
A realistic network/application model
for scheduling divisible loads on large-scale platforms

L. Marchal1, Y. Yang2, H. Casanova2,3 and Y. Robert1

1: Laboratoire LIP, CNRS-INRIA, École Normale Supérieure de Lyon, France

{Loris.Marchal,Yves.Robert}@ens-lyon.fr
2: Dept. of Computer Science and Engineering 3: San Diego Supercomputer Center

University of California, San Diego, USA

{casanova,yangyang}@cs.ucsd.edu

Abstract

Divisible load applications consist of an amount of
data and associated computation that can be divided arbi-
trarily into any number of independent pieces.Thismodel
is a good approximation of many real-world scientific ap-
plications, lends itself to a natural master-worker imple-
mentation, and has thus received a lot of attention. The
issue of divisible load scheduling has been studied exten-
sively. However, only a few authors have explored the si-
multaneous scheduling of multiple such applications on a
distributed computing platform.We focus on this increas-
ingly relevant scenario and make the following contribu-
tions. We use a novel and more realistic platform model
that captures some of the fundamental network properties
of grid platforms. We formulate the steady-state multi-
application scheduling problem as a linear program that
expresses a notion of fairness between applications. This
scheduling problem is NP-complete and we propose sev-
eral heuristics that we evaluate and compare via extensive
simulation experiments. Ourmain finding is that some of
our heuristics can achieve performance close to optimal
and we quantify the trade-offs between achieved perfor-
mance and heuristic complexity.

1. Introduction

A divisible load application [11] consists of an
amount of computation, or load, that can be divided
into any number of independent pieces. This corre-
sponds to a perfectly parallel job: any sub-task can it-
self be processed in parallel, and on any number of
workers. The divisible load model is a good approx-

This paper is based upon work supported by the National Sci-
ence Foundation under Grant No. 0234233.

imation for applications that consist of large num-
bers of identical, low-granularity computations, and
has thus been applied to a large spectrum of scien-
tific problems in areas including image processing,
volume rendering, bioinformatics, and even data min-
ing. For further information on the model, we refer
the reader to [12, 27, 20].

Divisible load applications are amenable to the sim-
ple master-worker programming model and can there-
fore be easily implemented and deployed on computing
platforms ranging from small commodity clusters to
computational grids. The main challenge is to schedule
such applications effectively. However, large-scale plat-
forms are not likely to be exploited in a mode dedicated
to a single application. Furthermore, a significant por-
tion of the mix of applications running on grid plat-
forms are divisible load applications. At the extreme, a
grid such as the CDF Analysis Farms (CAF) [14] sup-
ports the concurrent executions of applications that are
almost all divisible load applications. Therefore, it is
critical to investigate the scheduling of multiple divisi-
ble loads applications that are executed simultaneously
and compete for CPU and network resources.

A first analysis of the concurrent execution of mul-
tiple divisible load applications is provided in [10]. The
authors target a simple platform composed of a bus
network connecting a single master processor to a col-
lection of heterogeneous worker processors. In [30] the
authors introduce a (virtual) producer-consumer archi-
tecture where several masters are fully connected to
a heterogeneous worker processors. The authors de-
scribe a strategy for balancing the total amount of
work among the workers. Unfortunately, the results
are mostly of theoretical interest as it is assumed that
masters and workers can communicate with unlimited
numbers of concurrent messages, which is unlikely to
hold in practice. In [31], the authors discuss how to ap-

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

ply divisible load theory to grid computing. They dis-
cuss master-worker computation in which the workers
are assumed to be only limited by their own network
bandwidth and never by internet bandwidth. This as-
sumption does not hold in general.

Primergy

Primergy

backbone link

router

front end

cluster

Figure 1. Sample large-scale platform model.

Our contributions are as follows: (i) we propose a
new model for deploying and scheduling multiple di-
visible load applications on large-scale computing plat-
forms, which is significantly more realistic than mod-
els used in previous work; (ii) we formulate a relevant
multi-application steady-state divisible load scheduling
problem, which expresses a notion of fairness among
applications, and which is NP-complete; (iii) we pro-
pose several polynomial heuristics that we evaluate
and compare via extensive simulations. In our model,
the target platform consists of a collection of clus-
ters in geographically distributed institutions, inter-
connected via wide-area networks, as seen in Figure 1.
The key benefit of this model is that it takes into
account both the inherent hierarchy of the platform
and the bandwidth-sharing properties of specific net-
work links. In addition to the new platform model,
we adopt a new scheduling objective. Rather than
minimizing total application execution time (i.e., the
“makespan”), our goal is to maximize the throughput
in steady-state mode, i.e., the total load executed per
time-period. There are three main reasons for focus-
ing on the steady-state operation. First is simplicity,
as the steady-state scheduling is really a relaxation of
the makespan minimization problem in which the ini-

tialization and clean-up phases are ignored. One only
needs to determine, for each participating resource,
which fraction of time is spent computing for which
application, and which fraction of time is spent com-
municating with which neighbor; the actual schedule
then arises naturally from these quantities. Second is
efficiency, as steady-state scheduling provides, by defi-
nition, a periodic schedule, which is described in com-
pact form and is thus possible to implement efficiently
in practice. Third is adaptability : because the sched-
ule is periodic, it is possible to dynamically record the
observed performance during the current period, and
to inject this information into the algorithm that will
compute the optimal schedule for the next period. This
makes it possible to react on the fly to resource avail-
ability variations.

2. Platform and Application Model

Our platform model (see Figure 1) consists of a col-
lection of clusters that are geographically distributed
over the internet. Each cluster is equipped with a
“front-end” processor [11], which is connected to a local
router via a local-area link of limited capacity. These
routers are used to connect each cluster to the inter-
net. We model the interconnection of all the routers in
our platform as a graph of internet backbone links.

sk

sl

gk

gl

b3

b1

Lk,l

b2

Ck

Ck
master

Ck
router

C l
router

C l
master

C l

Figure 2. Notations for the platform model.

The inter-cluster graph, denoted as Gic = (R,B), is
composed of routers (the nodes in R) and backbone
links (the edges in B). There are b = |B| backbone
links, l1, . . . , lb. For each link we have two parameters:
bw(li), the bandwidth available for a new connection,
and max-connect(li), the maximum number of connec-
tions (in both directions) that can be opened on this
link by our applications. The model for the backbones
is as follows. Each connection is granted at most a fixed
amount of bandwidth equal to bw(li), up to the point
where a maximum number of connections are simulta-
neously opened, at which point no more connection can
be added. This model is justified by the bandwidth-
sharing properties observed on wide-area links: when

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

such a link is a bottleneck for an end-to-end TCP flow,
several extra flows can generally be opened on the same
path and they each receive the same amount of band-
width as the original flow. This behavior can be due
to TCP itself (e.g., congestion windows), or to the fact
that the number of flows belonging to a single appli-
cation is typically insignificant when compared to the
total number of flows going through these links. This
property is often exploited by explicitly opening paral-
lel TCP connections (e.g. in the GridFTP project [1])
and we have observed it in our own measurements [15].
The constraint imposed on the number of allowed con-
nections makes it possible to limit the network usage
of applications, which is a likely requirement for fu-
ture production grid platforms with many applications
and users competing for resources.

Compute resources consist of K clusters Ck, 1 ≤ k ≤
K. In full generality, we should represent each Ck as
a node-weighted edge-weighted graph Gk = (Vk, Ek),
but we simplify the model. For each cluster Ck, we only
retain Ck

master, the front-end processor, which is con-
nected to Ck

router, one of the routers in R. The idea
is that Ck

master represents the cumulated power of the
computing resources in the cluster Ck (as shown in
Figure 2). This amounts to assuming that the archi-
tecture of the cluster is a star-shaped network, whose
center is the front-end processor Ck

master. It is known
that, for the purpose of running divisible load appli-
cations, Ck

master and the leaf processors are together
“equivalent” to a single processor whose speed sk can
be determined as in [26, 4, 2]. In fact, it has also been
shown that a tree topology is equivalent to a single pro-
cessor [4, 3, 5], and thus our model encompasses cases
in which the local-area network in each institution is
structured as a tree. Consequently, we need only two
parameters to characterize each cluster: sk, the cumu-
lated speed of Ck including Cmaster and the cluster’s
processors, and gk, the bandwidth of the link connect-
ing Ck

master to Ck
router. This link is modeled as follows:

any number of connections may share the link, but they
each receive a portion of the total available bandwidth,
and the sum of these portions cannot exceed gk, which
is known to be a reasonable model for local-area links.
Note that this link may correspond to several local area
physical links.

Finally, we assume that the routing between clus-
ters is fixed. The routing table contains an ordered list
Lk,l of backbone links for a connection from cluster Ck

to cluster Cl, i.e., from router Ck
router to router Cl

router.
As shown in Figure 2, some intermediate routers may
not be associated to any cluster. Also, no specific as-
sumption is made on the interconnection graph. Our
model uses realistic bandwidth assignments: we deter-

mine the bottleneck link for each end-to-end connec-
tion and use the bandwidth-sharing properties of this
link (either local-area or backbone) to determine the
amount of bandwidth allocated to each connection.

To the best of our knowledge, this model is the
first attempt at modeling relatively complex network
topologies along with realistic bandwidth-sharing prop-
erties for the purpose of large-scale application schedul-
ing research.

3. Steady-State Scheduling of Multiple
Applications

The steady-state approach was pioneered by Bertsi-
mas and Gamarnik [8]. Steady-state scheduling allows
to relax the scheduling problem The key idea is to char-
acterize the activity of each resource during each time-
unit: which (rational) fraction of time is spent com-
puting for which application, which fraction of time
is spent receiving or sending to which neighbor. Such
activity variables are used to construct a linear pro-
gram that characterizes the global behavior of the sys-
tem. Once each activity variable has been computed,
the periodic schedule is known: we simply scale the ra-
tional values to obtain integer numbers, and the length
of the period of the schedule is determined by this scal-
ing.

3.1. Steady-State Equations

We consider K divisible load applications, Ak, 1 ≤
k ≤ K, with cluster Ck initially holding all the in-
put data necessary for application Ak. For each ap-
plication we define a “priority factor”, πk, that quan-
tifies its relative worth. For instance, computing two
units of load per time unit for an application with pri-
ority factor 2 is as worthwhile/profitable than comput-
ing one unit of load for an application with priority fac-
tor 1. This concept makes it possible to implement no-
tions of application priorities for resource sharing. We
can easily refine the priority model and define πk,l as
the priority factor to execute a fraction of application
Ak onto cluster Cl. Similarly, our method is easily ex-
tensible to the case in which more than one application
originates from the same cluster. We start with the fol-
lowing three definitions:

wk and δk (load unit size for Ak) – The divisi-
ble applications may be of different types. For in-
stance one application may deal with files and
another with matrices. We divide each applica-
tion into load units (a file, or a matrix). We let wk

be the amount of computation required to pro-
cess a load unit for application Ak. Similarly, δk

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

is the size (in bytes) of a load unit for applica-
tion Ak.

αk,l (fraction of Ak executed by Cl) – Each clus-
ter Ck initially holds input data for application
Ak. Within a time-unit, Ck will devote a fraction
of the time to process load units for application
Ak. But cluster Ck can also be used to process
loads that originates from another cluster Cl, i.e.,
from application Al. Reciprocally, portions of ap-
plication Ak may be executed by other clusters.
We let αk,l be the portion of load for application
Ak that is sent by Ck and computed on cluster Cl

within a time-unit. αk,k denotes the portion of ap-
plication Ak which is executed on the local clus-
ter.

βk,l (connections from Ck to Cl) – Cluster Ck

opens βk,l network connections to send the por-
tion αk,l of application Ak that is destined to
cluster Cl.

With the above definitions, it takes αk,l.wk

sl
time-

units to process αk,l load units of application Ak on
cluster Cl. Similarly, it takes αk,l.δk

gk,l
time-units to send

αk,l load units of application Ak along a single network
connection from router Ck

router to router Cl
router, where

gk,l is the minimum bandwidth available for one con-
nection on a route from cluster Ck to cluster Cl, i.e.
gk,l = min

li∈Lk,l

{bw(li)}.
The first steady-state equation states that a cluster

Ck cannot compute more load units per time unit than
allowed by its speed sk:

∀Ck,
∑

l

αl,k · wl ≤ sk (1)

With steady-state scheduling we do not need to de-
termine the precise ordering in which the different load
types are executed by Ck: instead we take a macro-
scopic point of view and simply bound the total amount
of load processed every time-unit.

The second steady-state equation bounds the
amount of load that requires the use of the se-
rial link between cluster Ck and the external world,
i.e., between Ck

master and Ck
router:

∀Ck,
∑
l �=k

αk,l · δk︸ ︷︷ ︸
(outgoing data)

+
∑
j �=k

αj,k · δj︸ ︷︷ ︸
(incoming data)

≤ gk (2)

This equation states that the available bandwidth
gk is not exceeded by the requirements of all the traf-
fic outgoing from and incoming to cluster Ck. Note
that we assume that the time to execute a portion of
an application’s load, or to communicate it along a se-
rial link, is proportional to its size in number of load

units: this amounts to fixing the granularity and to ma-
nipulating load units. Start-up costs could be included
in the formulas, but at the price of technical difficul-
ties: only asymptotic performance can be assessed in
that case [6].

Next we must bound the utilization of the backbone
links. Our third equation states that on each backbone
link li, there should be no more than max-connect(li)
opened connections:∑

{k,l}, li∈Lk,l

βk,l ≤ max-connect(li) (3)

The fourth equation states that there is enough band-
width on each path from a cluster Ck to a cluster Cl:

αk,l · δk ≤ βk,l × gk,l. (4)

The last term gk,l in Equation 4 was defined earlier as
the bandwidth allotted to a connection from Ck to Cl.
This bandwidth is simply the minimum of the bw(li),
taken over all links li on the path from Ck to Cl. We
multiply this bandwidth by the number of opened con-
nections to derive the constraint on αk,l.

Finally there remains to define an optimization cri-
terion. Let αk =

∑K
l=1 αk,l be the load processed for

application Ak per time unit. To achieve a fair bal-
ance of resource allocations one could execute the same
number of load units per application, and try to max-
imize this number. However, some applications may
have higher priorities than others, hence the introduc-
tion of the priority factors πk in the objective function:

Maximize min
k

{
αk

πk

}
. (5)

This maximization corresponds to the well-known
MAX-MIN fairness strategy [7] between the differ-
ent loads, with coefficients 1/πk, 1 ≤ k ≤ K. The
constraints and the objective function form a lin-
ear program:

Maximize mink

{
αk

πk

}
,

under the constraints

(6a) ∀Ck,
∑

l

αk,l = αk

(6b) ∀Ck,
∑

l

αl,k · wl ≤ sk

(6c) ∀Ck,
∑
l �=k

αk,l · δk +
∑
j �=k

αj,k · δj ≤ gk

(6d) ∀i,
∑

Lk,l�li

βk,l ≤ max-connect(li)

(6e) ∀k, l, αk,l · δk ≤ βk,l · gk,l

(6f) ∀k, l, αk,l ≥ 0
(6g) ∀k, l, βk,l ∈ N

(6)

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

This program is mixed as the αk,l are rational num-
bers but the βk,l are integers. Given a platform P and
computational priorities (π1, . . . , πK), we define a valid
allocation for the steady-state mode as a set of values
(α, β) such that Equations (6) are satisfied. Since this
program involves integer variables there is little hope
that an optimal solution could be computed in polyno-
mial time. It turns out that this is an NP-hard prob-
lem, and we refer the reader to a technical report for a
formal proof [25].

3.2. Reconstructing a Periodic Schedule

Once one has obtained a solution to the linear pro-
gram defined in the previous section, say (α, β), one
needs to reconstruct a (periodic) schedule, that is a
way to decide in which specific activities each compu-
tation and communication resource is involved during
each period. This is straightforward because the divis-
ible load applications are independent of each other.
We express all the rational numbers αk,l as αk,l = uk,l

vk,l
,

where the uk,l and the vk,l are relatively prime integers.
The period of the schedule is set to Tp = lcmk,l(vk,l).
In steady-state, during each period of length Tp:

• Cluster Ck computes, for each non-zero value of
αl,k, αl,k · Tp load units of application Al. If l = k
the data is local, and if k �= l, the data cor-
responding to this load has been received dur-
ing the previous period. These computations are
executed in any order. Equation 1 ensures thatP

l αl,k·wl·Tp

Tp
≤ sk, hence Ck can process all its

load.

• Cluster Ck sends, for each non-zero value of αk,l,
αk,l ·δk ·Tp load units of application Ak, to be pro-
cessed by cluster Cl during the next period. Sim-
ilarly, it receives, for each non-zero value of αj,k,
αj,k · zcj · Tp load units for application Aj , to be
processed locally during the next period. All these
communications share the serial link, but Equa-
tion 2 ensures that

P
l �=k αk,l·δk·Tp+

P
j �=k αj,k·δj ·Tp

Tp
≤

gk, hence the link bandwidth is not exceeded.

Obviously, the first and last period are different: no
computation takes place during the first period, and
no communication during the last one. Altogether, we
have a periodic schedule, which is described in com-
pact form: we have a polynomial number of intervals
during which each processor is assigned a given load
for a prescribed application.

4. Heuristics

We propose several heuristics to solve our schedul-
ing problem. We first propose a greedy heuristic, and
then heuristics that are based on the rational solution
to the mixed linear program derived in Section 3.

4.1. Greedy Heuristic

Our greedy heuristic, which we simply call G, al-
locates resources to one of the K applications in a
sequence of steps. More specifically, at each step the
heuristic (i) selects an application Ak; (ii) determines
on which cluster Cl the work will be executed (locally if
l = k, on some remote cluster otherwise); and (iii) de-
cides how much work to execute for this application.
The intuition for how these choices can be made is as
follows:

• One should select the application that has received
the smallest relative share of the resource so far,
that is the one for which αk/πk is minimum, where
αk =

∑
l αk,l. Initially, αk = 0 for all k, so one

can break ties by giving priority to the applica-
tion with the highest priority factor πk.

• Compare the payoff of computing on the local clus-
ter with the payoff of opening one connection to
each remote cluster. Choose the most profitable
cluster, say Cl.

• Allocate an amount of work that does not over-
load Cl so that it will not be usable by other ap-
plications.

The greedy heuristic, which we denote by G, is formal-
ized as follows:

1. Let L = {C1, . . . , CK}. Initialize all αk,l and βk,l

to 0.
2. If L is empty, exit.
3. Select application – Sort L by non-decreasing

values of
(

αk

πk

)
. Break ties by choosing the appli-

cation with larger priority first. Let k be the index
of the first element of L. Select Ak.

4. Select cluster – For each cluster Cm where
m �= k, compute the work (i.e., number of load
units for Ak) that can be executed using a single
connection: benefitm = min

{
gk

δk
,

gk,m

δk
, gm

δk
, sm

wk

}
.

Locally, one can achieve benefitk = sk

wk
. Select

Cl, 1 ≤ l ≤ K so that benefitl is maximal. If
benefitl = 0 (i.e., no more work can be executed),
then remove Ck from list L and go to step 2.

5. Determine amount of work – If
k �= l (remote computation), allocate
alloc = benefitl units of load to cluster Cl.
If k = l (local computation), allocate only

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

alloc = maxm�=k

{
min

{
gk

δk
,

gk,m

δk
, gm

δk
, sm

wk

}}
units

of load. This quantity is the largest amount that
could have been executed on Ck for another ap-
plication and is used to prevent over-utilization
of the local cluster early on in the scheduling pro-
cess.

6. Update variables –
• Decrement speed of target cluster Cl:

sl ← sl − alloc.wk

• Allocate work: αk,l ← αk,l + alloc
• In case of a remote computation (if k �= l)

update network characteristics:

∀li ∈ Lk,l,
max-connect(li) ← max-connect(li) − 1

gk ← gk − alloc.δk, gl ← gl − alloc.δk,
βk,l ← βk,l + 1

7. Go to step 2.

4.2. LP-Based Heuristics

The linear program given in Section 3 is a mixed in-
teger/rational numbers linear program since the vari-
ables βk,l take integer values and variables αk,l may
be rational. This mixed LP (MLP) formulation gives
an exact optimal solution to the scheduling problem,
while a rational LP formulation allows rational βk,l and
gives an upper bound of the optimal solution. As solving
a mixed linear program is known to be hard, we pro-
pose several heuristics based on the relaxation of the
problem: we first solve the linear program over the ra-
tional numbers with a standard method (e.g., the Sim-
plex algorithm). We then try to derive a solution with
integer βk,l from the rational solution.

4.2.1. LPR: Round-off The most straightforward
approach is to simply round rational βk,l values to the
largest smaller integer. Formally, if (α̃k,l, β̃k,l) is a ra-
tional solution to the linear program, we build the fol-
lowing solution:

∀k, l, β̂k,l = �β̃k,l�, α̂k,l = min

{
α̃k,l,

�β̃k,l� · gk,l

δk

}
.

With these new values, we have β̂k,l ≤ β̃k,l and α̂k,l ≤
α̃k,l for all indices k, l. Furthermore, (α̂, β̂) is a valid
solution to the mixed linear program (6) in which all
β̂k,l take integer values. We label this method LPR.

4.2.2. LPRG: Round-off + Greedy Rounding
down all the βk,l variables with LPR may lead to a
very poor result as the remaining network capacity is
unutilized. The LPRG heuristic reclaims this residual

capacity by applying the technique described in Sec-
tion 4.1. Intuitively, LPR gives the basic framework of
the solution, while the Greedy heuristic refines it.

4.2.3. LPRR: Randomized Round-off Relaxing
an integer linear program into rational numbers is a
classical approach, and several solutions have been pro-
posed. Among them is the use of randomized approxi-
mation. In [21, chapter 11] Motwani, Naor and Ragha-
van propose this approach to solve a related prob-
lem, the multicommodity flow problem. Using Cher-
noff bounds, they prove that their algorithm leads, with
high probability, to a feasible solution that achieves
the optimal throughput. Although this theoretical re-
sult seems attractive, it has some drawbacks for our
purpose. First, our problem is not a multicommodity
flow problem: instead of specifying a set of flow capac-
ities for between node pairs, we have global demands
for the sum of all flows leaving each node (representing
the total amount of work sent by this node). Second, to
obtain their optimality result, the authors in [21, chap-
ter 11] rely on the assumption that the capacity of each
edge is not smaller than a bound (5.2 × ln(4m) where
m is the number of edges), and we do not have a simi-
lar property here. Third, there are two cases of failure
in the randomized algorithm (even though the proba-
bility of such failures is proved to be small): either the
algorithm provides a solution whose objective function
is suboptimal (which is acceptable), or it provides a so-
lution which does not satisfy all the constraints (which
is not acceptable).

Coudert and Rivano proposed in [18] a rounding
heuristic based on the method of [21, chapter 11] in
the context of optical networks. Their method seems
more practical as it always provides a feasible solution.
We use a similar approach and our heuristic, LPRR,
works as follows:

1. Solve the original linear program with rational
numbers. Let (α̃k,l, β̃k,l) be the solution.

2. Choose a route k, l at random, such that β̃k,l �= 0.

3. Randomly choose Xk,l ∈ {0, 1} with probability
P (Xk,l = 1) = β̃k,l − �β̃k,l�.

4. Assign the value v = �β̃k,l� + X to βk,l by adding
the constraint βk,l = v to the linear program.

5. If there is at least a route k, l for which no βk,l

value has been assigned, go to step 2.

Note that LPRR solves K2 linear programs, and is
thus much more computationally expensive that our
other LP-based heuristics.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

5. Experimental Results

5.1. Methodology

In this section, we use simulation to evaluate the G,
LPR, LPRG, and LPRR heuristics. Ideally the objec-
tive values achieved by these heuristics should be com-
pared to the optimal solution, i.e., the solution to the
mixed linear problem. However, solving the mixed lin-
ear problem takes exponential time and we cannot com-
pute its solution in practice. Instead we use the solu-
tion to the rational linear problem as a comparator,
as it provides an upper bound on the optimal solution
(i.e., it cannot be achieved/used in practice as βk,l val-
ues need to be integers).

One important question for creating relevant in-
stances of our problem is that of the network topol-
ogy. We opted for using the popular Tiers [22] topol-
ogy generator to create a comprehensive set of topolo-
gies. We randomly generated 100 two-level topologies
with Tiers, each topology containing 40 WAN nodes,
30 MAN networks each containing 20 MAN nodes. We
did not generate LAN networks as in our model we ab-
stract them as a single cluster/site that delivers compu-
tation to the applications. We set a high connection re-
dundancy value to reflect the rich connectivity between
backbone nodes. Each of these topologies contains ap-
proximately 700 nodes. For each topology, we randomly
select K = 5, 7, . . . , 90 nodes as clusters participat-
ing in the computation of divisible load applications.
For these K nodes we determine all pair-wise short-
est paths (in hops), and we then delete the nodes not
on any shortest paths, so as to be left with the topol-
ogy interconnecting the sites participating in compu-
tation. Note that in this “pruned” topology, there are
nodes that we did not originally select but happen to
be on the shortest paths between nodes that we had se-
lected. We consider these nodes purely as routers that
do not perform any computation, which can be easily
expressed in the linear program defined in Section 3.1
by adding corresponding constraints but not modify-
ing the objective function.

Now that the topology is specified, we assign ranges
of values to sk, gk, max-connect(lk), δk, wk, and πk

as follows. The local bandwidth at each site, gk, and
the link bandwidth, bw(li), is set according to a com-
prehensive measurement of internet end-to-end band-
widths [23]. This study shows that the logarithm of
observed data transfer rates are approximately nor-
mally distributed with mean log(2000kbits/sec), and
standard deviation log(10), which we use to gener-
ate random values for gk and bw(li). We generate all
the other parameters according to uniform distribu-

tions with ranges shown in Table 1. For each of our
pruned Tiers topologies we generate 10 platform con-
figurations with random instantiations of the above pa-
rameters. In total, we perform experiments over 29,298
generated platform configurations.

parameter distribution
K 5, 7, . . . , 90
log(bw(lk)), log(gk) normal (mean= log(2000),

std=log(10))
sk uniform, 1000 — 10000
max-connect, δk, wk, πk uniform, 1 — 10

Table 1. Platform parameters used in simulation

5.2. Results

LPR – Our first (expected) observation from our sim-
ulation results is that LPR always performs poorly. In
most cases, LPR leaves a significant portion of the net-
work capacity unutilized, and in some cases all βk,l val-
ues are actually rounded down to 0, leading to an ob-
jective value of 0.
G v.s. LPRG – More interesting is the comparison
between G and LPRG. Unlike what we initially ex-
pected, G performs consistently better than LPRG.
Over all platform configurations, the average ratio of
the objective values achieved by G to that by LPRG is
1.18, with a standard deviation of 31.5, and G is bet-
ter than LPRG in 81% of the cases. For a closer look,
Figure 3 plots the average ratio of the objective val-
ues achieved by G and LPRG to the upper bound of
the optimal obtained by solving the rational linear pro-
gram, versus the number of clusters K. We see that G
achieves objective values about 5% ∼ 10% higher than
LPRG in most cases. But as K increases, both heuris-
tics fail to achieve objective values close to the upper
bound of the optimal.

To explain the poor performance of LPRG rela-
tively to G, we examined the simulation logs closely.
It turns out that, after solving the rational linear pro-
gram, there often are some clusters that send a portion
of their load to other clusters using a rational number
of network connections that is strictly lower than 1. Af-
ter rounding this value down to 0, such clusters have
then no opportunity to send off this load portion and
become oversubscribed: they take the objective value
of the rational linear program down. Conversely, the
clusters that were supposed to receive this load are
now undersubscribed and have cycles to spare. Dur-
ing the greedy step, the G heuristic sometimes picks

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

1.1

K

ob
je

ct
iv

e
fu

nc
tio

n
ra

tio
 to

 L
P

B
ou

nd

Greedy
LPRG
LPRR

Figure 3. Performance of G, LPRG and LPRR,
relative to the upper bound of the optimal.

an undersubscribed cluster first, which causes this clus-
ter to use up its own spare cycles for its own load. This
does not help the MAX-MIN objective value as this
cluster was typically better off than the oversubscribed
clusters. Furthermore, one or more oversubscribed clus-
ters have now lost the opportunity to use these cycles,
which harms the MAX-MIN objective value. By con-
trast, when the G heuristic starts from scratch, it bal-
ances the load better by allowing such undersubscribed
clusters to use a full network connection early on in the
resource allocation process.

It is interesting to note that the relative performance
of G and LPRG is dependent on the type of topol-
ogy. Indeed, we ran simulations over topologies cre-
ated as simple random graphs (i.e., any two nodes are
connected with a fixed probability). Over these topolo-
gies, LPRG heuristic achieved, on average, better re-
sults than G. While these random topologies are not
representative of actual networks, it would be interest-
ing to understand which properties of the interconnec-
tion topology affect the relative performance of G and
LPRG.
LPRR – Figure 3 also shows that LPRR performs con-
sistently better than both G and LPRG, and in fact,
LPRR achieves an objective value quite close to the
upper bound of the optimal, even at K = 45. Because
LPRR is much more time consuming than the other
heuristics, taking K2 time, we evaluated LPRR only
on 62 topologies, and limited the topologies to K < 50.
Running Time – Figure 4 shows how time-consuming
each of our heuristics are and plots their running time

0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

K

ru
nn

in
g

tim
e

fo
r

ea
ch

 to
po

lo
gy

 (
se

co
nd

s)

LPBound
Greedy
LPRG
LPRR

Figure 4. Running time of G,LPRG and LPRR

in seconds on a 1GHz Pentium processor versus the
number of clusters, on a logarithmic scale. We see that
LPRR is very expensive: at K = 50, each run of LPRR
takes approximately 1 hour. This implies that for im-
plementing a scheduler on a real platform with many
clusters G and LPRG are more practical candidates
than LPRR.

6. Perspectives on Implementation

Our work has investigated strategies for steady-state
scheduling of multiple divisible load applications in a
grid environment. In this section we discuss how our
work and results could be implemented as part of a
framework for deploying divisible load applications.
Consider a Virtual Organization (VO) [19] in which
participating sites hold resources that they are willing
to contribute for the execution of divisible load appli-
cations, as well as users who wish to execute such ap-
plications. The G heuristic could be implemented as
part of a centralized broker that would manage divisi-
ble load applications and the resources they can use, for
the entire VO. VO participants would register their re-
sources to the broker, and application requests would
be submitted to the broker by users. Note that because
our work aims at optimizing steady-state throughput,
it provides very good schedules for situations in which
applications run for a significant amount of time so that
the start-up and clean-up phases of application execu-
tions are negligible when compared to the entire appli-
cation execution time. This is a likely scenario in a VO
that supports VO-wide application executions.

The broker needs to gather all relevant informa-

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

tion to instantiate the LP formulation of the scheduling
problem (which is needed to implement the G heuris-
tic as well), as given in Section 3.1. Most important
are the πk coefficients that are used to define the ob-
jective function. These coefficients define the policies
that govern resource sharing over the entire grid, and
these policies should be configured at the broker by a
VO administrator (or by any kind of contracting sys-
tem that is in place in the VO). As mentioned in Sec-
tion 3.1, the objective function can be extended so that
different weights are associated for each pair of sites,
πk,l, thereby quantifying peering relationship between
VO participants. Furthermore, other constraints can be
added to the linear program to reflect other arbitrary
resource sharing policies (e.g., no more than 10% of re-
sources at cluster k can be used for applications orig-
inating from clusters i and j). The main point here
is that our linear program can be refined to express a
wide variety of resource sharing policies and peering re-
lationships among VO participants. It would be inter-
esting to see how the G heuristic compares to LPRG
and LPRR for more constrained scheduling problems.
The broker also needs to be configured so that the num-
ber of network connections used by divisible load ap-
plications in the VO does not exceed the max-connect
threshold. While in this paper we have looked at a gen-
eral model in which every link has its own threshold, in
practice the VO administrator may not have sufficient
knowledge of the network topology. In this case VO ad-
ministrators would just configure a limit on the number
of connections on each path between each pair of par-
ticipating sites, and the same limit could be enforced
for each path. The broker needs to have estimates of the
compute and transfer speeds that are achieved on the
resources. This can be done by querying grid informa-
tion services, or by directly observing the performance
being delivered by the resources. The later method may
prove easier to implement if divisible load applications
are continuously running. The best solution is probably
to use both methods and combine them to obtain esti-
mates of achievable performance, as done for instance
in [16]. The broker needs to adapt its scheduling deci-
sions as resource availability fluctuates and as applica-
tions start and complete. One simple option is to allow
adaptation to occur after each scheduling period. Ad-
ditionally, the schedule could be recomputed on-the-fly
as soon as a new application is submitted to the bro-
ker or a running application completes.

7. Conclusion

We have addressed the steady-state scheduling prob-
lem for multiple concurrent divisible applications run-

ning on platforms that span multiple clusters dis-
tributed over wide-area networks. This is an important
problem as divisible load applications are common and
make up a significant portion of the mix of grid ap-
plications. Only a few authors had explored the simul-
taneous scheduling of multiple such applications on a
distributed computing platform [10, 30] and in this pa-
per we have made the following contributions. We de-
fined a realistic platform model that captures some of
the fundamental network properties of grid platforms.
We then formulated our scheduling problem as a mixed
integer-rational linear program that enforces a notion
of weighted priorities and fairness for resource shar-
ing between applications. We proposed a greedy heuris-
tic, G, and three heuristics based on the rational solu-
tion to the linear program: LPR, LPRG, and LPRR.
We evaluated these heuristics with extensive simula-
tion experiments for many random platform configu-
rations whose network topologies were generated by
Tiers [22]. We found that the G heuristic performs bet-
ter than LPRG on average, and that its performance
relative to an upper bound of the optimal decreases
with the number of clusters in the platform. We also
found that the LPRR heuristic leads to better sched-
ules than G but at the cost of a much higher complex-
ity, which may make it impractical for large numbers
of clusters.

We will extend this work in several directions. First,
we will simulate platforms and application parameters
that are measured from real-world testbeds and appli-
cations suites [9, 28]. While this paper provides con-
vincing evidence about the relative merit of our dif-
ferent approaches, simulations instantiated specifically
with real-world data will provide a quantitative mea-
sure of absolute performance levels that can be ex-
pected with the best heuristics. Second, we will strive
to use an even more realistic network model, which
would include link latencies, TCP bandwidth sharing
behaviors according to round-trip times, and more pre-
cise backbone characteristics. Some of our recent work
(see [24, 15]) provides the foundation for refining our
network model, both based on empirical measurements
and on theoretical modeling of network traffic.

References

[1] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak,
L. Liming, and S. Tuecke. GridFTP: Protocol Exten-
sion to FTP for the Grid. Grid Forum Internet-Draft,
March 2001.

[2] C. Banino, O. Beaumont, L. Carter, J. Ferrante,
A. Legrand, and Y. Robert. Scheduling strategies
for master-slave tasking on heterogeneous processor

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

platforms. IEEE Trans. Parallel Distributed Systems,
15(4):319–330, 2004.

[3] G. Barlas. Collection-aware optimum sequencing of op-
erations and closed-form solutions for the distribution
of a divisible load on arbitrary processor trees. IEEE
Trans. Parallel Distributed Systems, 9(5):429–441, 1998.

[4] S. Bataineh, T. Hsiung, and T.G.Robertazzi. Closed
form solutions for bus and tree networks of processors
load sharing adivisible job. IEEETransactions onCom-
puters, 43(10):1184–1196, Oct. 1994.

[5] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and
Y. Yang. Scheduling divisible loads for star and tree net-
works: main results and open problems. Technical Re-
port RR-2003-41, LIP, ENS Lyon, France, Sept. 2003.
To appear in IEEE Trans. Parallel and Distributed Sys-
tems.

[6] O. Beaumont, A. Legrand, and Y. Robert. Scheduling
divisible workloads on heterogeneous platforms. Paral-
lel Computing, 29:1121–1152, 2003.

[7] D. Bertsekas and R. Gallager. Data Networks. Prentice
Hall, 1987.

[8] D. Bertsimas and D. Gamarnik. Asymptotically opti-
mal algorithm for job shop scheduling and packet rout-
ing. Journal of Algorithms, 33(2):296–318, 1999.

[9] M. D. Beynon, T. Kurc, A. Sussman, and J. Saltz. Op-
timizing execution of component-based applications us-
ing group instances. Future Generation Computer Sys-
tems, 18(4):435–448, 2002.

[10] V.Bharadwaj andG.Barlas. Efficient scheduling strate-
gies for processing multiple divisible loads on bus net-
works. Journal of Parallel and Distributed Computing,
62:132–151, 2002.

[11] V. Bharadwaj, D. Ghose, V. Mani, and T. Robertazzi.
Scheduling Divisible Loads in Parallel and Distributed
Systems. IEEE Computer Society Press, 1996.

[12] V. Bharadwaj, D. Ghose, and T. Robertazzi. Divisible
load theory: a new paradigm for load scheduling in dis-
tributed systems. Cluster Computing, 6(1):7–17, 2003.

[13] T.Braun,H. Siegel,N.Beck, L.Bölöni,M.Maheswaran,
A. Reuther, J. P. Robertson, M. Theys, B. Yao, D. Hens-
gen, and R. F. Freund. A comparison of eleven static
heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems. Journal
of Parallel and Distributed Computing, 61(6):810–837,
2001.

[14] CDF Analysis Farms (CAF). http://cdfcaf.fnal.

gov/.

[15] H. Casanova. Modeling Large-Scale Platforms for the
Analysis and the Simulation of Scheduling Strategies.
In Proceedings of the 6th Workshop on Advances in Par-
allel and Distributed Computational Models (APDCM),
April 2004.

[16] H. Casanova and F. Berman. Grid Computing: Making
The Global Infrastructure a Reality, chapter Parameter
Sweeps on the Grid with APST. John Wiley, 2003. Hey,
A. and Berman, F. and Fox, G., editors.

[17] S. Chakrabarti, J. Demmel, and K. Yelick. Models and
scheduling algorithms for mixed data and task parallel
programs. Journal of Parallel and Distributed Comput-
ing, 47:168–184, 1997.

[18] D. Coudert and H. Rivano. Lightpath assignment for
multifibers WDM optical networks with wavelength
translators. In IEEE Global Telecommunications Con-
ference (Globecom’02). IEEE Computer Society Press,
2002. Session OPNT-01-5.

[19] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy
of the Grid: Enabling Scalable Virtual Organizations.
International Journal of High Performance Computing
Applications, 15(3), 2001.

[20] D.Ghose andT.Robertazzi, editors. Special issue onDi-
visible Load Scheduling. Cluster Computing, 6, 1, 2003.

[21] D. Hochbaum. Approximation Algorithms for NP-hard
Problems. PWS Publishing Company, 1997.

[22] K. Calvert and M. Doar and E.W. Zegura. Modeling
Internet Topology. IEEE Communications Magazine,
35:160–163, 1997.

[23] C. Lee and J.Stepanek. On Future Global Grid Commu-
nications Performance. In HCW’2001, the 10th Hetero-
geneous Computing Workshop. IEEE Computer Society
Press, 2001.

[24] A. Legrand, L. Marchal, and H. Casanova. Schedul-
ing Distributed Applications: The SimGrid Simulation
Framework. In Proceedings of the Third IEEE Interna-
tional Symposium on Cluster Computing and the Grid
(CCGrid’03), May 2003.

[25] L. Marchal, Y. Yang, H. Casanova, and Y. Robert. A
realistic network/application model for scheduling di-
visible loads on large-scale platforms. Research Report
RR-2004-21, LIP, ENS Lyon, France, Apr. 2004.

[26] T. Robertazzi. Processor equivalence for a linear daisy
chain of load sharing processors. IEEE Trans. Aerospace
and Electronic Systems, 29:1216–1221, 1993.

[27] T. Robertazzi. Ten reasons to use divisible load theory.
IEEE Computer, 36(5):63–68, 2003.

[28] M. Spencer, R. Ferreira, M. Beynon, T. Kurc,
U. Catalyurek, A. Sussman, and J. Saltz. Executing
multiple pipelined data analysis operations in the grid.
In 2002 ACM/IEEE Supercomputing Conference. ACM
Press, 2002.

[29] J. Subhlok and G. Vondran. Optimal use of mixed task
and data parallelism for pipelined computations. Jour-
nal of Parallel and Distributed Computing, 60:297–319,
2000.

[30] H. Wong, D. Yu, , V. Bharadwaj, and T. Robertazzi.
Data intensive grid scheduling:multiple sourceswith ca-
pacity constraints. In PDCS’2003, 15th Int’l Conf. Par-
allel and Distributed Computing and Systems. IASTED
Press, 2003.

[31] D. Yu and T. Robertazzi. Divisible load scheduling for
grid computing. In PDCS’2003, 15th Int’l Conf. Par-
allel and Distributed Computing and Systems. IASTED
Press, 2003.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

