Offline and Online Master-Worker Scheduling of Concurrent Bags-of-Tasks on Heterogeneous Platforms

Loris MARCHAL,

joint work with Anne BENOIT, Jean-François PINEAU, Yves ROBERT and Frédéric VIVIEN

> CNRS Laboratoire de l'Informatique du Parallélisme École Normale Supérieure de Lyon, France

> > Scheduling in Aussois, May, 18 - 21 2008.

> > > 《曰》 《聞》 《臣》 《臣》 三臣

1/40

Object of the Study

Bags-of-tasks application

- independent tasks
- large number of similar tasks
- models embarrassingly parallel applications
- argues for the use of wide distributed platforms

Online scheduling

- applications arrive at different times (release dates)
- no knowledge on the future
- no global makespan, try to lower the suffering of each user

Object of the Study

Bags-of-tasks application

- independent tasks
- large number of similar tasks
- models embarrassingly parallel applications
- argues for the use of wide distributed platforms

Online scheduling

- applications arrive at different times (release dates)
- no knowledge on the future
- no global makespan, try to lower the suffering of each user

Building on our previous results

- ► Large number of tasks ⇒ steady-state scheduling
 - designed for large applications
 - suited for heterogeneous platforms, multiple applications

(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS'06)

- optimal platform utilization: throughput maximization
- neglect transient phases (initialization/clean-up)
- ▶ Online scheduling ⇒ maximum stretch minimization
 - other metrics not suited

(Minimizing the stretch when scheduling flows of biological requests, SPAA '06)

- stretch is a kind of price for sharing resources
- minimize the maximum stretch among applications: give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

Building on our previous results

- ► Large number of tasks ⇒ steady-state scheduling
 - designed for large applications
 - suited for heterogeneous platforms, multiple applications

(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS'06)

- optimal platform utilization: throughput maximization
- neglect transient phases (initialization/clean-up)
- ► Online scheduling ⇒ maximum stretch minimization
 - other metrics not suited

(Minimizing the stretch when scheduling flows of biological requests, SPAA '06)

- stretch is a kind of price for sharing resources
- minimize the maximum stretch among applications: give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

Building on our previous results

- ► Large number of tasks ⇒ steady-state scheduling
 - designed for large applications
 - suited for heterogeneous platforms, multiple applications

(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS'06)

- optimal platform utilization: throughput maximization
- neglect transient phases (initialization/clean-up)
- ► Online scheduling ⇒ maximum stretch minimization
 - other metrics not suited

(Minimizing the stretch when scheduling flows of biological requests, SPAA '06)

- stretch is a kind of price for sharing resources
- minimize the maximum stretch among applications: give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

• Suppose we want to reach the maximum stretch ${\cal S}$

- ▶ For a given application, we can compute its makespan "if it was alone": MS
- This gives a deadline:

deadline = release date + $S \times MS$

Each application has now a release date and a deadline.
Dates define intervals...

where we can apply steady-state relaxation!

<ロト < 母 > < 臣 > < 臣 > 臣 の < ④ /40

- Suppose we want to reach the maximum stretch ${\cal S}$
- For a given application, we can compute its makespan "if it was alone": MS
- This gives a deadline:

```
deadline = release date + S \times MS
```

- Each application has now a release date and a deadline.
- Dates define intervals...

where we can apply steady-state relaxation!

<ロト < @ ト < 臣 ト < 臣 ト 臣 の < で 4/40

- \blacktriangleright Suppose we want to reach the maximum stretch ${\cal S}$
- ► For a given application, we can compute its makespan "if it was alone": MS
- This gives a deadline:

 $\mathsf{deadline} = \mathsf{release} \; \mathsf{date} + \mathcal{S} \times \textit{MS}$

 Each application has now a release date and a deadline.
Dates define intervals... where we can apply steady-state relaxation!

- Suppose we want to reach the maximum stretch ${\cal S}$
- For a given application, we can compute its makespan "if it was alone": MS
- This gives a deadline:

```
\mathsf{deadline} = \mathsf{release} \; \mathsf{date} + \mathcal{S} \times \mathit{MS}
```

Each application has now a release date and a deadline.
Dates define intervals.

where we can apply steady-state relaxation!

- Suppose we want to reach the maximum stretch ${\cal S}$
- For a given application, we can compute its makespan "if it was alone": MS
- This gives a deadline:

```
deadline = release date + S \times MS
```

- Each application has now a release date and a deadline.
- Dates define intervals... where we can apply steady-state relaxation!

<ロト < 目 > < 目 > < 目 > < 目 > < 4/40

Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models

Several bag-of-task applications: Online case

Simulations and Experiments

Conclusion

Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models

Several bag-of-task applications: Online case

Simulations and Experiments

Conclusion

Master-Slave platform (heterogeneous):

- Bunch of identical tasks
- Computing optimal makespan: already difficult problem

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ つへで

7/40

Steady-state relaxation to get a lower bound

- Bunch of identical tasks
- Computing optimal makespan: already difficult problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

7/40

Steady-state relaxation to get a lower bound

Bunch of identical tasks

Computing optimal makespan: already difficult problem

7/40

Steady-state relaxation to get a lower bound

- Bunch of identical tasks
- Computing optimal makespan: already difficult problem
- Steady-state relaxation to get a lower bound

- Bunch of identical tasks
- Computing optimal makespan: already difficult problem
- Steady-state relaxation to get a lower bound

Single bag-of-task application – steady-state

Motivations:

- Assume the number of tasks is huge
- Forget about makespan (meaningless)
- Concentrate on throughput (fluid framework)

How it works:

- Consider average values: "master sends 5.3 tasks per second to we
- Write constraints on these variables
- Optimize total throughput under these constraints (with the help of linear programming)
- Reconstruct near-optimal schedule from average values (we skip this step for now)

Single bag-of-task application – steady-state

Motivations:

- Assume the number of tasks is huge
- Forget about makespan (meaningless)
- Concentrate on throughput (fluid framework)

How it works:

- Consider average values: "master sends 5.3 tasks per second to worker 3"
- Write constraints on these variables
- Optimize total throughput under these constraints (with the help of linear programming)
- Reconstruct near-optimal schedule from average values (we skip this step for now)

Single bag-of-task application – steady-state

Motivations:

- Assume the number of tasks is huge
- Forget about makespan (meaningless)
- Concentrate on throughput (fluid framework)

How it works:

- Consider average values: "master sends 5.3 tasks per second to worker 3"
- Write constraints on these variables
- Optimize total throughput under these constraints (with the help of linear programming)
- Reconstruct near-optimal schedule from average values (we skip this step for now)

Single bag-of-task application – linear program

$$\begin{cases} \text{MAXIMIZE } \rho = \sum_{u=1}^{p} \rho_{u} \\ \text{SUBJECT TO} \\ \forall P_{u}, \quad \rho_{u} \frac{w}{s_{u}} \leq 1 \\ \forall P_{u}, \quad \rho_{u} \frac{\delta}{b_{u}} \leq 1 \\ \sum_{u=1}^{p} \rho_{u} \frac{\delta}{\mathcal{B}} \leq 1 \end{cases}$$

 ρ_u : throughput of worker P_u ρ : Total throughput

Analytical solution

$$\rho = \min\left\{\frac{\mathcal{B}}{\delta}, \sum_{u=1}^{p} \min\left\{\frac{s_u}{w}, \frac{b_u}{w}\right\}\right\}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

9/40

Estimated makespan (lower bound):

$$MS = \frac{\text{number of tasks}}{\text{optimal throughput}} = \frac{\Pi}{\rho}$$

Single bag-of-task application – linear program

$$\begin{cases} \text{MAXIMIZE } \rho = \sum_{u=1}^{p} \rho_{u} \\ \text{SUBJECT TO} \\ \forall P_{u}, \quad \rho_{u} \frac{w}{s_{u}} \leq 1 \\ \forall P_{u}, \quad \rho_{u} \frac{\delta}{b_{u}} \leq 1 \\ \sum_{u=1}^{p} \rho_{u} \frac{\delta}{\mathcal{B}} \leq 1 \end{cases}$$

 ρ_u : throughput of worker P_u ρ : Total throughput

Analytical solution

$$\rho = \min\left\{\frac{\mathcal{B}}{\delta}, \sum_{u=1}^{p} \min\left\{\frac{s_{u}}{w}, \frac{b_{u}}{w}\right\}\right\}$$

Estimated makespan (lower bound):

$$MS = \frac{\text{number of tasks}}{\text{optimal throughput}} = \frac{\Pi}{\rho}$$

Single bag-of-task application – linear program

$$\begin{cases} \text{MAXIMIZE } \rho = \sum_{u=1}^{p} \rho_{u} \\ \text{SUBJECT TO} \\ \forall P_{u}, \quad \rho_{u} \frac{w}{s_{u}} \leq 1 \\ \forall P_{u}, \quad \rho_{u} \frac{\delta}{b_{u}} \leq 1 \\ \sum_{u=1}^{p} \rho_{u} \frac{\delta}{\mathcal{B}} \leq 1 \end{cases}$$

 ρ_u : throughput of worker P_u ρ : Total throughput

Analytical solution

$$\rho = \min\left\{\frac{\mathcal{B}}{\delta}, \sum_{u=1}^{p} \min\left\{\frac{s_u}{w}, \frac{b_u}{w}\right\}\right\}$$

Estimated makespan (lower bound):

$$MS = \frac{\text{number of tasks}}{\text{optimal throughput}} = \frac{\Pi}{\rho}$$

Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models

Several bag-of-task applications: Online case

Simulations and Experiments

Conclusion

<ロト < 母 > < 臣 > < 臣 > 臣 の < ④ 10/40

For each application k (task of sizes $w^{(k)}$, $\delta^{(k)}$), we have:

- a release date
- an estimated makespan $MS^{*(k)}$ (lower bound)

We try to reach stretch S:

deadline:

deadline^(k) = release date^(k) +
$$S \times MS^{*(k)}$$

<ロト < 母 > < 臣 > < 臣 > 臣 の < ④ 11/40

If we try to reach stretch S = 2:

If we try to reach stretch S = 2:

<ロト < 母 > < 臣 > < 臣 > 王 の へ で 12/40

If we try to reach stretch S = 2:

<ロト < 部 > < 目 > < 目 > < 目 > < 目 > 12/40

If we try to reach stretch S = 2:

<ロト < 部 > < 目 > < 目 > < 目 > < 目 > 12/40

If we try to reach stretch S = 2:

<ロト < 母 > < 臣 > < 臣 > 王 の へ で 12/40

If we try to reach stretch S = 2:

<ロト < 母 ト < 臣 ト < 臣 ト 王 の へ で 12/40

Resolution for a target stretch \mathcal{S}

New variables:

- communication throughput $\rho_{M \to u}^{(k)}(t_j, t_{j+1})$
- computation throughput $\rho_u^{(k)}(t_j, t_{j+1})$
- state of buffers: B_u^(k)(t_j) (number of non-executed tasks at time t_j)

New constraints:

- Complex (but straightforward) conservation laws between throughputs and buffer state
- Assert that all tasks of an application are treated.
- Resource limitations

Set of linear constraints, defining a convex K(S).

 $\mathcal{K}(\mathcal{S})$ non-empty $\Leftrightarrow \mathcal{S}$ feasible

details

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- Basic binary search (with precision ϵ), or
- Involved search among stretch-intervals:

$$d^{(k)}(\mathcal{S}) = r^{(k)} + \mathcal{S} \times MS^{*(k)}.$$

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- Basic binary search (with precision ϵ), or
- Involved search among stretch-intervals:

$$d^{(k)}(\mathcal{S}) = r^{(k)} + \mathcal{S} \times MS^{*(k)}.$$

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- Basic binary search (with precision ϵ), or
- Involved search among stretch-intervals:

$$d^{(k)}(\mathcal{S}) = r^{(k)} + \mathcal{S} \times MS^{*(k)}.$$

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- Basic binary search (with precision ϵ), or
- Involved search among stretch-intervals:

$$d^{(k)}(\mathcal{S}) = r^{(k)} + \mathcal{S} \times MS^{*(k)}.$$

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of the optimal (minimum) stretch:

- Basic binary search (with precision ϵ), or
- Involved search among stretch-intervals:

$$d^{(k)}(\mathcal{S}) = r^{(k)} + \mathcal{S} \times MS^{*(k)}.$$

- Consider a stretch-interval between two critical values [S_a; S_b]
- Deadlines have a linear evolution
- Everything is linear ? Not really
 - when computing what receives a buffer during a time-interval

- $T_{\rm end}, T_{\rm start}$ linear function in S \sim quadratic constraints \odot
- Switch from throughput to amount variables:

 $\begin{array}{lll} A_{M \to u}^{(k)}(t_j, t_{j+1}) &=& \rho_{M \to u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j) \\ A_u^{(k)}(t_j, t_{j+1}) &=& \rho_u^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j) \end{array}$

 \blacktriangleright All the constraints are once again linear \odot

- Consider a stretch-interval between two critical values [S_a; S_b]
- Deadlines have a linear evolution
- Everything is linear ?

$ho_{M o u}^{(k)}(t_j, t_{j+1}) imes (T_{ ext{end}} - T_{ ext{start}})$

 $T_{
m end}, T_{
m start}$: linear function in ${\cal S}$ \sim quadratic constraints \odot

Switch from throughput to amount variables:

 $\begin{array}{lll} \mathcal{A}_{M \to u}^{(k)}(t_j, t_{j+1}) &=& \rho_{M \to u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j) \\ \mathcal{A}_{u}^{(k)}(t_j, t_{j+1}) &=& \rho_{u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j) \end{array}$

All the constraints are once again linear ⁽²⁾

- Consider a stretch-interval between two critical values [S_a; S_b]
- Deadlines have a linear evolution
- Everything is linear ? Not really: when computing what receives a buffer during a time-interval:

 $ho_{M
ightarrow u}^{(k)}(\mathit{t}_{j}, \mathit{t}_{j+1}) imes (\mathit{T}_{\mathsf{end}} - \mathit{T}_{\mathsf{start}})$

 $\mathcal{T}_{\mathsf{end}}, \mathcal{T}_{\mathsf{start}}$: linear function in \mathcal{S} ightarrow quadratic constraints \equiv

Switch from *throughput* to *amount* variables:

$$\begin{array}{lll} \mathcal{A}_{M \to u}^{(k)}(t_{j}, t_{j+1}) & = & \rho_{M \to u}^{(k)}(t_{j}, t_{j+1}) \times (t_{j+1} - t_{j}) \\ \mathcal{A}_{u}^{(k)}(t_{j}, t_{j+1}) & = & \rho_{u}^{(k)}(t_{j}, t_{j+1}) \times (t_{j+1} - t_{j}) \end{array}$$

▶ All the constraints are once again linear ⓒ • details

- Consider a stretch-interval between two critical values [S_a; S_b]
- Deadlines have a linear evolution
- Everything is linear ? Not really: when computing what receives a buffer during a time-interval:

$$ho_{M
ightarrow u}^{(k)}(t_j, t_{j+1}) imes (T_{\mathsf{end}} - T_{\mathsf{start}})$$

 T_{end}, T_{start} : linear function in S \sim quadratic constraints \bigcirc

Switch from throughput to amount variables:

$$\begin{array}{lll} \mathcal{A}_{M \to u}^{(k)}(t_j, t_{j+1}) & = & \rho_{M \to u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j) \\ \mathcal{A}_{u}^{(k)}(t_j, t_{j+1}) & = & \rho_{u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j) \end{array}$$

► All the constraints are once again linear ☺ • details

- Consider a stretch-interval between two critical values [S_a; S_b]
- Deadlines have a linear evolution
- Everything is linear ? Not really: when computing what receives a buffer during a time-interval:

$$ho_{M o u}^{(k)}(t_j, t_{j+1}) imes (T_{\mathsf{end}} - T_{\mathsf{start}})$$

 T_{end}, T_{start} : linear function in S \sim quadratic constraints \bigcirc

Switch from throughput to amount variables:

$$egin{array}{rcl} {\cal A}^{(k)}_{M
ightarrow u}(t_j,t_{j+1})&=&
ho^{(k)}_{M
ightarrow u}(t_j,t_{j+1}) imes(t_{j+1}-t_j)\ {\cal A}^{(k)}_u(t_j,t_{j+1})&=&
ho^{(k)}_u(t_j,t_{j+1}) imes(t_{j+1}-t_j) \end{array}$$

► All the constraints are once again linear ⓒ • details

- Consider a stretch-interval between two critical values [S_a; S_b]
- Deadlines have a linear evolution
- Everything is linear ? Not really: when computing what receives a buffer during a time-interval:

$$ho_{M
ightarrow u}^{(k)}(t_j, t_{j+1}) imes (T_{\mathsf{end}} - T_{\mathsf{start}})$$

 T_{end}, T_{start} : linear function in S \sim quadratic constraints \bigcirc

Switch from throughput to amount variables:

$$egin{array}{rcl} {\cal A}^{(k)}_{M
ightarrow u}(t_j,t_{j+1})&=&
ho^{(k)}_{M
ightarrow u}(t_j,t_{j+1}) imes(t_{j+1}-t_j)\ {\cal A}^{(k)}_u(t_j,t_{j+1})&=&
ho^{(k)}_u(t_j,t_{j+1}) imes(t_{j+1}-t_j) \end{array}$$

All the constraints are once again linear ⁽¹⁾ • details

Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models

Several bag-of-task applications: Online case

Simulations and Experiments

Conclusion

- Which communication/computation model have we been using from the beginning ?
- My favorite over-classical one-port model ?
 (a processor sends/receives one message at a time, and can overlap the communications by computations)
- \blacktriangleright No! no schedule reconstructed from the linear programs igodot
- Solution of a linear program : fluid throughput $\rho_u^{(K)}$, assumes
 - time-sharing for communication and computation
 - "Synchronous Start" for communication and computation
- Nice model for scheduling, but far from reality:
 - No data dependency (!)
 - Concurrent applications
 - Perfect time-sharing for computation and communication (!)
- We have to come back to the "reality"

- Which communication/computation model have we been using from the beginning ?
- My favorite over-classical one-port model ?
 (a processor sends/receives one message at a time, and can overlap the communications by computations)
- ▶ No! no schedule reconstructed from the linear programs 🙁
- Solution of a linear program : fluid throughput $\rho_u^{(\kappa)}$, assumes
 - time-sharing for communication and computation
 - "Synchronous Start" for communication and computation
- Nice model for scheduling, but far from reality:
 - No data dependency (!)
 - Concurrent applications
 - Perfect time-sharing for computation and communication (!)
- We have to come back to the "reality"

- Which communication/computation model have we been using from the beginning ?
- My favorite over-classical one-port model ? (a processor sends/receives one message at a time, and can overlap the communications by computations)
- No! no schedule reconstructed from the linear programs (2)
- ▶ Solution of a linear program : fluid throughput $\rho_u^{(k)}$, assumes
 - time-sharing for communication and computation
 - "Synchronous Start" for communication and computation
- Nice model for scheduling, but far from reality:
 - ▶ No data dependency (!)
 - Concurrent applications
 - Perfect time-sharing for computation and communication (!)
- We have to come back to the "reality"

- Which communication/computation model have we been using from the beginning ?
- My favorite over-classical one-port model ?
 (a processor sends/receives one message at a time, and can overlap the communications by computations)
- No! no schedule reconstructed from the linear programs ②
- Solution of a linear program : fluid throughput $\rho_u^{(k)}$, assumes
 - time-sharing for communication and computation
 - "Synchronous Start" for communication and computation
- ▶ Nice model for scheduling, but far from reality:
 - No data dependency (!)
 - Concurrent applications
 - Perfect time-sharing for computation and communication (!)
- We have to come back to the "reality"

- Which communication/computation model have we been using from the beginning ?
- My favorite over-classical one-port model ?
 (a processor sends/receives one message at a time, and can overlap the communications by computations)
- No! no schedule reconstructed from the linear programs (2)
- Solution of a linear program : fluid throughput $\rho_u^{(k)}$, assumes
 - time-sharing for communication and computation
 - "Synchronous Start" for communication and computation
- Nice model for scheduling, but far from reality:
 - No data dependency (!)
 - Concurrent applications
 - Perfect time-sharing for computation and communication (!)
- We have to come back to the "reality"

- Which communication/computation model have we been using from the beginning ?
- My favorite over-classical one-port model ?
 (a processor sends/receives one message at a time, and can overlap the communications by computations)
- No! no schedule reconstructed from the linear programs ②
- Solution of a linear program : fluid throughput $\rho_u^{(k)}$, assumes
 - time-sharing for communication and computation
 - "Synchronous Start" for communication and computation
- Nice model for scheduling, but far from reality:
 - No data dependency (!)
 - Concurrent applications
 - Perfect time-sharing for computation and communication (!)
- We have to come back to the "reality"

- General fluid schedule with rate α_k for application k
- task of application k takes time t_k at full speed

At each step, choose application which minimize

$$(n_k+1) imes rac{t_k}{lpha_k}$$

18/40

 n_k : number of task from application k already scheduled

- General fluid schedule with rate α_k for application k
- task of application k takes time t_k at full speed

At each step, choose application which minimize

$$(n_k+1) imes rac{t_k}{lpha_k}$$

18/40

 n_k : number of task from application k already scheduled

- General fluid schedule with rate α_k for application k
- task of application k takes time t_k at full speed

At each step, choose application which minimize

$$(n_k+1) imes rac{t_k}{lpha_k}$$

 n_k : number of task from application k already scheduled

18/40

- General fluid schedule with rate α_k for application k
- task of application k takes time t_k at full speed

At each step, choose application which minimize

$$(n_k+1) imes rac{t_k}{lpha_k}$$

18/40

 n_k : number of task from application k already scheduled

- General fluid schedule with rate α_k for application k
- \blacktriangleright task of application k takes time t_k at full speed

At each step, choose application which minimize

$$(n_k+1) imes rac{t_k}{lpha_k}$$

Image: A matrix

18/40

 n_k : number of task from application k already scheduled ▲ 臣 ▶ ▲ 臣 ▶ 三臣 → �� �

- General fluid schedule with rate α_k for application k
- task of application k takes time t_k at full speed

At each step, choose application which minimize

$$(n_k+1) imes rac{t_k}{lpha_k}$$

A D b 4 A

18/40

 n_k : number of task from application k already scheduled ▲ 臣 ▶ ▲ 臣 ▶ 三臣 → �� �

- General fluid schedule with rate α_k for application k
- task of application k takes time t_k at full speed

At each step, choose application which minimize

$$(n_k+1) imes rac{t_k}{lpha_k}$$

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- General fluid schedule with rate α_k for application k
- task of application k takes time t_k at full speed

At each step, choose application which minimize

$$(n_k+1) imes rac{t_k}{lpha_k}$$

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- General fluid schedule with rate α_k for application k
- task of application k takes time t_k at full speed

At each step, choose application which minimize

$$(n_k+1) imes rac{t_k}{lpha_k}$$

I D > (A)

18/40

- General fluid schedule with rate α_k for application k
- task of application k takes time t_k at full speed

At each step, choose application which minimize

$$(n_k+1) imes rac{t_k}{lpha_k}$$

18/40

- General fluid schedule with rate α_k for application k
- task of application k takes time t_k at full speed

At each step, choose application which minimize

$$(n_k+1) imes rac{t_k}{lpha_k}$$

18/40

- General fluid schedule with rate α_k for application k
- task of application k takes time t_k at full speed

At each step, choose application which minimize

$$(n_k+1) imes rac{t_k}{lpha_k}$$

18/40

Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the fluid schedule.

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the fluid schedule.

Construction of 1D-inv schedule from a fluid schedule (*M*: Makespan):

- **1**. Reverse the time: $t \rightsquigarrow M t$
- 2. Apply 1D algorithm
- 3. Reverse the time once again

Lemma (1D-inv).

In the 1D-inv schedule, a task does not start earlier than in the fluid schedule, and 1D-inv has a makespan $\leq M$.

From a fluid schedule (of communications and computations):

- 1. Round every quantities down to integer values
- 2. Shift all computations by one task (to cope with dependencies)
- 3. Apply 1D algorithm to communications \rightarrow communications finish in time
- 4. Apply 1D-inv algorithm to computations
 - \rightarrow computations do not start in advance

Results:

- We guarantee that data dependencies are satisfied
- Some tasks may be forgotten

Back to the one-port model

Bound on the number of tasks not sent to P_u at time d_k :

one per time-interval because of rounding

Time needed to send the remaining tasks:

$$\sum_{u=1}^{n} \frac{L_k \delta^{(k)}}{b_u}$$

Bound on the number of tasks not processed at P_u at time d_k :

- one per time-interval because of rounding (communications)
- one per time-interval because of rounding (computations)
- one because of shifting

Time needed to process these tasks:

$$\frac{(2L_k+1)w^{(k)}}{s_u^{(k)}}$$

Maximum delay for application A_k :

$$\textit{lateness}^{(k)} \leq \sum_{k} \left(\sum_{u=1}^{n} \frac{L_k \delta^{(k)}}{b_u} + \max_{1 \leq u \leq n} \frac{(2L_k + 1)w^{(k)}}{s_u^{(k)}} \right)$$

 Maximum delay for application A_k :

$$\textit{lateness}^{(k)} \leq \sum_{k} \left(\sum_{u=1}^{n} \frac{L_k \delta^{(k)}}{b_u} + \max_{1 \leq u \leq n} \frac{(2L_k + 1)w^{(k)}}{s_u^{(k)}} \right)$$

<ロ > < 母 > < 臣 > < 臣 > 三 の < C 22/40

Back to the one-port model: Asymptotic optimality

We introduce the granularity g:

$$\Pi_{g}^{(k)} = \frac{\Pi^{(k)}}{g}$$
$$w_{g}^{(k)} = g \times w^{(k)}$$
$$\delta_{g}^{(k)} = g \times \delta^{(k)}$$

- ▶ g = 1: no changes
- *g* → 0: many small tasks (Divisible Load)

23/40

Theorem.

 $|ateness^{(k)} \longrightarrow 0$

When the granularity of the application gets smaller (many small tasks), the one-port makespan gets closer to the fluid makespan. In practice:

- ID schedule for communications
- ► Earliest Deadline First for computations

Back to the one-port model: Asymptotic optimality

We introduce the granularity g:

$$\Pi_{g}^{(k)} = \frac{\Pi^{(k)}}{g}$$
$$w_{g}^{(k)} = g \times w^{(k)}$$
$$\delta_{g}^{(k)} = g \times \delta^{(k)}$$

▶ g = 1: no changes

•
$$g \rightarrow 0$$
: many small tasks (Divisible Load)

23/40

Theorem.

$$lateness^{(k)} \xrightarrow[g \to 0]{g \to 0} 0$$

When the granularity of the application gets smaller (many small tasks), the one-port makespan gets closer to the fluid makespan.

In practice:

- ID schedule for communications
- ► Earliest Deadline First for computations

Back to the one-port model: Asymptotic optimality

We introduce the granularity g:

$$\Pi_{g}^{(k)} = \frac{\Pi^{(k)}}{g}$$
$$w_{g}^{(k)} = g \times w^{(k)}$$
$$\delta_{g}^{(k)} = g \times \delta^{(k)}$$

▶ g = 1: no changes

g → 0: many small tasks (Divisible Load)

Theorem.

$$lateness^{(k)} \xrightarrow[g \to 0]{} 0$$

When the granularity of the application gets smaller (many small tasks), the one-port makespan gets closer to the fluid makespan. In practice:

- ▶ 1D schedule for communications
- Earliest Deadline First for computations
Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models

Several bag-of-task applications: Online case

Simulations and Experiments

Conclusion

Online multi-application – framework

- No available information about future submission
- Information for application k available at release date $r^{(k)}$

Adaptation:

- Consider only available information (already submitted applications)
- Restart offline algorithm at each release date (with updated information)
- online heuristic named CBS3M-online
- we also test the offline algorithm: CBS3M-offline

Classical heuristics to prioritize applications:

- First In First Out (FIFO)
- Shortest Processing Time (SPT)
- Shortest Remaining Processing Time (SRPT)
- Shortest Weighted Remaining Processing Time (SWRPT)
- (× heuristic to chose workers: **RR**, **MCT** or **DD**)

Previous heuristics do not mix applications,

 Master-Worker Multi-Application (MWMA) (previous work, designed for simultaneous submissions)

Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models

Several bag-of-task applications: Online case

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

27/40

Simulations and Experiments

Conclusion

Simulation and Experiment Settings

Experiments:

- GDSDMI cluster (8 workers)
- MPI communications
- Artificially slow-down communication and/or computations to emulate heterogeneity

・ロト ・ 理ト ・ ヨト ・ ヨー ・ りへぐ

28/40

Simulation:

- SimGrid simulator
- Two scenarios:
 - 1. simulate MPI experiments
 - 2. extensive simulations with larger applications

Simulations results

Simulations results

Simulations results

Simulations results – variation with load

<ロト
・ロト
・< 国ト</p>
・< 国ト</p>
・< 国ト</p>
・< 国ト</p>
・< 国</p>
・< 30/40</p>

Gantt chart example: FIFO + RR

31/40

Gantt chart example: SRPT + MCT

32/40

Gantt chart example: CBS3M + EDF (online)

33/40

Sum-stretch

best strategy: SWRPT (known to be optimal)

CBSSM within 30-40%

Makespan

best strategy: CBS3M

Max-flow

best strategy: CBS3M

Sum-flow

best strategy: CBS3M/ SWRPT

MPI experiments results

<ロ > < 母 > < 臣 > < 臣 > 王 の < で 35/40

MPI experiments results

Algorithm	minimum	average	$(\pm \text{ stddev})$	maximum	(fraction of best result)
CBS3M_EDF_OFFLINE	1.04	1.30	(± 0.13)	1.63	(the best in 38.0%)
CBS3M_EDF_ONLINE	1.02	1.41	(± 0.30)	2.09	(the best in 30.0%)
CBS3M_FIFO_OFFLINE	1.04	1.38	(± 0.28)	2.97	(the best in 12.0%)
CBS3M_FIFO_ONLINE	1.02	1.46	(± 0.26)	1.96	(the best in 6.0%)
FIFO_MCT	1.10	1.81	(± 0.60)	4.15	(the best in 4.0%)
FIFO_RR	1.35	4.99	(± 3.46)	19.50	(the best in 0.0%)
MWMA_MS	1.22	2.29	(± 0.56)	4.05	(the best in 0.0%)
MWMA_NBT	1.13	1.50	(± 0.17)	2.06	(the best in 4.0%)
SPT_DD	1.33	4.87	(± 3.10)	18.75	(the best in 0.0%)
SPT_MCT	1.08	1.84	(± 0.61)	3.43	(the best in 4.0%)
SRPT_MCT	1.09	1.87	(± 0.59)	3.38	(the best in 0.0%)
SWRPT_MCT	1.08	1.88	(± 0.59)	3.38	(the best in 2.0%)

MPI experiments vs simulations

Simulation and Experiment results – Summary

- CBS3M performs very well for max-stretch (best results in all cases, average ratio to the theoretical fluid optimal: 1.3, worst case: 2)
- CBS3M performs also well for other metrics: makespan, max-flow, (sum-stretch, sum-flow)
- Explanation: makes good use of the platform (like MWMA) and is aware of the priorities/deadlines (like SWRPT)
- Simulation/Experiments close enough: average relative deviation 8.9%, median 5.5%

Outline

Introduction

With a single bag-of-task application

Several bag-of-task applications: Offline case

Discussion on models

Several bag-of-task applications: Online case

Simulations and Experiments

Conclusion

Conclusion

Key points:

- Realistic platform model
- Optimal offline algorithm (asymptotically optimal in the one-port model)
- Efficient online algorithm based on offline study

(日)

40/40

Extensions:

- Extend the simulation to larger platform
- Bi-criteria
- Robustness

► Non-negative throughputs.

$$egin{aligned} &orall 1 \leq u \leq
ho, orall 1 \leq k \leq n, orall 1 \leq j \leq 2n-1, \ &
ho_{M
ightarrow u}^{(k)}(t_j,t_{j+1}) \geq 0 \ ext{and} \ &
ho_u^{(k)}(t_j,t_{j+1}) \geq 0. \end{aligned}$$

► Non-negative buffers.

$$\forall \ 1 \leq k \leq n, \forall 1 \leq u \leq p, \forall 1 \leq j \leq 2n,$$

$$B_u^{(k)}(t_j) \geq 0. \quad (2)$$

Physical constraints

Bounded link capacity.

 $\forall 1 \leq j \leq 2n-1, \forall 1 \leq u \leq p,$

$$\sum_{k=1}^{n} \rho_{M \to u}^{(k)}(t_{j}, t_{j+1}) \frac{\delta^{(k)}}{b_{u}} \leq 1. \quad (3)$$

Limited sending capacity of master.

$$\forall 1 \leq j \leq 2n-1$$

 $\forall 1$

$$\sum_{u=1}^{p}\sum_{k=1}^{n}\rho_{M\to u}^{(k)}(t_{j},t_{j+1})\frac{\delta^{(k)}}{\mathcal{B}}\leq 1. \quad (4)$$

Bounded computing capacity.

$$\leq j \leq 2n-1, orall 1 \leq u \leq p,$$

 $\sum_{k=1}^{n}
ho_{u}^{(k)}(t_{j}, t_{j+1}) rac{w^{(k)}}{s_{u}^{(k)}} \leq 1.$ (5)

Buffer constraints

Buffer initialization.

 $\forall \ 1 \leq k \leq n, \forall 1 \leq u \leq p,$

$$B_u^{(k)}(r^{(k)}) = 0.$$
 (6)

Emptying Buffer.

 $\forall \ 1 \leq k \leq n, \forall 1 \leq u \leq p,$

 $B_u^{(k)}(d^{(k)}) = 0.$ (7)

Bounded size

 $\forall 1 \leq u \leq p, \forall 1 \leq j \leq 2n,$

$$\sum_{k=1}^{n} B_{u}^{(k)}(t_{j})\delta^{(k)} \leq M_{u}.$$
 (8)

Tasks constraints

► Task conservation.

$$\forall 1 \le k \le n, \forall 1 \le j \le 2n - 1, \forall 1 \le u \le p, \\ B_u^{(k)}(t_{j+1}) = B_u^{(k)}(t_j) + (\rho_{M \to u}^{(k)}(t_j, t_{j+1}) - \rho_u^{(k)}(t_j, t_{j+1})) \times (t_{j+1} - t_j).$$
(9)

► Total number of tasks.

$$\forall \ 1 \le k \le n,$$

$$\sum_{\substack{1 \le j \le 2n-1 \\ t_j \ge r^{(k)} \\ t_{j+1} \le d^{(k)}}} \sum_{u=1}^{p} \rho_{M \to u}^{(k)}(t_j, t_{j+1}) \times (t_{j+1} - t_j) = \Pi^{(k)}.$$
(10)

$$\begin{cases} \text{find } \rho_{M \to u}^{(k)}(t_j, t_{j+1}), \rho_u^{(k)}(t_j, t_{j+1}), \\ \forall k, u, j \text{ such that } 1 \le k \le n, 1 \le u \le p, 1 \le j \le 2n - 1 \\ \text{under the constraints } (1), (2), (3), (4), (5), (6), (7), (8), (9) \text{ and } (10) \\ (K) \end{cases}$$

A given max-stretch \mathcal{S}' is achievable if and only if the Polyhedron (K) is not empty

In practice, we add a fictitious linear objective function.

• Bounded link capacity.

$$egin{aligned} &orall 1\leq j\leq 2n-1, orall 1\leq u\leq p,\ &\sum_{k=1}^n A_{M
ightarrow u}^{(k)}(t_j,t_{j+1})rac{\delta^{(k)}}{b_u}\leq \ (lpha_{j+1}-lpha_j)\mathcal{S}+(eta_{j+1}-eta_j) \end{aligned}$$

- **Bounded link capacity.**
- **•** Limited sending capacity of master.

$$\forall 1 \leq j \leq 2n-1,$$

$$\sum_{u=1}^{p} \sum_{k=1}^{n} A_{M \to u}^{(k)}(t_j, t_{j+1}) \delta^{(k)} \leq \mathcal{B} \times \left((\alpha_{j+1} - \alpha_j) \mathcal{S} + (\beta_{j+1} - \beta_j) \right)$$

- **Bounded link capacity.**
- **•** Limited sending capacity of master.
- Bounded computing capacity.

$$egin{aligned} orall 1 &\leq j \leq 2n-1, orall 1 \leq u \leq p, \ &\sum_{k=1}^n A_u^{(k)}(t_j,t_{j+1}) rac{w^{(k)}}{s_u^{(k)}} &\leq \ (lpha_{j+1}-lpha_j)\mathcal{S}+(eta_{j+1}-eta_j) \end{aligned}$$

- **Bounded link capacity.**
- **•** Limited sending capacity of master.
- Bounded computing capacity.
- Total number of tasks.

$$\forall \ 1 \leq k \leq n$$

$$\sum_{\substack{1 \le j \le 2n-1 \\ t_j \ge r^{(k)} \\ t_{j+1} \le d^{(k)}}} \sum_{u=1}^p A_{M \to u}^{(k)}(t_j, t_{j+1}) = \Pi^{(k)}$$

- Bounded link capacity.
- **•** Limited sending capacity of master.
- Bounded computing capacity.
- Total number of tasks.
- Task conservation.

$$egin{aligned} &orall \ &\leq n, orall \ &\leq j \ &\leq 2n-1, orall \ &\leq u \ &\leq p, \ & B_u^{(k)}(t_{j+1}) = B_u^{(k)}(t_j) + A_{M
ightarrow u}^{(k)}(t_j, t_{j+1}) - A_u^{(k)}(t_j, t_{j+1}) \end{aligned}$$

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.
- Total number of tasks.
- Task conservation.
- Non-negative buffer.
- Buffer initialization.
- Emptying Buffer.

- Bounded link capacity.
- Limited sending capacity of master.
- Bounded computing capacity.
- Total number of tasks.
- Task conservation.
- Non-negative buffer.
- Buffer initialization.
- Emptying Buffer.
- Bounded stretch

$$\mathcal{S}_{a} \le \mathcal{S} \le \mathcal{S}_{b} \tag{11}$$

Parameters for the MPI experiments and for the Sim(

	parameter	experiments	simulations
general	number of workers	. 8	10
	number of applications	. 12	20
arrival dates	mean of the distribution in the log space	4.0	4.0
	standard deviation in the log space	1.2	1.2
computations	maximum amount of work application (Gflops)	76.8	409
	minimum amount of work per task (Gflops)	3.1	3.1
communications	maximum amount of communication per application (MB)) 800	6,000
	minimum amount of communication per task (MB)	40	40
number of tasks	minimum number of tasks per application	. 10	20

▲ Back