
Mapping Linear Workflows
with Computation/Communication Overlap

Kunal Agrawal
CSAIL, Massachusetts Institute of Technology, USA

kunal_ag@mit.edu

Anne Benoit and Yves Robert
LIP, École Normale Supérieure de Lyon, France

{Anne.Benoit|Yves.Robert}@ens-lyon.fr

Abstract

This paper presents theoretical results for mapping
and scheduling linear workflows onto heterogeneous
platforms. We use a realistic architectural model, repre-
sentative of current multi-threaded systems. Our model
has bounded communication capabilities and full com-
putation/communication overlap. In these workflow ap-
plications, the goal is often to maximize throughput or
to minimize latency. We present several complexity re-
sults, and approximation algorithms, for these two cri-
teria. We also consider the implications of adding feed-
back loops to linear chain applications.

1. Introduction

Pipelined workflows are a popular programming
paradigm for streaming applications like video and
audio encoding and decoding, DSP applications etc.
Streaming applications are becoming increasingly
prevalent, and many languages are being continually de-
signed to support these applications. In these languages,
the programmer expresses programs by creating a work-
flow graph, and the system maps this workflow graph
on a target machine. A workflow graph contains sev-
eral stages, and these stages are connected to each other
using first-in-first-out channels. Data is input into the
graph using input channel(s) and the outputs are pro-
duced on the output channel(s). Since data continually
flows through these applications, the goal of a scheduler
is often to increase the throughput and/or decrease the
latency. One can think of these applications as a graph,
where stages are the nodes and the channels are the

edges. Most of the problems related to mapping general
graphs optimally are NP-complete; therefore, we con-
sider the special case of linear chains with possibly feed-
back edges. Such graphs are representative of a wide
class of applications, and constitute the typical build-
ing blocks upon which to build and execute more com-
plex workflows. We provide comprehensive theoretical
analysis of the complexity of mapping these graphs on
both homogeneous and heterogeneous distributed mem-
ory platforms.

Subhlok and Vondran [10] studied the problem of
mapping linear chain graphs on homogeneous plat-
forms, and these complexity results were extended for
heterogeneous platforms under the one-port model in
[2]. In this model, at any time, the processor can ei-
ther compute, receive an incoming communication, or
send an outgoing communication. This model does a
good job of representing single-threaded systems. Un-
fortunately, this model is not suitable for handling gen-
eral mappings, or applications which have feedback, and
it can deadlock in this case. In this paper, we explore
the bounded multiport model, which allows multiple in-
coming and outgoing communications simultaneously,
and allows the computation and communication to over-
lap. To the best of our knowledge, the bounded multi-
port model with overlap has not been explored for linear
chains, and we explore its complexity before extending
the results to applications with feedback.

We consider three kinds of platforms for mapping
these applications. Fully Homogeneous platforms are
those which have identical processors. That is, all
processors run at the same speed, and communicate
with each other using links of the same bandwidth.
Communication Homogeneous platforms are those in

2008 14th IEEE International Conference on Parallel and Distributed Systems

1521-9097/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPADS.2008.107

195

which the processors may have different speeds, but they
are all connected by identical communication intercon-
nect. Fully Heterogeneous platforms are those where
both processor speeds and the speed of the interconnect
changes from processor to processor. Here is the sum-
mary of our results:

• Finding the mapping with optimal throughput is NP-
complete for all platforms in the bounded multiport
model with overlap. Finding the mapping with opti-
mal latency is NP-complete for Communication Homo-
geneous platforms. The problem of finding the mapping
with optimal latency for Fully Homogeneous platforms
is left open. These results are stated in Section 3, to-
gether with an optimal polynomial algorithm to find the
best interval-based mapping for both throughput and
latency on Fully Homogeneous platforms. These in-
terval mappings are commonly used since they mini-
mize the communication overhead. However, finding
the interval-based mapping with optimal throughput or
latency is NP-complete for Communication Homoge-
neous platforms.

• Since finding the best mapping is NP-complete, we
present approximation algorithms; namely in Section 4,
we show that interval-based mappings provide a 2-
approximation for throughput on Fully Homogeneous
platforms. Since these interval mappings can be found
in polynomial time, we have a 2-approximation algo-
rithm for the throughput. Mapping all the stages on the
same processor provides a 1.5-approximation for latency
on Communication Homogeneous platforms (hence also
for Fully Homogeneous platforms). However, this result
does not hold for Fully Heterogeneous platforms.

• In the special case where an infinite number of proces-
sors are available to the application, interval-based map-
pings are optimal for throughput, hence we have poly-
nomial time algorithms. See Section 5 for this result.

• In Section 6, we show that almost all problems become
more difficult when feedback loops are added. Interval-
based mappings are no longer a good approximation
for throughput even for Fully Homogeneous platforms.
However, mapping all stages on the same processor is
still a good approximation for latency for Communica-
tion Homogeneous platforms. In addition, we prove that
optimizing throughput is NP-complete even for infinite
number of processors when we have feedback loops.

Due to lack of space, proofs have not been included.
In addition, some of the related work has not been men-
tioned in this section. Please refer to the extended ver-
sion [1] for full proofs and more related work.

2. Framework

In this section we first describe the application model
and architectural framework. Then we detail mapping
rules and objectives.

... ...S2 Sk SnS1

w1 w2 wk wn

δ0 δ1 δk−1 δk δn

Figure 1. Application linear chain.

2.1. Application model

We consider simple application workflows whose
graphs are a pipeline (i.e., a linear chain). A pipeline
graph of n stages Sk, 1 ≤ k ≤ n is illustrated on Fig-
ure 1. Consecutive data sets are fed into the pipeline and
processed from stage to stage, until they exit the pipeline
after the last stage.

Each stage executes a task. More precisely, the k-th
stage Sk receives an input from the previous stage, of
size δk−1, performs a number of wk computations, and
outputs data of size δk to the next stage. This opera-
tion corresponds to the k-th task and is repeated on each
data set. Communications and computations are done in
parallel, thus input for data set i + 1 is received while
computing for data set i and sending result for data set
i − 1. The first stage S1 receives an input of size δ0
from the outside world, while the last stage Sn returns
the result, of size δn, to the outside world.

2.2. Execution model

2.2.1 Platform graph

We target a heterogeneous platform with p processors
Pu, 1 ≤ u ≤ p, fully interconnected as a (virtual) clique.
The speed of processor Pu is denoted as su, and it takes
X/su time-units for Pu to executeX floating point oper-
ations. There is a bidirectional link linku,v : Pu → Pv
between any processor pair Pu and Pv , of bandwidth
bu,v . We use a linear cost model for communications;
hence it takes X/bu,v time-units to send (resp. receive)
a message of size X to (resp. from) Pv . Note that we
do not need to have a physical link between all pairs
of processors. We may have a switch, or a path com-
posed of several physical links, instead, to interconnect
Pu and Pv; in the latter case the bu,v is the bandwidth of
the slowest link in the path. In addition to link band-
widths, we have processor network cards that bound

196

the total communication capacity of each computing re-
source. We denote by Biu (resp. Bou) the capacity of
the input (resp. output) network card of processor Pu.
In other words, Pu cannot receive more than Biu data
items per time-unit, and it cannot send more than Bou
data items per time-unit. In the most general case, we
have fully heterogeneous platforms, with different pro-
cessors speeds, link capacities and network card capaci-
ties.

Finally, we assume that two special additional pro-
cessors Pin and Pout are devoted to input/output data.
Initially, the input data for each task resides on Pin,
while all results must be returned to and stored in Pout.
Of course we may have a single processor acting as the
interface for the computations, i.e., Pin = Pout.

We classify particular cases which are important,
both from a theoretical and practical perspective.
Fully Homogeneous platforms have identical proces-
sors (su = s) and homogeneous communication de-
vices (bu,v = b for link bandwidths, and Biu = Bi,
Bou = Bo for network cards). They represent typical
parallel machines. Communication Homogeneous plat-
forms are still interconnected with homogeneous com-
munication devices, but they have different-speed pro-
cessors (su 6= sv). They correspond to networks of
workstations with plain TCP/IP interconnects or other
LANs. Fully Heterogeneous platforms are the most
general, fully heterogeneous architectures. Hierarchical
platforms made up with several clusters interconnected
by slower backbone links can be modeled this way.

2.2.2 Realistic communication models

The standard model for DAG scheduling heuristics [7]
does a poor job to model physical limits of interconnec-
tion networks. The model assumes an unlimited number
of simultaneous sends and receives, i.e., a network card
of infinite capacity, on each processor. A more realistic
model is the one-port model [3], where a given proces-
sor can be involved in a single communication at any
time-step, either a send or a receive. Independent com-
munications between distinct processor pairs can take
place simultaneously. The one-port model seems to fit
the performance of some current MPI implementations,
which serialize asynchronous MPI sends as soon as mes-
sage sizes exceed a few megabytes [8]. The one-port
model fully accounts for the heterogeneity of the plat-
form, as each link has a different bandwidth. A study
of mapping strategies for linear chain application graphs
under the one-port model has been conducted in [2].

Another realistic model is the bounded multiport
model [5]. In this model, the total communication vol-

ume outgoing from a given node is bounded (by the ca-
pacity of its network card), but several communications
along different links can take place simultaneously (pro-
vided that the link bandwidths are not exceeded either).
We point out that recent multi-threaded communication
libraries such as MPICH2 [6] now allow for initiating
multiple concurrent send and receive operations, thereby
providing practical realizations of the multiport model.

2.2.3 Computation/communication overlap

Another key assumption to define the execution model
is to decide whether computation can overlap with (in-
dependent) communication. Most state-of-the-art pro-
cessors running a threaded operating system are indeed
capable of such an overlap.

The main emphasis of this paper is to investi-
gate the complexity of various mapping problems
under the bounded multiport model with computa-
tion/communication overlap. These two assumptions
(multiport and overlap) fit well together because they
both require a multi-threaded system. However, they
turn out to have a tremendous impact on the definition of
the throughput and of the latency that can be achieved:
we need to drastically change the definitions that are
used under the one-port model without overlap [10, 2]:
see the example in Section 2.3.1 below.

2.3. Mapping strategies

Key metrics for a given workflow are the throughput
and the latency. The throughput measures the aggregate
rate of processing of data, and it is the rate at which data
sets can enter the system. The inverse of the throughput,
defined as the period, is the time interval required be-
tween the beginning of the execution of two consecutive
data sets. The latency is the time elapsed between the
beginning and the end of the execution of a given data
set, hence it measures the response time of the system to
process the data set entirely. Note that minimizing the
latency is antagonistic to minimizing the period.

The mapping problem consists of assigning applica-
tion stages to platform processors. Formally, we search
for an allocation function of stages to processors, de-
fined as a : [1..n] → [1..p]. We always assume in the
following that a(0) = in and a(n+ 1) = out. There are
several mapping strategies. The more restrictive map-
pings are one-to-one; in this case, each stage is assigned
a different processor. Then the allocation function a
is a one-to-one function, and there must be at least as
many processors as application stages. Another strat-
egy is very common for linear chains: we may decide

197

to group consecutive stages onto a same processor, in
order to avoid some costly communications. However,
a processor is only processing an interval of consecutive
stages. Such a mapping is called an interval-based map-
ping. Finally, we can consider general mappings, for
which there is no constraint on the allocation function:
each processor is assigned one or several stage intervals.

2.3.1 Working out an example

Consider the little example of Figure 2 with four stages.
Below each stage Si we have indicated the number of
computations wi (expressed in flops) that it requires:
w1 = 2, w2 = 1, w3 = 3 and w4 = 4. The value of
each δi is indicated at the right of each stage: δ0 = 1,
δ1 = δ2 = 4, δ3 = δ4 = 1. As for the platform, assume
that we have a Fully Homogeneous platform with two
identical processors P1 and P2 of speed s = 1 and of
network card capacities Bi = Bo = 1, and with identi-
cal links of bandwidth b = 1.

We can achieve a perfect load-balance of the compu-
tations if we map stages S1 and S3 on P1, and stages
S2 and S4 on P2. What would be the period and the
latency with such a mapping? Under the bounded mul-
tiport model with computation/communication overlap,
we achieve a period P = 5. Indeed, P1 has two incom-
ing communications of size δ0

b + δ2
b = 5, and we have

δ0+δ2
Bi = 5, so that all constraints (link bandwidths and

network card capacity) are verified for incoming com-
munications. Similarly, we check that for outgoing com-
munications δ1

b + δ3
b = δ1+δ3

Bo = 5. Finally, we chose
the mapping so that w1+w3

s = 5. Altogether, the cycle-
time of processor P1 is 5, which means that it can start
to process a new data set every 5 time units. We perform
the same analysis for P2 and derive that its cycle-time
also is 5. The period is the maximum of the cycle-times
of the processors, hence we derive that P = 5.

Computing the latency is more complicated. At first
sight, we might say that the latency is the longest path
in the execution, of length δ0

b + w1
s + δ1

b + w2
s + δ2

b +
w3
s + δ3

b + w4
s + δ4

b = 21. However, this is only possible
for the first data sets. See Figure 3: if the first data set
ds(0) enters the platform at time t = 0, then P1 is active
at time t = 1 and t = 2 (for stage S1), and then t = 12,
t = 13, and t = 14 (for stage S3). If a new data set
enters every five time-units to achieve a period P = 5,
then data set ds(k) enters at time t = 5k and P1 is active
for it at time t = 1+5k, 2+5k, 12+5k, 13+5k, 14+5k.
Because this holds true for all k ≥ 0, we have many
conflicts! For instance the first conflict is at t = 12 for
stage S1 of ds(3) and stage S3 of ds(1). Similarly, we

1→ S1
4→ S2

4→ S3
1→ S4

1→
2 1 3 4

Figure 2. Toy example to explain how pe-
riod and latency are determined.

in → P1 0
P1 1 2 12 13 14
P1 → P2 3 4 5 6 15
P2 → P1 8 9 10 11
P2 7 16 17 18 19
P2 → out 20

Figure 3. Processing the first data set to
achieve a latency L = 21 would lead to
conflicts for the next data sets.

obtain conflicts for P2 and for the link from P1 to P2.
In fact, in steady-state we can only achieve a much

larger latency if period P should not be exceeded: see
Figure 4, where the latency is L = 45. The idea is sim-
ple: when a processor executes some computation for
a data set ds(k), then it simultaneously receives input
corresponding to data set ds(k+1) and performs output
corresponding to data set ds(k−1). In turn, the next pro-
cessor operates on data set ds(k−2), and so on. This
example shows that a key parameter is the number of
stage intervals in the mapping. An interval is a subset
of consecutive stages that is not mapped onto the same
processor as the previous stages (see Section 2.3.3 for
a more formal definition). Here we have four intervals
composed of 1 stage each, because each stage is mapped
onto a different processor than its predecessor, hence
K = 4. If there are K intervals, there are K + 1 com-
munication links, hence it takes K+ (K+ 1) = 2K+ 1
periods for a data set to be processed entirely. We check
in Figure 4 that we need 2K+1 = 9 periods to compute
a data set, so that L = 9× 5 = 45.

Note that computing the latency under period con-
straints with a non-overlap model looks very difficult.
Each processor would have to decide which of its two

. . . period k period k + 1 . . .

in → P1 . . . ds(k) ds(k+1) . . .

P1 . . . ds(k−1) , ds(k−5) ds(k) , ds(k−4) . . .

P1 → P2 . . . ds(k−2) , ds(k−6) ds(k−1) , ds(k−5) . . .

P2 → P1 . . . ds(k−4) ds(k−3) . . .

P2 . . . ds(k−3) , ds(k−7) ds(k−2) , ds(k−6) . . .

P2 → out . . . ds(k−8) ds(k−7) . . .

Figure 4. Achieving a latency L = 9,P = 45
in steady state mode.

198

incoming communications to execute first, and which of
its two outgoing communications to execute first. Any
choice is likely to increase the latency for some data set.
The problem is similar for the one-port or the multiport
model. Indeed, with the one-port model, we have no
choice and must serialize the two communications. On
the contrary, with the multiport model, we can decide to
execute both communications in parallel, but this is not
helpful as it only delays the first communication with-
out speeding up the second one. For both models it is
hard to decide which communication to give priority to.
A simple (greedy) algorithm would give priority to the
communication involving the least recent data set. We
could easily work out such an algorithm for our little ex-
ample. However, computing a closed form expression
for the latency in the general case seems untractable.

Without overlap the difficulty comes from the fact
that several stage intervals are mapped onto the same
processor, which requires to arbitrate between as many
incoming (and outgoing) communications. If we en-
force interval-based mappings then each processor is
assigned a single interval and the computation for the
latency is greatly simplified. Interval mappings are also
interesting for the multiport model as they allow to de-
crease the value of K, the number of stage intervals,
which never exceeds the number p of available proces-
sors for such mappings. However, general mappings
may still be needed to better balance the work, hence
to decrease the period, at the price of a larger value of
K. Such trade-offs are at the heart of the algorithms
and complexity results that follow. Finally, we point out
that introducing feedback loops in Section 6 will further
complicate these issues.

2.3.2 Period

As illustrated in Figure 4, we assume that a new data
set arrives every period at a regular pace. Let P1 be the
processor in charge of the first stage. While it is comput-
ing for data set k, it simultaneously receives input corre-
sponding to data set k+ 1 and sends output correspond-
ing to data set k − 1. More precisely, the latter output
is related to the first stage Si such that a(i) 6= a(i + 1):
for a given data set, all computations corresponding to
stages S1 to Si are performed during the same period.
As in the example of Figure 2, P1 can be assigned other
stage intervals, and the period must be large enough so
that the sum of all its computations does not exceed the
value of the period. The same holds true for the sum
of its incoming communications, and for the sum of its
outgoing communications.

Formally, under the bounded multiport model with

overlap, the cycle-time P(u) of processor Pu, 1 ≤ u ≤
p, is defined as the maximum of

∑
1≤k≤n & a(k)=u

wk

su
(1),

max
1≤v≤p,v 6=u

∑
1≤k≤n
a(k)=u
a(k−1)=v

δk−1
bv,u

(2),
∑

1≤k≤n
a(k)=u
a(k−1) 6=u

δk−1

Bi
u

(3),

max
1≤v≤p,v 6=u

∑
1≤k≤n
a(k)=u
a(k+1)=v

δk

bu,v
(4), and

∑
1≤k≤n
a(k)=u
a(k+1)6=u

δk

Bo
u

(5).

The first term is bounding the period when the com-
putation step is the longest activity. It expresses the
computation time for processor Pu. The second and
third terms represent the time for input communications,
which is bounded by the links from incoming processors
(2), and by the network card limit Biu (3). We need to
consider all stages Sk that are assigned to Pu but whose
predecessor Sk−1 is not. We check that no link band-
width is exceeded from any other processor Pv and we
account for all these communications together for the
network card capacity of Pu. Similarly, (4) and (5) deal
with output communications. Also, notice that for the
sake of simplicity, in = 0 and out = n+ 1.

The period of the mapping is then

P = max
1≤u≤p

P(u) (1)

2.3.3 Latency

As outlined in Section 2.3.1, the latency cannot be
defined independently of the period since we enforce
that the constraint related to the period of the mapping
should be fulfilled. More precisely, we proceed as fol-
lows: given a mapping, we first compute its period P
according to equation (1). Next we count the num-
ber of stage intervals, or equivalently, of the number of
changes from one processor to a different one. We de-
fine K(i, j) as the number of stage intervals between
stages Si and Sj , where i < j. Formally, K(i, j) =∑
i≤k<j & a(k) 6=a(k+1) 1 . The total number of inter-

vals in the pipeline is K = K(1, n + 1). Since we al-
ways have a(n + 1) = out 6= a(n), K ≥ 1 (K = 1
if all stages are mapped onto the same processor Pa(n)).
Again, we point out that K depends on the number of
processor changes, and thus it is increased if a proces-
sor is in charge of several distinct stage intervals. The
latency is finally defined as 2K + 1 times the period,
since a data set traverses the whole pipeline in 2K + 1
time-steps, and each time-step has a duration of P:

L = (2K + 1)× P (2)

Note that [4] uses the formulaL = (2K−1)×P because
input/output is not taken into account.

199

Consider again the example of Figure 2. With the
chosen mapping, P = 5 but K = 9, hence L = 45.
The value of the period is optimal (the sum of the four
computation weights is 10, and we have two processors
of speed 1), but the value of the latency is not: if we as-
sign all stages to the same processor, the period becomes
P = 10 but K = 3, hence L = 30. We can also assign
the first three stages to P1 and the last one to P2: we
derive P = 6, K = 5 and L = 30 too.

3. Complexity results

This section provides complexity results for period
and latency minimization.

Theorem 1. On Fully Homogeneous platforms, finding
the general mapping which minimizes the period is NP-
complete.

Like the period minimization problem, we believe
that latency minimization is also NP-complete. In Sec-
tion 3, we shall see that optimal interval-based mappings
can be found in polynomial time. However, unfortu-
nately, interval mappings are not guaranteed to be op-
timal for latency either. The following example shows
that interval mappings are not optimal for latency for
Fully Homogeneous platforms. Consider 150 homoge-
neous processors with speeds all equal to 1. The appli-
cation pipeline contains 300 stages as shown below, and
there are no communications.

99 1 100 1| {z } 101 1

×148

In other words, the first stage has work 99, the sec-
ond stage has work 1. The third and the fourth stages
have work 100 and 1 respectively. These third and fourth
stages are repeated 148 times (the fifth stage has work
100, sixth stage 1, and so on). The 299-th stage has work
101 and the last stage has work 1 again. The best map-
ping is perfectly load balanced but not interval-based:
put stages 1,2, and 300 on one processor, all pairs of 100
and 1 on distinct 148 processors, and then stage 299 with
work 101 on the last processor. The period of this map-
ping is 101 and the latency is 30603. The best interval-
based mapping uses 75 intervals with period 203, and
latency 30653 (we used the dynamic programming al-
gorithm of Theorem 3 to obtain this result [1]).

Since minimum latency mapping may not be an
interval-based mapping, it appears as though latency
minimization is in fact NP-complete for Fully Homoge-
neous platforms. However, the proof has not been forth-
coming, and this problem is left open. The next theorem

shows that minimizing latency is NP-complete for Com-
munication Homogeneous platforms.

Theorem 2. On Communication Homogeneous plat-
forms, finding the general mapping which minimizes the
latency is NP-complete.

Corollary 1. On Communication Homogeneous plat-
forms, finding the interval-based mapping which mini-
mizes the latency is NP-complete.

Theorem 3. On a Fully Homogeneous platform, finding
the interval-based mapping which minimizes the period
or the latency can be constructed in polynomial time us-
ing a dynamic programming algorithm.

4. Approximation algorithms

Theorem 4. Some interval-based mapping provides a
2-approximation for the optimal period for Fully Homo-
geneous platforms.

Unfortunately, interval-based mappings are not a
constant-approximation for the period on Communica-
tion Homogeneous platforms. Here is an example to
demonstrate this fact. Consider a Communication Ho-
mogeneous platform with n+ 1 processors; processor 1
has speed s1 = 2K and the other n processors have
speed 1, and n > K2. Now consider an application as
follows:

K 1︸︷︷︸ K

×n

In other words, the first and the last stages have a
computation of K, and there are n intermediate stages
which have a computation of 1. In this example, a non-
interval-based mapping would map the first and the last
stages to processor 1, and the remaining stages (one
each) to the n processors with speed 1, generating a pe-
riod of 1. Unfortunately, any interval-based mapping
has a period of at least K since n > K2. There-
fore, the interval-based mapping can be as bad as a K-
approximation at best for the period.

Theorem 5. A mapping which puts all the stages on
the fastest processor provides a 1.5-approximation for
optimal latency on Communication Homogeneous plat-
forms.

Unfortunately, mapping all stages on the fastest pro-
cessor does not provide a constant approximation for
optimum latency for Fully Heterogeneous platforms,
see [1] for a counter-example.

200

5. Infinite number of processors

Lemma 1. With an infinite number of processors on
a Fully Homogeneous platform, there is an optimal
interval-based mapping for both problems, (i) minimiz-
ing the period, and (ii) minimizing the latency.

Theorem 6. With an infinite number of processors on a
Fully Homogeneous platform, finding the general map-
ping which minimizes the period or the latency can be
done in polynomial time.

Also we notice that with a fixed number of proces-
sors, still on Fully Homogeneous platforms, Lemma 1 is
not true anymore. Indeed, we can build an example in
which the best latency is obtained with a general map-
ping which is not interval-based. Please refer to Sec-
tion 3 for such an example.

6. Additional complexity of feedback loops

Most of previous problems are already NP-hard, ex-
cept some particular cases. Some of these special poly-
nomial cases become NP-difficult when adding the extra
complexity of feedback loops, as for instance the pe-
riod minimization problem with an infinite number of
processors. Also, some of the approximation results do
not hold anymore. Before revisiting previous complex-
ity results, we formalize the feedback loops model and
explain how period and latency should be computed so
as to take feedback loops into account.

`3,1

... Sn

wn

S2S1

δn,1

`n,1

S3

δ0 δ1 δ2 δ3 δn

δ3,1

Figure 5. Feedback loops.

6.1. Model for feedback loops

There might be some dependencies between data sets
for different stages, represented as feedback loops, see
Figure 5 for an example with two feedback loops. An
arrow going from stage Sk′ to stage Sk, where k′ > k,
and labeled with a positive integer `k′,k, means that Sk
needs the output from Sk′ of data set i − `k′,k to com-
pute data set i. The size of data to be transferred along
this feedback arrow is denoted as δk′,k. Such an ar-
row generates a loop in the application graph. For each

feedback loop, the feedback data must arrive on time
so that it is possible to perform the desired computa-
tion on the next data. A mapping will thus be valid only
if there are not too many stage intervals (or processor
changes) inside a loop. Assume that there is a loop la-
beled with `j,i, going from Sj to Si (with j > i). As
discussed in Section 2.3, processor a(i) is processing
data set ds(k) while sending data set ds(k−1) to the next
processor in the line, which in the meantime processes
data set ds(k−2) and sends data set ds(k−3), and so on.
Thus, in order to get the data set on time, we need to
ensure that 2.(K(i, j) − 1 + ∆a(i)6=a(j)) ≤ `j,i, where
∆a(i)6=a(j) = 1 if a(i) 6= a(j), and 0 otherwise.

For instance, consider the feedback loop from S3 to
S1 in Figure 5. If stages S1 and S2 are mapped onto, say,
processor P1 while S3 is mapped onto P2, then K = 2,
a(1) = 1 6= a(3) = 2, and the formula states that we
must have 4 ≤ `3,1. Indeed, when P1 operates on data
set ds(k), P2 operates on ds(k−2) and sends data corre-
sponding to ds(k−3) back to P1, just in time if `3,1 = 4
for P1 to compute ds(k+1) during the next period. Note
that if the whole interval from Si to Sj is mapped onto
the same processor, then K = 1 and ∆a(i)6=a(j) = 0,
hence we derive the constraint 0 ≤ `j,i, which is fine
because data is available on site for the next period.

Feedback loops not only impose constraints on the
mapping. We also need to revisit the expression for the
period that was given in Section 2.3.2 to account for
the additional communications induced by the feedback
loops. Rather than going on formally, we just illustrate
this with the previous example: with the same mapping,
the feedback loop from S3 to S1 induces an additional
input communication that must be added to the other in-
coming communications of P1, and an additional output
communication that must be added to the other outgoing
communications of P2. The generalization of interval-
based mappings when considering feedback loops are
connected-subgraph mappings, in which each proces-
sor is assigned a connected subgraph instead of an in-
terval. Thus, two stages linked with a feedback loop can
be mapped on the same processor, so that the feedback
communication is done locally.

6.2. Infinite Number of Processors

Theorem 7. On Fully Homogeneous platforms with an
infinite number of processors, finding the general map-
ping which minimizes the period for a linear chain ap-
plication graph with feedback loops is NP-complete.

Similarly to period, interval-based mappings are not
optimal for latency on infinite number of processors

201

when the application has feedback loops. It seems un-
likely that the mapping with minimum latency can be
found in polynomial time, since this problem appears
to be as difficult as the problem of minimizing latency
while mapping on a finite number of processors. We
have, however, not been able to prove that this problem
is indeed NP-complete.

6.3. Approximation Results

Also, the approximation result for period on Fully
Homogeneous platforms (Theorem 4) does not hold
when adding feedback loops. Indeed, we show
in [1] that interval-based mappings cannot provide
any constant-approximation for pipeline workflows with
feedback loops. However, the approximation result for
latency on Communication Homogeneous platforms still
holds for applications with feedback loops using the
same proof given in Theorem 5 in Section 4.

7. Conclusion

This work presents complexity results for map-
ping linear workflows with computation/communication
overlap, under the bounded multiport model. We pro-
vide a formal definition of period and latency optimiza-
tion problems for such linear workflows and prove sev-
eral major results; in particular the NP-completeness of
the period minimization problem even on Fully Homo-
geneous platforms. Latency becomes NP-complete as
soon as platforms are Communication Homogeneous,
and the complexity remains open for Fully Homoge-
neous platforms. We provide a 2-approximation algo-
rithm for the period on Fully Homogeneous platforms
and a 1.5-approximation algorithm for the latency on
Communication Homogeneous platforms. For some
special mapping rules (restricting to interval-based map-
pings) and special cases (infinite number of identical
processors), we succeed in deriving polynomial algo-
rithms for Fully Homogeneous platforms. Also, we in-
troduce the concept of feedback loops to provide control
to linear workflows. Such feedbacks add a level of com-
plexity to most previous problems, since some special
cases become NP-complete, and approximation results
for the period do not hold anymore.

We believe that this exhaustive study of complex-
ity results provides a solid theoretical foundation for
the study of linear workflow mappings, with or without
feedback loops, under the bounded multiport model with
overlap. As future work, we plan to design some effi-
cient polynomial-time heuristics to solve the many com-
binatorial instances of the problem, and to assess their

performance through extensive simulations. This can
become challenging in the presence of feedback loops.
It would also be interesting to study workflows in a dif-
ferent context (like web-service applications [9]) where
each stage Si has a selectivity σi parameter which is the
ratio between its input and output data δi−1/δi. In these
problems, the application DAG is not fixed, and the aim
is to generate the DAG and schedule it so as to decrease
the period and/or latency. For instance, given two stages
S1 and S2 with selectivities σ1 < σ2, on a homogeneous
platform, it is better to create a DAG where S1 precedes
S2 to minimize the period. We plan to generalize our
results for these kinds of applications.

References

[1] K. Agrawal, A. Benoit, and Y. Robert. Mapping lin-
ear workflows with computation/communication over-
lap. Research Report 2008-21, LIP, ENS Lyon, France,
June 2008. Available at graal.ens-lyon.fr/

˜abenoit/.
[2] A. Benoit and Y. Robert. Mapping pipeline skeletons

onto heterogeneous platforms. J. Parallel Distributed
Computing, 68(6):790–808, 2008.

[3] P. Bhat, C. Raghavendra, and V. Prasanna. Efficient col-
lective communication in distributed heterogeneous sys-
tems. Journal of Parallel and Distributed Computing,
63:251–263, 2003.

[4] S. L. Hary and F. Ozguner. Precedence-constrained task
allocation onto point-to-point networks for pipelined ex-
ecution. IEEE Trans; Parallel and Distributed Systems,
10(8):838–851, 1999.

[5] B. Hong and V. Prasanna. Bandwidth-aware resource al-
location for heterogeneous computing systems to max-
imize throughput. In Proceedings of the 32th Interna-
tional Conference on Parallel Processing (ICPP’2003).
IEEE Computer Society Press, 2003.

[6] N. T. Karonis, B. Toonen, and I. Foster. Mpich-g2:
A grid-enabled implementation of the message pass-
ing interface. J.Parallel and Distributed Computing,
63(5):551–563, 2003.

[7] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms
for allocating directed task graphs to multiprocessors.
ACM Computing Surveys, 31(4):406–471, 1999.

[8] T. Saif and M. Parashar. Understanding the behavior and
performance of non-blocking communications in MPI.
In Proceedings of Euro-Par 2004: Parallel Processing,
LNCS 3149, pages 173–182. Springer, 2004.

[9] U. Srivastava, K. Munagala, J. Widom, and R. Motwani.
Query optimization over web services. In VLDB ’06:
Proceedings of the 32nd Int. Conference on Very Large
Data Bases, pages 355–366. VLDB Endowment, 2006.

[10] J. Subhlok and G. Vondran. Optimal latency-throughput
tradeoffs for data parallel pipelines. In ACM Sympo-
sium on Parallel Algorithms and Architectures SPAA’96,
pages 62–71. ACM Press, 1996.

202

