binary search between stretch-interval

I Consider a stretch-interval between two critical values [Sa;Sb]

I Deadlines have a linear evolution

I Everything is linear ? Not really:
when computing what receives a buffer during a time-interval:

ρ
(k)
M→u(tj , tj+1)× (Tend − Tstart)

Tend,Tstart: linear function in S
; quadratic constraints /

I Switch from throughput to amount variables:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

A
(k)
u (tj , tj+1) = ρ

(k)
u (tj , tj+1)× (tj+1 − tj)

I All the constraints are once again linear , details

16/40

Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models

Several bag-of-task applications: Online case

Simulations and Experiments

Conclusion

17/40

Discussion on models

I Which communication/computation model have we been
using from the beginning ?

I My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

I No! no schedule reconstructed from the linear programs /
I Solution of a linear program : fluid throughput ρ

(k)
u , assumes

I time-sharing for communication and computation
I “Synchronous Start” for communication and computation

I Nice model for scheduling, but far from reality:
I No data dependency (!)
I Concurrent applications
I Perfect time-sharing for computation and communication (!)

I We have to come back to the “reality”

17/40

Discussion on models

I Which communication/computation model have we been
using from the beginning ?

I My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

I No! no schedule reconstructed from the linear programs /
I Solution of a linear program : fluid throughput ρ

(k)
u , assumes

I time-sharing for communication and computation
I “Synchronous Start” for communication and computation

I Nice model for scheduling, but far from reality:
I No data dependency (!)
I Concurrent applications
I Perfect time-sharing for computation and communication (!)

I We have to come back to the “reality”

17/40

Discussion on models

I Which communication/computation model have we been
using from the beginning ?

I My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

I No! no schedule reconstructed from the linear programs /
I Solution of a linear program : fluid throughput ρ

(k)
u , assumes

I time-sharing for communication and computation
I “Synchronous Start” for communication and computation

I Nice model for scheduling, but far from reality:
I No data dependency (!)
I Concurrent applications
I Perfect time-sharing for computation and communication (!)

I We have to come back to the “reality”

17/40

Discussion on models

I Which communication/computation model have we been
using from the beginning ?

I My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

I No! no schedule reconstructed from the linear programs /
I Solution of a linear program : fluid throughput ρ

(k)
u , assumes

I time-sharing for communication and computation
I “Synchronous Start” for communication and computation

I Nice model for scheduling, but far from reality:
I No data dependency (!)
I Concurrent applications
I Perfect time-sharing for computation and communication (!)

I We have to come back to the “reality”

17/40

Discussion on models

I Which communication/computation model have we been
using from the beginning ?

I My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

I No! no schedule reconstructed from the linear programs /
I Solution of a linear program : fluid throughput ρ

(k)
u , assumes

I time-sharing for communication and computation
I “Synchronous Start” for communication and computation

I Nice model for scheduling, but far from reality:
I No data dependency (!)
I Concurrent applications
I Perfect time-sharing for computation and communication (!)

I We have to come back to the “reality”

17/40

Discussion on models

I Which communication/computation model have we been
using from the beginning ?

I My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

I No! no schedule reconstructed from the linear programs /
I Solution of a linear program : fluid throughput ρ

(k)
u , assumes

I time-sharing for communication and computation
I “Synchronous Start” for communication and computation

I Nice model for scheduling, but far from reality:
I No data dependency (!)
I Concurrent applications
I Perfect time-sharing for computation and communication (!)

I We have to come back to the “reality”

18/40

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/40

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/40

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/40

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/40

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/40

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/40

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/40

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/40

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/40

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/40

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/40

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

19/40

Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

termination of T in fluid schedule

termination of T in atomic schedule

T

T

time

time

19/40

Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

Construction of 1D-inv schedule from a fluid schedule (M:
Makespan):

1. Reverse the time: t ; M − t

2. Apply 1D algorithm

3. Reverse the time once again

Lemma (1D-inv).

In the 1D-inv schedule, a task does not start earlier than in the
fluid schedule, and 1D-inv has a makespan ≤ M.

20/40

Back to the one-port model

From a fluid schedule (of communications and computations):

1. Round every quantities down to integer values

2. Shift all computations by one task (to cope with
dependencies)

3. Apply 1D algorithm to communications
→ communications finish in time

4. Apply 1D-inv algorithm to computations
→ computations do not start in advance

Results:

I We guarantee that data dependencies are satisfied

I Some tasks may be forgotten

21/40

Back to the one-port model

Bound on the number of tasks not sent to Pu at time dk :

I one per time-interval because of rounding

Time needed to send the remaining tasks:

n∑
u=1

Lkδ
(k)

bu

Bound on the number of tasks not processed at Pu at time dk :

I one per time-interval because of rounding (communications)

I one per time-interval because of rounding (computations)

I one because of shifting

Time needed to process these tasks:

(2Lk + 1)w (k)

s
(k)
u

22/40

Back to the one-port model

Maximum delay for application Ak :

lateness(k) ≤
∑

k

(
n∑

u=1

Lkδ
(k)

bu
+ max

1≤u≤n

(2Lk + 1)w (k)

s
(k)
u

)

22/40

Back to the one-port model

Maximum delay for application Ak :

lateness(k) ≤
∑

k

(
n∑

u=1

Lkδ
(k)

bu
+ max

1≤u≤n

(2Lk + 1)w (k)

s
(k)
u

)

23/40

Back to the one-port model: Asymptotic optimality

We introduce the granularity g :

Π
(k)
g =

Π(k)

g

w
(k)
g = g × w (k)

δ
(k)
g = g × δ(k)

I g = 1: no changes

I g → 0: many small tasks
(Divisible Load)

Theorem.

lateness(k) −−−−→
g→0

0

When the granularity of the application gets smaller (many small
tasks), the one-port makespan gets closer to the fluid makespan.

In practice:

I 1D schedule for communications

I Earliest Deadline First for computations

23/40

Back to the one-port model: Asymptotic optimality

We introduce the granularity g :

Π
(k)
g =

Π(k)

g

w
(k)
g = g × w (k)

δ
(k)
g = g × δ(k)

I g = 1: no changes

I g → 0: many small tasks
(Divisible Load)

Theorem.

lateness(k) −−−−→
g→0

0

When the granularity of the application gets smaller (many small
tasks), the one-port makespan gets closer to the fluid makespan.

In practice:

I 1D schedule for communications

I Earliest Deadline First for computations

23/40

Back to the one-port model: Asymptotic optimality

We introduce the granularity g :

Π
(k)
g =

Π(k)

g

w
(k)
g = g × w (k)

δ
(k)
g = g × δ(k)

I g = 1: no changes

I g → 0: many small tasks
(Divisible Load)

Theorem.

lateness(k) −−−−→
g→0

0

When the granularity of the application gets smaller (many small
tasks), the one-port makespan gets closer to the fluid makespan.

In practice:

I 1D schedule for communications

I Earliest Deadline First for computations

24/40

Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models

Several bag-of-task applications: Online case

Simulations and Experiments

Conclusion

25/40

Online multi-application – framework

I No available information about future submission

I Information for application k available at release date r (k)

Adaptation:

I Consider only available information (already submitted
applications)

I Restart offline algorithm at each release date (with updated
information)

I online heuristic named CBS3M-online

I we also test the offline algorithm: CBS3M-offline

26/40

Online multi-application – framework

Classical heuristics to prioritize applications:

I First In First Out (FIFO)

I Shortest Processing Time (SPT)

I Shortest Remaining Processing Time (SRPT)

I Shortest Weighted Remaining Processing Time (SWRPT)

(× heuristic to chose workers: RR, MCT or DD)

Previous heuristics do not mix applications,

I Master-Worker Multi-Application (MWMA)
(previous work, designed for simultaneous submissions)

27/40

Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models

Several bag-of-task applications: Online case

Simulations and Experiments

Conclusion

28/40

Simulation and Experiment Settings

Experiments:

I GDSDMI cluster (8 workers)

I MPI communications

I Artificially slow-down communication and/or computations to
emulate heterogeneity

Simulation:

I SimGrid simulator
I Two scenarios:

1. simulate MPI experiments
2. extensive simulations with larger applications

parameters

29/40

Simulations results

F
IF

O
R

R

F
IF

O
M

C
T

F
IF

O
D

D

S
P

T
R

R

S
P

T
M

C
T

S
P

T
D

D

S
R

P
T

R
R

S
R

P
T

M
C

T

S
R

P
T

D
D

S
W

R
P

T
R

R

S
W

R
P

T
M

C
T

S
W

R
P

T
D

D

M
W

M
A

N
B

T

M
W

M
A

M
S

C
B

S
3M

F
IF

O
O

N
L

IN
E

C
B

S
3M

E
D

F
O

N
L

IN
E

C
B

S
3M

F
IF

O
O

F
F

L
IN

E

C
B

S
3M

E
D

F
O

F
F

L
IN

E

0

10

20

30

40

50

60

70

re
la

ti
ve

m
ax

-s
tr

et
ch

29/40

Simulations results

F
IF

O
R

R

F
IF

O
M

C
T

F
IF

O
D

D

S
P

T
R

R

S
P

T
M

C
T

S
P

T
D

D

S
R

P
T

R
R

S
R

P
T

M
C

T

S
R

P
T

D
D

S
W

R
P

T
R

R

S
W

R
P

T
M

C
T

S
W

R
P

T
D

D

M
W

M
A

N
B

T

M
W

M
A

M
S

C
B

S
3M

F
IF

O
O

N
L

IN
E

C
B

S
3M

E
D

F
O

N
L

IN
E

C
B

S
3M

F
IF

O
O

F
F

L
IN

E

C
B

S
3M

E
D

F
O

F
F

L
IN

E

1

10

100

re
la

ti
ve

m
ax

-s
tr

et
ch

29/40

Simulations results

1

10

100

re
la

ti
ve

m
ax

-s
tr

et
ch

F
IF

O
R

R

F
IF

O
M

C
T

F
IF

O
D

D

S
P

T
R

R

S
P

T
M

C
T

S
P

T
D

D

S
R

P
T

R
R

S
R

P
T

D
D

S
W

R
P

T
R

R

S
W

R
P

T
D

D

M
W

M
A

N
B

T

M
W

M
A

M
S

C
B

S
3M

F
IF

O
O

N
L

IN
E

C
B

S
3M

F
IF

O
O

F
F

L
IN

E

S
R

P
T

M
C

T

S
W

R
P

T
M

C
T

C
B

S
3M

E
D

F
O

N
L

IN
E

C
B

S
3M

E
D

F
O

F
F

L
IN

E

30/40

Simulations results – variation with load

MWMA NBT
SWRPT MCT

SRPT MCT
CBS3M EDF OFFLINE
CBS3M EDF ONLINE

1

1.5

2

2.5

3

3.5

4

4 5 6 7 8 9 10

av
er

ag
e

m
ax

st
re

tc
h

/
op

ti
m

al
m

ax
st

re
tc

h

load (optimal stretch)

31/40

Gantt chart example: FIFO + RR

 appli 1

 appli 2

 appli 3

 appli 4

 appli 5

 appli 6

 appli 7

 appli 8

 appli 9

 appli 10

 appli 11

 appli 12

 proc 1

 proc 2

 proc 3

 proc 4

 proc 5

 proc 6

 proc 7

 proc 8

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500

32/40

Gantt chart example: SRPT + MCT

 appli 1

 appli 2

 appli 3

 appli 4

 appli 5

 appli 6

 appli 7

 appli 8

 appli 9

 appli 10

 appli 11

 appli 12

 proc 1

 proc 2

 proc 3

 proc 4

 proc 5

 proc 6

 proc 7

 proc 8

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

33/40

Gantt chart example: CBS3M + EDF (online)

 appli 1

 appli 2

 appli 3

 appli 4

 appli 5

 appli 6

 appli 7

 appli 8

 appli 9

 appli 10

 appli 11

 appli 12

 proc 1

 proc 2

 proc 3

 proc 4

 proc 5

 proc 6

 proc 7

 proc 8

0 250 500 750 1000 1250 1500 1750 2000 2250

34/40

Simulations results – other metrics

Sum-stretch

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 4 5 6 7 8 9 10 11 12

av
er

ag
e

su
m

_s
tr

et
ch

 /
be

st
 s

um
_s

tr
et

ch

load (optimal stretch)

SRPT_MCT
SWRPT_MCT
MWMA_NBT

CBS3M_EDF_OFFLINE
CBS3M_EDF_ONLINE

I best strategy: SWRPT (known to be optimal)

I CBSSM within 30-40%

34/40

Simulations results – other metrics

Makespan

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 4 5 6 7 8 9 10 11 12

av
er

ag
e

m
ak

es
pa

n
/ b

es
t m

ak
es

pa
n

load (optimal stretch)

SRPT_MCT
SWRPT_MCT
MWMA_NBT

CBS3M_EDF_OFFLINE
CBS3M_EDF_ONLINE

I best strategy: CBS3M

34/40

Simulations results – other metrics

Max-flow

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 4 5 6 7 8 9 10 11 12

av
er

ag
e

m
ax

_f
lo

w
 /

be
st

 m
ax

_f
lo

w

load (optimal stretch)

SRPT_MCT
SWRPT_MCT
MWMA_NBT

CBS3M_EDF_OFFLINE
CBS3M_EDF_ONLINE

I best strategy: CBS3M

34/40

Simulations results – other metrics

Sum-flow

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 4 5 6 7 8 9 10 11 12

av
er

ag
e

su
m

_f
lo

w
 /

be
st

 s
um

_f
lo

w

load (optimal stretch)

SRPT_MCT
SWRPT_MCT
MWMA_NBT

CBS3M_EDF_OFFLINE
CBS3M_EDF_ONLINE

I best strategy: CBS3M/ SWRPT

35/40

MPI experiments results

CBSSM EDF OFFLINE
CBS3M EDF ONLINE

MWMA NBT
SWRPT MCT

re
la

ti
ve

m
ax

-s
tr

et
ch

load (optimal max-stretch)

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

36/40

MPI experiments results

Algorithm minimum average (± stddev) maximum (fraction of best result)
CBS3M EDF OFFLINE 1.04 1.30 (± 0.13) 1.63 (the best in 38.0%)
CBS3M EDF ONLINE 1.02 1.41 (± 0.30) 2.09 (the best in 30.0%)
CBS3M FIFO OFFLINE 1.04 1.38 (± 0.28) 2.97 (the best in 12.0%)
CBS3M FIFO ONLINE 1.02 1.46 (± 0.26) 1.96 (the best in 6.0%)

FIFO MCT 1.10 1.81 (± 0.60) 4.15 (the best in 4.0%)
FIFO RR 1.35 4.99 (± 3.46) 19.50 (the best in 0.0%)

MWMA MS 1.22 2.29 (± 0.56) 4.05 (the best in 0.0%)
MWMA NBT 1.13 1.50 (± 0.17) 2.06 (the best in 4.0%)

SPT DD 1.33 4.87 (± 3.10) 18.75 (the best in 0.0%)
SPT MCT 1.08 1.84 (± 0.61) 3.43 (the best in 4.0%)

SRPT MCT 1.09 1.87 (± 0.59) 3.38 (the best in 0.0%)
SWRPT MCT 1.08 1.88 (± 0.59) 3.38 (the best in 2.0%)

37/40

MPI experiments vs simulations

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40 50 60 70

fr
eq

u
en

cy
(%

)

relative deviation (%)

Relative deviation:
|Sexp − Ssimu|
Sexp

I average difference: 8.9%

I standard deviation: 9.5%

I median value: 5.5%

38/40

Simulation and Experiment results – Summary

I CBS3M performs very well for max-stretch (best results in all
cases, average ratio to the theoretical fluid optimal: 1.3, worst
case: 2)

I CBS3M performs also well for other metrics: makespan,
max-flow, (sum-stretch, sum-flow)

I Explanation: makes good use of the platform (like MWMA)
and is aware of the priorities/deadlines (like SWRPT)

I Simulation/Experiments close enough: average relative
deviation 8.9%, median 5.5%

39/40

Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models

Several bag-of-task applications: Online case

Simulations and Experiments

Conclusion

40/40

Conclusion

I Key points:
I Realistic platform model
I Optimal offline algorithm

(asymptotically optimal in the one-port model)
I Efficient online algorithm based on offline study

I Extensions:
I Extend the simulation to larger platform
I Bi-criteria
I Robustness

Positive values

I Non-negative throughputs.

∀1 ≤ u ≤ p,∀1 ≤ k ≤ n,∀1 ≤ j ≤ 2n − 1,

ρ
(k)
M→u(tj , tj+1) ≥ 0 and ρ(k)

u (tj , tj+1) ≥ 0. (1)

I Non-negative buffers.

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p,∀1 ≤ j ≤ 2n,

B(k)
u (tj) ≥ 0. (2)

Physical constraints

I Bounded link capacity.

∀1 ≤ j ≤ 2n − 1, ∀1 ≤ u ≤ p,
nX

k=1

ρ
(k)
M→u(tj , tj+1)

δ(k)

bu
≤ 1. (3)

I Limited sending capacity of master.

∀1 ≤ j ≤ 2n − 1,
pX

u=1

nX
k=1

ρ
(k)
M→u(tj , tj+1)

δ(k)

B ≤ 1. (4)

I Bounded computing capacity.

∀1 ≤ j ≤ 2n − 1, ∀1 ≤ u ≤ p,
nX

k=1

ρ(k)
u (tj , tj+1)

w (k)

s
(k)
u

≤ 1. (5)

Buffer constraints

I Buffer initialization.

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p,

B(k)
u (r (k)) = 0. (6)

I Emptying Buffer.

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p,

B(k)
u (d (k)) = 0. (7)

I Bounded size

∀1 ≤ u ≤ p,∀1 ≤ j ≤ 2n,
n∑

k=1

B(k)
u (tj)δ

(k) ≤ Mu. (8)

Tasks constraints

I Task conservation.

∀ 1 ≤ k ≤ n,∀1 ≤ j ≤ 2n − 1,∀1 ≤ u ≤ p,

B(k)
u (tj+1) = B(k)

u (tj)+
(
ρ

(k)
M→u(tj , tj+1)−ρ(k)

u (tj , tj+1)
)
×
(
tj+1−tj

)
.
(9)

I Total number of tasks.

∀ 1 ≤ k ≤ n,∑
1≤j≤2n−1

tj ≥ r (k)

tj+1 ≤ d (k)

p∑
u=1

ρ
(k)
M→u(tj , tj+1)× (tj+1 − tj) = Π(k). (10)

Polyhedron


find ρ

(k)
M→u(tj , tj+1), ρ

(k)
u (tj , tj+1),

∀k , u, j such that 1 ≤ k ≤ n, 1 ≤ u ≤ p, 1 ≤ j ≤ 2n − 1

under the constraints (1), (2), (3), (4), (5), (6), (7), (8), (9) and (10)

(K)

A given max-stretch S ′ is achievable if and only if the
Polyhedron (K) is not empty

In practice, we add a fictitious linear objective function. Back

New constraints

I Bounded link capacity.

∀1 ≤ j ≤ 2n − 1,∀1 ≤ u ≤ p,
n∑

k=1

A
(k)
M→u(tj , tj+1)

δ(k)

bu
≤ (αj+1 − αj)S + (βj+1 − βj)

Back

New constraints

I Bounded link capacity.

I Limited sending capacity of master.

∀1 ≤ j ≤ 2n − 1,
p∑

u=1

n∑
k=1

A
(k)
M→u(tj , tj+1)δ(k) ≤ B ×

(
(αj+1 − αj)S + (βj+1 − βj)

)

Back

New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

∀1 ≤ j ≤ 2n − 1,∀1 ≤ u ≤ p,
n∑

k=1

A(k)
u (tj , tj+1)

w (k)

s
(k)
u

≤ (αj+1 − αj)S + (βj+1 − βj)

Back

New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

I Total number of tasks.

∀ 1 ≤ k ≤ n, ∑
1≤j≤2n−1

tj ≥ r (k)

tj+1 ≤ d (k)

p∑
u=1

A
(k)
M→u(tj , tj+1) = Π(k)

Back

New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

I Total number of tasks.

I Task conservation.

∀ 1 ≤ k ≤ n,∀1 ≤ j ≤ 2n − 1,∀1 ≤ u ≤ p,

B(k)
u (tj+1) = B(k)

u (tj) + A
(k)
M→u(tj , tj+1)− A(k)

u (tj , tj+1)

Back

New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

I Total number of tasks.

I Task conservation.

I Non-negative buffer.

I Buffer initialization.

I Emptying Buffer.

Back

New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

I Total number of tasks.

I Task conservation.

I Non-negative buffer.

I Buffer initialization.

I Emptying Buffer.

I Bounded stretch
Sa ≤ S ≤ Sb (11)

Back

Parameters for the MPI experiments and for the SimGrid simulations.

parameter experiments simulations
general number of workers . 8 10

number of applications . 12 20
arrival dates mean of the distribution in the log space 4.0 4.0

standard deviation in the log space . 1.2 1.2
computations maximum amount of work application (Gflops) 76.8 409

minimum amount of work per task (Gflops) 3.1 3.1
communications maximum amount of communication per application (MB) 800 6,000

minimum amount of communication per task (MB) 40 40
number of tasks minimum number of tasks per application. 10 20

Back

	Main Part
	Introduction
	With a single bag-of-task application
	Several bag-of-task applications: Offline case
	Discussion on models
	Several bag-of-task applications: Online case
	Simulations and Experiments
	Conclusion
	Extra material
	
	

