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» Bags-of-tasks application
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independent tasks

large number of similar tasks

models embarrassingly parallel applications
argues for the use of wide distributed platforms

» Online scheduling

>

>

|

applications arrive at different times (release dates)
no knowledge on the future
no global makespan, try to lower the suffering of each user
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Building on our previous results

» Large number of tasks = steady-state scheduling

» designed for large applications

» suited for heterogeneous platforms, multiple applications
(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS’06)

» optimal platform utilization: throughput maximization

» neglect transient phases (initialization/clean-up)
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» Online scheduling = maximum stretch minimization

> other metrics not suited
(Minimizing the stretch when scheduling flows of biological requests, SPAA '06)
» stretch is a kind of price for sharing resources
> minimize the maximum stretch among applications:
give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory
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Simple idea to bring things together

v

Suppose we want to reach the maximum stretch S

v

For a given application, we can compute its makespan “if it
was alone”: MS

v

This gives a deadline:

deadline = release date + S x MS

v

Each application has now a release date and a deadline.

v

Dates define intervals. . .
where we can apply steady-state relaxation!
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Single bag-of-task application — context

» Master-Slave platform (heterogeneous):

Network
Links

‘Workers
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» Master-Slave platform (heterogeneous):

number of tasks: [1
computation size: w (MFIo )
communication size: s 5)

Tasks

Master
. output bandwidth B (MB/s)

bandwidth b, (MB/s)

‘Worker P,
speed s, (MFlop/s)

=
‘Workers

» Bunch of identical tasks
» Computing optimal makespan: already difficult problem

> Steady-state relaxation to get a lower bound
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Single bag-of-task application — steady-state

Motivations:
» Assume the number of tasks is huge
» Forget about makespan (meaningless)

» Concentrate on throughput (fluid framework)

How it works:

» Consider average values:
“master sends 5.3 tasks per second to worker 3"

» Write constraints on these variables

» Optimize total throughput under these constraints
(with the help of linear programming)

» Reconstruct near-optimal schedule from average values
(we skip this step for now)
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Single bag-of-task application — linear program

P pu: throughput of worker P,
MAXIMIZE p = Z’O“ p: Total throughput
u=1
SUBJECT TO
WPy py— < 1
Su
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Single bag-of-task application — linear program

P pu: throughput of worker P,
MAXIMIZE p = ZPU p: Total throughput
u=1
SUBJECT TO
w
VPy, pu? <1 Analytical solution
u
)
VP 9 0 S 1 B P b
! pubu p:min{,Zmin{su,“}
) w' w
P 5 u=1
ZPUE <1
u=1
Estimated makespan (lower bound):
number of tasks Mn

B optimal throughput - p
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Several bag-of-task applications: Offline case

10/40



Offline multi-application — framework

For each application k (task of sizes W(k), 5(")), we have:

» a release date

> an estimated makespan MS*(%) (lower bound)

We try to reach stretch S:

» deadline:

deadline®) = release date®) + & x MS*(K)
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Time-intervals for target stretch

If we try to reach stretch S = 2:
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Time-intervals for target stretch

If we try to reach stretch S = 2:

time-interval

. without change_. ; . ¢
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Resolution for a target stretch S

New variables:
» communication throughput ps\l/(,)_)u(tj, tjit1)

» computation throughput ,of,k)(tj, tit1)
» state of buffers: BL(,k)(tJ-)
(number of non-executed tasks at time t;)

New constraints:

» Complex (but straightforward) conservation laws between
throughputs and buffer state

» Assert that all tasks of an application are treated.
» Resource limitations
Set of linear constraints, defining a convex K(S).

K(S) non-empty < S feasible
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Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

» Basic binary search (with precision €), or

» Involved search among stretch-intervals:

d(S) = ) 4 8 x Ms*(k).

d

S =1 >

t
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Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

» Basic binary search (with precision €), or

» Involved search among stretch-intervals:

r

dX(8) = r) + & x Ms*(K)
n

r3

- no dates crossing
- linear evolution
Ss
Ss
S3
S
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~» quadratic constraints ®

» Switch from throughput to amount variables:
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Binary search between stretch-interval

v

Consider a stretch-interval between two critical values [S,; Sp]

Deadlines have a linear evolution

v

v

Everything is linear 7 Not really:
when computing what receives a buffer during a time-interval:

P%Lu(tja tj—&-l) X (Tend - Tstart)

Tends Tstart: linear function in S
~» quadratic constraints ®

» Switch from throughput to amount variables:
k k
AL (5, ta) = L (8 ) X (1 — &)
k k
A, t01) = p(E 1) X (41 — 1)

v

All the constraints are once again linear ©
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Discussion on models

» Which communication/computation model have we been
using from the beginning 7

» My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

» No! no schedule reconstructed from the linear programs @

» Solution of a linear program : fluid throughput pf,k), assumes

> time-sharing for communication and computation
» “Synchronous Start” for communication and computation

» Nice model for scheduling, but far from reality:

» No data dependency (!)
» Concurrent applications
» Perfect time-sharing for computation and communication (!)

» We have to come back to the “reality”
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One-dimensional load-balancing

» General fluid schedule with rate «y for application k

» task of application k takes time tx at full speed

fluid schedule

atomic schedule

time

At each step, choose application which minimize

ty
1) x —
(nk +1) o
nk: number of task from application k already scheduled
[m] = = =
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Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

termination of T in fluid schedule

fluid schedule

atomic schedule

T time

termination of T in atomic schedule
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Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

Construction of 1D-inv schedule from a fluid schedule (M:
Makespan):

1. Reverse the time: t~ M — t
2. Apply 1D algorithm

3. Reverse the time once again

Lemma (1D-inv).
In the 1D-inv schedule, a task does not start earlier than in the
fluid schedule, and 1D-inv has a makespan < M.
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Back to the one-port model

From a fluid schedule (of communications and computations):

1. Round every quantities down to integer values

2. Shift all computations by one task (to cope with
dependencies)

3. Apply 1D algorithm to communications
— communications finish in time

4. Apply 1D-inv algorithm to computations
— computations do not start in advance

Results:
» We guarantee that data dependencies are satisfied

» Some tasks may be forgotten

20/40



Back to the one-port model

Bound on the number of tasks not sent to P, at time d:
» one per time-interval because of rounding

Time needed to send the remaining tasks:

%L L6
by

u=1

Bound on the number of tasks not processed at P, at time d:
» one per time-interval because of rounding (communications)
> one per time-interval because of rounding (computations)

» one because of shifting

Time needed to process these tasks:

(2L 4+ 1)w()
EQ
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Back to the one-port model

Maximum delay for application Ag:

. Lké(k)+ . (2L + 1wk

lateness(K) < ax
- by 1<u<n Sl(lk)

u=1
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Back to the one-port model: Asymptotic optimality

We introduce the granularity g:

nx)

. g » g — 0: many small tasks
wéEr ) = g x wih (Divisible Load)

5 = g x sk

» g = 1: no changes
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k
nék) _ n » g = 1: no changes
g » g — 0: many small tasks
(k) (k)
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5 = g x sk

Theorem.

k)—>0

g—0

Iateness

When the granularity of the application gets smaller (many small
tasks), the one-port makespan gets closer to the fluid makespan.
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Back to the one-port model: Asymptotic optimality

We introduce the granularity g:

nék) _ T » g = 1: no changes
. g » g — 0: many small tasks
W = g xwk (Divisible Load)
Theorem.

lateness) — 0
g—0

When the granularity of the application gets smaller (many small
tasks), the one-port makespan gets closer to the fluid makespan.
In practice:

» 1D schedule for communications

» Earliest Deadline First for computations
23/40
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Several bag-of-task applications: Online case
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Online multi-application — framework

» No available information about future submission

» Information for application k available at release date r(k)

Adaptation:

» Consider only available information (already submitted
applications)

» Restart offline algorithm at each release date (with updated
information)

» online heuristic named CBS3M-online

> we also test the offline algorithm: CBS3M-offline
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Online multi-application — framework

Classical heuristics to prioritize applications:

» First In First Out (FIFO)

» Shortest Processing Time (SPT)

» Shortest Remaining Processing Time (SRPT)

» Shortest Weighted Remaining Processing Time (SWRPT)
(x heuristic to chose workers: RR, MCT or DD)

Previous heuristics do not mix applications,
» Master-Worker Multi-Application (MWMA)

(previous work, designed for simultaneous submissions)
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Simulations and Experiments
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Simulation and Experiment Settings

Experiments:
» GDSDMI cluster (8 workers)
» MPI communications

» Artificially slow-down communication and/or computations to
emulate heterogeneity

Simulation:
» SimGrid simulator
» Two scenarios:

1. simulate MPI experiments
2. extensive simulations with larger applications

28/40



Simulations results
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Simulations results — variation with load
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Gantt chart example: FIFO + RR
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Gantt chart example: SRPT + MCT
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Gantt chart example: CBS3M + EDF (online)
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Simulations results — other metrics

Sum-stretch
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» CBSSM within 30-40%
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Simulations results — other metrics

Makespan
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Simulations results — other metrics
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Simulations results — other metrics

Sum-flow
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MPI experiments results
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MPI experiments results

Algorithm minimum average (&£ stddev) maximum (fraction of best result)
CBS3M_EDF_OFFLINE 1.04 1.30 (£ 0.13) 1.63 (the best in 38.0%)
CBS3M_EDF_ONLINE 1.02 1.41 (£ 0.30) 2.09 (the best in 30.0%)
CBS3M_FIFO_OFFLINE 1.04 1.38 (£ 0.28) 2.97 (the best in 12.0%)
CBS3M_FIFO_ONLINE 1.02 1.46 (£ 0.26) 1.96 (the best in 6.0%)

FIFO_MCT 1.10 1.81 (& 0.60) 415 (the best in 4.0%)

FIFO_RR 1.35 4.99 (& 3.46) 19.50 (the best in 0.0%)

MWMA_MS 1.22 2.29 (£ 0.56) 4.05 (the best in 0.0%)
MWMA_NBT 1.13 1.50 (£ 0.17) 2.06 (the best in 4.0%)
SPT_DD 1.33 4.87 (&£ 3.10) 18.75 (the best in 0.0%)
SPT_MCT 1.08 1.84 (£ 0.61) 3.43 (the best in 4.0%)
SRPT_MCT 1.09 1.87 (£ 0.59) 3.38 (the best in 0.0%)
SWRPT_MCT 1.08 1.88 (£ 0.59) 3.38 (the best in 2.0%)
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MPI experiments vs simulations

0.14
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frequency (%)

0 10 20 30 40 50 60 70
relative deviation (%)

» average difference: 8.9%

. S |Sexp_ simu| . 0

Relative deviation: — s » standard deviation: 9.5%
exp

» median value: 5.5%
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Simulation and Experiment results — Summary

» CBS3M performs very well for max-stretch (best results in all
cases, average ratio to the theoretical fluid optimal: 1.3, worst
case: 2)

» CBS3M performs also well for other metrics: makespan,
max-flow, (sum-stretch, sum-flow)

» Explanation: makes good use of the platform (like MWMA)
and is aware of the priorities/deadlines (like SWRPT)

» Simulation/Experiments close enough: average relative
deviation 8.9%, median 5.5%
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Conclusion
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Conclusion

» Key points:
» Realistic platform model
» Optimal offline algorithm
(asymptotically optimal in the one-port model)
» Efficient online algorithm based on offline study

» Extensions:

» Extend the simulation to larger platform
» Bi-criteria
» Robustness
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Positive values

» Non-negative throughputs.

Vi<u<pVi<k<nVl<j<2n-1,
(k

» Non-negative buffers.

V1i<k<nVi<u<pVl<j<2n,

pM)—>u(tja tir1) >0 and ng)(tja tiy1) > 0.

(1)



Physical constraints

» Bounded link capacity.

Vi<j<2n-1,V1<u<p,

n 5
> At 1) 5 <
» Limited sending capacity of master.

Vi<j<2n-1,
n 500

M\:

u=1 k=1
» Bounded computing capacity.

Vi<j<2n—-1,V1<u<p,

n (k)
w
E P(uk)(tj, tin) =y <
S0
k=1 u

pMﬁu (4, tﬁrl)? <L

()



Buffer constraints

» Buffer initialization.

V1i<k<nVli<u<p,

B (ry = 0.

» Emptying Buffer.

V1<k<nVli<u<p,

B (d* ) = 0.

» Bounded size

V1< u<p,V1l<j<2n,



Tasks constraints

» Task conservation.

V1<k<nVli<j<2n—-1,V1<u<p,

B (t41) = BY (1) + (o) o (4, ti1

» Total number of tasks.

V1<k<n,

Z Z pM—>u

1<j<2n—-1 u=1
tj > r(k)
ti1 < dW

)= (L, ti1)) % (t+1—17).

(9)

1) % (41 — ) = W, (10)



Polyhedron

. k k

find psvl)—m(tja tj—‘rl)vpgl )(tjv tj+1)’

Vk,u,jsuchthat 1 < k<nl<u<p1<;j<2n-1

under the constraints (1), (2), (3), (4), (5), (6), (7), (8), (9) and (10)

(K)

A given max-stretch S’ is achievable if and only if the
Polyhedron (K) is not empty

In practice, we add a fictitious linear objective function.



New constraints

» Bounded link capacity.

Vi<j<2n—1,V1<u<np,

5(k)
ZAMéu tj+1) 5 = < (a1 — )8 + (Bj+1 — B))



New constraints

» Bounded link capacity.

» Limited sending capacity of master.
Vl<j<2n-1,

Z ZAMHU ti11)6%) < B x ((aj11 — a;)S + (Bi11 — B)))

u=1 k=1



New constraints

» Bounded link capacity.
» Limited sending capacity of master.

» Bounded computing capacity.

Vi<j<2n—1,V1<u<np,

W(k)
ZA (tj, tj1) o < (j+1 = @))S + (B

- 5)



New constraints

» Bounded link capacity.
» Limited sending capacity of master.
» Bounded computing capacity.

» Total number of tasks.

V1<k<n,

P
> DA ) =W

1<j<2n—1 u=1

tp > k)

tin < d



New constraints

Bounded link capacity.

Limited sending capacity of master.

>
>
» Bounded computing capacity.
» Total number of tasks.

>

Task conservation.

Vi<k<nVli<j<2n—1V1<u<p,

k
B (ti11) = BY(t) + AL, (1, ti1) — AV (4, t41)



New constraints

vV V. vV VvV VY

v

v

Bounded link capacity.

Limited sending capacity of master.
Bounded computing capacity.

Total number of tasks.

Task conservation.

Non-negative buffer.

Buffer initialization.

Emptying Buffer.



New constraints

vV V. vV VvV VY

v

v

Bounded link capacity.

Limited sending capacity of master.
Bounded computing capacity.

Total number of tasks.

Task conservation.

Non-negative buffer.

Buffer initialization.

Emptying Buffer.

Bounded stretch



Parameters for the MPI experiments and for the Sim(

parameter experiments simulations
general number of workers. ... ... .. 8 10
number of applications . 12 20
arrival dates mean of the distribution in the log space................. 4.0 4.0
standard deviation in the log space ...................... 1.2 1.2
computations maximum amount of work application (Gflops . 76.8 409
minimum amount of work per task (Gflops).............. 3.1 3.1
communications maximum amount of communication per application (MB) 800 6,000
minimum amount of communication per task (MB) 40 40
number of tasks minimum number of tasks per application......... 10 20
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