
Iso-Level CAFT: How to Tackle the

Combination of Communication Overhead
Reduction and Fault Tolerance Scheduling

Mourad Hakem

LIFC Laboratory, Université de Franche-Comté, Belfort, France
Mourad.Hakem@lifc.univ-fcomte.fr

Abstract. To schedule precedence task graphs in a more realistic frame-
work, we introduce an efficient fault tolerant scheduling algorithm that
is both contention-aware and capable of supporting ε arbitrary fail-silent
(fail-stop) processor failures. The design of the proposed algorithm which
we call Iso-Level CAFT, is motivated by (i) the search for a better load-
balance and (ii) the generation of fewer communications. These goals
are achieved by scheduling a chunk of ready tasks simultaneously, which
enables for a global view of the potential communications. Our goal is
to minimize the total execution time, or latency, while tolerating an ar-
bitrary number of processor failures. Our approach is based on an active
replication scheme to mask failures, so that there is no need for detecting
and handling such failures. Major achievements include a low complex-
ity, and a drastic reduction of the number of additional communications
induced by the replication mechanism. The experimental results fully
demonstrate the usefulness of Iso-Level CAFT.

1 Introduction

With the advent of large-scale heterogeneous platforms such as clusters and grids,
resource failures (processors/links) are more likely to occur and have an adverse
effect on the applications. Consequently, there is an increasing need for develop-
ing techniques to achieve fault tolerance, i.e., to tolerate an arbitrary number of
failures during execution. Scheduling for heterogeneous platforms and fault tol-
erance are difficult problems in their own, and aiming at solving them together
makes the problem even harder. For instance, the latency of the application will
increase if we want to tolerate several failures, even if no actual failure happens
during execution.

In this paper, we introduce the Iso-Level Contention-Aware Fault Tolerant
(Iso-Level CAFT) scheduling algorithm (a new version of CAFT [4] that were
initially designed to address both problems of network contention and fault-
tolerance scheduling) that aims at tolerating multiple processor failures without
sacrificing the latency. Iso-Level CAFT is based on an active replication scheme
to mask failures, so that there is no need for detecting and handling such fail-
ures. Our choice for the active replication scheme is motivated by two important

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 259–272, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

260 M. Hakem

advantages. On the one hand, the schedules obtained are static, thus it is easy
to have a guarantee on the latency of the schedule. On the other hand, the
deployment of the system does not require complicated mechanisms for failure
detection. Major achievements include a low complexity, and a drastic reduc-
tion of the number of additional communications induced by the replication
mechanism.

We suggest to use the bi-directional one-port architectural model, where each
processor can communicate (send and/or receive) with at most one other pro-
cessor at a given time-step. In other words, a given processor can simultaneously
send a message, receive another message, and perform some computation. The
bi-directional one-port model seems closer to the actual capabilities of modern
networks (see the discussion of related work in [4,5,6]). Indeed, it seems to fit the
performance of some current MPI implementations, which serialize asynchronous
MPI sends as soon as message sizes exceed a few megabytes [4].

The rest of the paper is organized as follows: Section 2 presents basic defi-
nitions and assumptions. Then we describe the principle of the new Iso-Level
CAFT algorithm in Section 3. We experimentally compare Iso-Lvel CAFT with
its initial version CAFT in Section 4; the results assess the very good behavior
of the new algorithm. Finally, we conclude in Section 5.

The review of related work on fault tolerance scheduling is provided in [4].

2 Framework

The execution model for a task graph is represented as a weighted Directed
Acyclic Graph (DAG) G = (V, E), where V is the set of nodes corresponding to
the tasks, and E is the set of edges corresponding to the precedence relations
between the tasks. In the following we use the term node or task indifferently;
v = |V | is the number of nodes, and e = |E| is the number of edges. In a
DAG, a node without any predecessor is called an entry node, while a node
without any successor is an exit node. For a task t in G, Γ−(t) is the set of
immediate predecessors and Γ+(t) denotes its immediate successors. A task is
called ready if it is unscheduled and all of its predecessors are scheduled. We
target a heterogeneous platform with m processors P = {P1, P2, . . . , Pm}, fully
interconnected. The link between processors Pk and Ph is denoted by lkh. Note
that we do not need to have a physical link between any processor pair. In-
stead, we may have a switch, or even a path composed of several physical links,
to interconnect Pk and Ph; in the latter case we would retain the bandwidth
of the slowest link in the path for the bandwidth of lkh. For a given graph G
and processor set P , g(G,P) is the granularity, i.e., the ratio of the sum of
slowest computation times of each task, to the sum of slowest communication
times along each edge. H(α) is the head function which returns the first task
from a sorted list α, where the list is sorted according to tasks priorities (ties
are broken randomly). The number of tasks that can be simultaneously ready
at each step in the scheduling process is bounded by the width ω of the task graph

Iso-Level CAFT 261

(the maximum number of tasks that are independent in G). This, implies that
|α| ≤ ω.

Our goal is to find a task mapping of the DAG G on the platform P obeying
the one-port model. The objective is to minimize the latency L(G), while toler-
ating an arbitrary number ε of processor failures. Our approach is based on an
active replication scheme, capable of supporting ε arbitrary fail-silent (a faulty
processor does not produce any output) and fail-stop (no processor recovery)
processor failures.

3 The Iso-Level CAFT Scheduling Algorithm

In the previous version of CAFT algorithm [4], we consider only one ready task
(the one with highest priority) at each step, and we assign all its replicas to the
currently best available resources. Instead of considering a single task, we may
deal with a chunk of several ready tasks, and assign all their replicas in the same
decision making procedure. The intuition is that such a “global” assignment
would lead to better load balance processor and link usage.

We introduce a parameter B for the chunk size: B is the maximal number
of ready tasks that will be considered at each step. We select the B tasks with
the higher bottom levels b�(t) (the length of the longest path starting at t to an
exit node in the graph) and we allocate them in the same step. Then, we update
the set of ready tasks (indeed some new tasks may have become ready), and we
sort them again, according to bottom levels. Thus, we expect that the tasks on
a critical path will be processed as soon as possible.

The difference between CAFT and the new version, which we call Iso-Level
CAFT (or ILC), is sketched in Algorithm 3.1. With CAFT we take the ready
task with highest priority all allocate all its replicas before proceeding to the
next ready task. In contrast, with Iso-Level CAFT, the second replicas of tasks
in the same chunk are allocated only after all first replicas have been placed.
Intuitively, this more global strategy will balance best resources across all tasks
in the chunk, while CAFT may assign the ε + 1 best resources to the current
task, at the risk of sacrificing the next one, even though it may have the same
bottom level.

We point out that we face a difficult tradeoff for choosing an appropriate value
for B. On the one hand, if B is large, it will be possible to better balance the
load and minimize communication costs. On the other hand, a small value of B
will enable us to process the tasks on the critical path faster. In the experiments
(see Section 4) we observe that choosing B = m, the number of processors, leads
to good results.

Theorem 1. The time complexity of Iso-Level CAFT is

O
(
em(ε + 1)2 log(ε + 1) + v log ω

)

Proof. The proof is similar to that given in [4]. Note that since ε < m, we can
derive the upper bound O

(
em3 log m + v log ω

)
.

262 M. Hakem

Algorithm 3.1 CAFT vs Iso-Level CAFT (ILC)

1: initialization; U ← V ;
2: while U �= ∅ do
3: T ← H(α); ILC: repeat B times (*CAFT: |T | = 1 | ILC: |T | = B*)
4: for 1 ≤ i ≤ ε + 1 do
5: for t ∈ T do
6: allocate task-replica t(i) to processor with shortest finish time
7: end for
8: end for
9: end while

Notice that, allocating many copies of each task will severely increase the
total number of communications required by the algorithm: we move from e
communications (one per edge) in a mapping with no replication (fault free
schedule), to e(ε + 1)2 with replication (fault tolerant schedule), a quadratic
increase. In fact, duplicating each task ε + 1 times is an absolute requirement
to resist to ε failures, but duplicating each precedence edge e(ε + 1)2 times
is not mandatory. We can decrease the total number of communications from
e(ε + 1)2 down to e(ε + 1) as it was proved in [4]. Unfortunatly, this reduction
does not work all the time. The linear number of communications e(ε + 1) holds
only in special cases, typically for tasks having a unique predecessor, or when
every replica of all predecessors are mapped onto distinct processors or when all
the replicas belonging to the same processor communicate with only the same
successor-replica.

The problem becomes more complex when tasks have more than one pre-
decessor and several replicas of predecessors mapped on the same processor
communicate with different successor-replicas. In the following, we show how to
reduce this overhead in the design of Iso-Level CAFT.

3.1 Reducing Communication Overhead

When dealing with realistic model platforms, contention should be considered
in order to obtain improved schedules. We account for communication overhead
during the mapping process by removing some of the communications. To do so,
we propose the following mapping scheme.

Let t be the current task to be scheduled. Consider a predecessor tj of t,
j ∈ Γ−(t), that has been replicated on ε + 1 distinct processors. We denote by
Du the set of replicas assigned to processor Pu, and ηu = |Du| its cardinality. The
maximum cardinality is η = max1≤u≤m ηu. Also we denote by N the number of
processors involved/used by all replicas of tasks in Γ−(t).

We would like to reduce the number of communications from all predeces-
sors tj to t when possible. The idea is to attempt to place each replica on the
non-locked (locked processors are already either involved in a communication
with a replica of t, or processing it) processor which currently contains the most
predecessor replicas. To this purpose, we sort processors by non increasing or-
der of number of replicas ηu, 1 ≤ u ≤ m, assigned to them. At each step in

Iso-Level CAFT 263

(0) (1)

(2) (3)

Fig. 1. Iso-Level CAFT Scheduling Steps

the mapping process, we try to take communications from replicas belonging
to the non-locked processors, whenever possible. If not, we insert ε additional
communications.

Fig. 1 illustrates this procedure. We set ε = 2 in this example. At step (0),
no processor is blocked. The three predecessors of the current task t, namely
t1, t2 and t3, are assigned. At step (1), we place the first replica t(1) on P1,
which becomes locked. This is represented in the figure with a superscript ∗,
and the processor is also hatched in the figure. No communication is added in
this case. At step (2), we need to add a communication from P3 to P2, and thus
we have three locked processors. At step (3), we place replica t(3) on the only
non-locked processor which is P3, and we need to add extra communication since
all processors are locked.

Theorem 2. The schedule generated by Iso-Level CAFT algorithm is valid and
resists to ε failures.

Proof. The proof is similar to that of CAFT (see [4])

In the following, we give an analytical expression of the actual number of commu-
nications induced by the Iso-Level CAFT algorithm. First we give an interesting
upper bound for special graphs, and then we derive an upper bound for the
general case.

Special graphs
First, we bound the number of communications induced by Iso-Level CAFT
for special graphs like classical kernels representing various types of parallel
algorithms [1]. The selected task graphs are:

264 M. Hakem

(a) LU: LU decomposition
(b) LAPLACE: Laplace equation solver
(c) STENCIL: stencil algorithm
(d) DOOLITTLE: Doolittle reduction
(e) LDMt: LDMt decomposition

Miniature versions of each task graph are given in Fig. 2.

(a) (b) (c) (d) (e)

Fig. 2. Classical kernels of parallel algorithms

Theorem 3. The number of messages generated by Iso-Level CAFT for the
above special graphs is at most

V2(ε + 1) + V3

(
ε
⌈

(ε+2)
2

⌉
+ 2

)
,

where V2 ≤ � e
2� is the number of nodes of in-degree 2 and V3 ≤ � e

3� is the number
of nodes of in-degree 3 in the graph.

Proof. One feature of the special graphs is that the in-degree of every task is
at most 3. At each step when scheduling current task t, we have three cases
to consider, depending upon its in-degree (the cardinal of Γ−(t)). Recall that
processors are ordered by non increasing ηu values, where ηu. is the number of
replicas already assigned to Pu, hence which do not need to be communicated
again.

(1) |Γ−(t)| = 1. In this case, in order to pay no communication, we just need to
place each replica of t with a replica of its predecessor.
(2) |Γ−(t)| = 2. The two redecessor tasks of t are denoted t1 and t2. If replicas
of t1 and t2 are mapped on the same processor (P(t(z)

1) = P(t(z
′)

2) = P for some
1 ≤ z, z′ ≤ ε + 1), then there is no need for any additional communication.
Other replicas of t1 and t2 which does not satisfy the previous property are
thus mapped onto singleton processors. We perform the one-to-one mapping
algorithm to allocate the corresponding other replicas of t. For each replica, at
most one communication is added.
(3) |Γ−(t)| = 3. Here we consider the number of replicas allocated to proces-
sor Pu, denoted as ηu.

Iso-Level CAFT 265

– We place a replica on each processor with ηu = 3, thus no communication
need to be paid for

– Consider a processor with ηu = 2. When allocating a replica of t on such a
processor Pu, we need to receive data from the third predecessor allocated
to Pv �= Pu. Pv may be either a singleton processor (ηv = 1) or it may
handle two predecessors (ηv = 2).
- if ηv = 1, then we need only one communication for mapping the replica
of t. In this case Pv communicates only to Pu.
- if ηv = 2, then we may need to add extra communications. For the first⌈

ε+1
2

⌉
replicas of t, we add only one communication per replica, and lock

processors accordingly. But for the remaining set
⌊

ε+1
2

⌋
of replicas, we will

have to generate ε + 1 communications for each of these replicas. Overall,
the number of communications is at most

⌈
ε+1
2

⌉
+ (ε + 1)

⌊
ε+1
2

⌋

Let X =
⌈

ε+1
2

⌉
+ (ε + 1)

⌊
ε+1
2

⌋
. Let Y = ε

⌈
(ε+2)

2

⌉
+ 1. If ε = 2k is even,

then X = 2k2 + k + 1 ≤ 2k2 + 2k + 1 = Y . If ε = 2k + 1 is odd, then
X = 2k2 +2k+1 ≤ 2k2 +3k+1 = Y . In all cases X ≤ Y , hence the number
of communications is at most Y .

– Now, all remaining processors have at most one replica (η = 1). Thus task t
needs its data from two other replicas. So we have to take at most two
communications for each replicas mapped. Thus for the mapping of ε + 1
replicas, we will have at most a number of communications equal to 2(ε+1).
Note that 2(ε + 1) ≤ Y + 1 = ε

⌈
(ε+2)

2

⌉
+ 2 for all ε, hence the result.

General graphs

Theorem 4. For general graphs, the number of messages generated by Iso-Level
CAFT is at most

e
(
ε
⌈

(ε+2)
2

⌉
+ 1

)

Proof. At each step when scheduling current task t:

(i) For the first
⌈

ε+1
2

⌉
replicas, we generate at most

∑� (ε+1)
2 	

u=1 (|Γ−(t)| − ηu)
communications (recall that ηu is the number of replicas already assigned to Pu,
hence which do not need to be communicated again). Altogether, we have at
most

⌈
(ε+1)

2

⌉
|Γ−(t)| communications for these replicas.

(ii) We still have to map the remaining
⌊

ε+1
2

⌋
of t replicas. In the worst case,

each replica placed will generate ε+1 communications (this is because processors
may be locked in this case).

Thus for this remaining set of replicas, the number of communications is at
most (ε + 1)

∑ε+1

u=� (ε+1)
2 	+1

(|Γ−(t)| − ηu) ≤ (ε + 1)
⌊

ε+1
2

⌋ |Γ−(t)|
From (i) and (ii), we have a total number of communications of |Γ−(t)|X ,

where X =
⌈

ε+1
2

⌉
+ (ε + 1)

⌊
ε+1
2

⌋
. As in the proof of Theorem 3, we knwo that

X ≤ Y , where Y = ε
⌈

(ε+2)
2

⌉
+ 1. Hence the number of communications is at

most Y .

266 M. Hakem

Fig. 3. Complementary/disjoint sets of replicas

Thus, summing up for all the v tasks in G, the total number of messages is
at most

∑v
u=1 |Γ−(t)|

(
ε
⌈

(ε+2)
2

⌉
+ 1

)
= e

(
ε
⌈

(ε+2)
2

⌉
+ 1

)
.

The following last Theorem deals with disjoint and complementary replica
sets. In fact, the number of communications can be drastically reduced in such
a case:

Theorem 5. For general graphs, if at each step when scheduling a task t, we
can determine replica sets Du that are both disjoint (Du∩Du′ = ∅ if u �= u′) and
complementary (σm

u=1|Du| = |Γ−(t)|, or in other words ∪1≤u≤mDu contains a
replica of each predecessor of t), then the number of messages is at most e(ε+1).

Proof. We map a replica on Du and add communications from all complementary
sets, which generates at most |Γ−(t)| − |Du| = | ∪1≤u′≤m,u′ �=u Du′ | ≤ |Γ−(t)|.

Thus, for the mapping of ε+1 replicas, and summing up for the set V of tasks
in G, the total number of messages is at most

∑
t∈V |Γ−(t)|(ε + 1) = e(ε + 1).

Fig. 3 illustrates, for the mapping of the first replica t(1) we have |Γ−(t)|−|D1| =
5 − 3 = 2 = |D3|. In addition, both D1 and D3 are mutually complemen-
tary/disjoints and they form a complete instance of all predecessors. Also, for the
mapping of the second replica t(2), we have |Γ−(t)|−|D2| = 5−2 = 3 = |D4∪D5|.
Similarly, the condition of complementarity/disjunction of the sets D2, D4 and
D5 holds.

4 Experimental Results

We assess the practical significance and usefulness of the Iso-Level CAFT al-
gorithm through simulation studies. We compare the performance of Iso-Level
CAFT with its initial version CAFT algorithm. We use randomly generated
graphs, whose parameters are consistent with those used in the literature [4].
We characterize these random graphs with three parameters: (i) the number
of tasks, chosen uniformly from the range [80, 120]; (ii) the number of incom-
ing/outgoing edges per task, which is set in [1, 3]; and (iii) the granularity of

Iso-Level CAFT 267

the task graph g(G). We consider two types of graphs, with a granularity (a)
in [0.2, 2.0] and increments of 0.2, and (b) in [1, 10] and increments of 1. Two
types of platforms are considered, first with 10 processors and ε = 1 or ε = 3,
and then with 20 processors and ε = 5 (a full set of results is available in the
dedicated research report [3]). To account for communication heterogeneity in
the system, the unit message delay of the links and the message volume between
two tasks are chosen uniformly from the ranges [0.5, 1] and [50, 150] respectively.
Each point in the figures represents the mean of executions on 60 random graphs.
The fault free schedule is defined as the schedule generated without replication,
assuming that the system is completely safe. Recall that the upper bounds of
the schedules are computed as explained in [2].

Each algorithm is evaluated in terms of achieved latency and fault toler-

ance overhead CAFT0|Iso-Level CAFT0|CAFTc|Iso-Level CAFTc−CAFT∗

CAFT∗ , where
the superscripts ∗, c and 0 respectively denote the latency achieved by the fault
free schedule, the latency achieved by the schedule when processors effectively
fail (crash) and the latency achieved with 0 crash. We have also compared the
behavior of each algorithm when processors crash down by computing the real
execution time for a given schedule rather than just bounds (upper bound and
latency with 0 crash).

Comparing the results of Iso-Level CAFT to the results of CAFT, we ob-
serve in Fig. 4 and 5 that Iso-Level CAFT gives the best performance. It always
improves the latency significantly in all figures. This is because the Iso-Level
CAFT algorithm tries incrementally to ensure a certain degree of load balanc-
ing for processors by scheduling a chunk of ready tasks before considering their
corresponding replicas. This better load balancing also decreases communica-
tions between tasks. Consequently, this leads to minimize the final latency of
the schedule.

We also find in Fig. 6 and 7 that the performance difference between CAFT
and Iso-Level CAFT increases when the granularity increases. This interesting
result comes from the fact that larger granularity indicates that we are deal-
ing with intensive computations applications in heterogeneous platforms. Thus,
in order to reduce the latency for such applications, it is important to better
parallelize the application. That is why we changed the backbone of CAFT to
perfectly balance the load of processors at each step of the scheduling process.

Finally, we readily observe from all figures that we deal with two conflict-
ing objectives. Indeed, the fault tolerance overhead increases together with the
number of supported failures. We also see that latency increases together with
granularity, as expected. In addition, it is interesting to note that when the
number of failures increases, there is not really much difference in the increase of
the latency achieved by CAFT and Iso-Level CAFT, compared to the schedule
length generated with 0 crash. This is explained by the fact that the increase
in the schedule length is already absorbed by the replication done previously, in
order to resist to eventual failures.

268 M. Hakem

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT

(a) Latency bounds

 8

 10

 12

 14

 16

 18

 20

 22

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT With 1 Crash

CAFT With 0 Crash
CAFT With 1 Crash

(b) Latency achieved with crash

 20

 30

 40

 50

 60

 70

 80

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 O
ve

rH
ea

d
(%

)

Granularity

Iso-Leval CAFT With 0 Crash
Iso-Level CAFT With 1 Crash

CAFT With 0 Crash
CAFT With 1 Crash

(c) Fault tolerance overhead

Fig. 4. Average normalized latency and overhead comparison between Iso-Level-CAFT
and CAFT (Bound and Crash cases, m = 10, ε = 1)

Iso-Level CAFT 269

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso Level CAFT With 0 Crash
Iso level CAFT-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT

(a) Latency bounds

 15

 20

 25

 30

 35

 40

 45

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT With 2 Crash

CAFT With 0 Crash
CAFT With 2 Crash

(b) Latency achieved with crash

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 O
ve

rH
ea

d
(%

)

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT With 2 Crash

CAFT With 0 Crash
CAFT With 2 Crash

(c) Fault tolerance overhead

Fig. 5. Average normalized latency and overhead comparison between Iso-Level-CAFT
and CAFT (Bound and Crash cases, m = 10, ε = 3)

270 M. Hakem

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT

(a) Latency bounds

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT With 1 Crash

CAFT With 0 Crash
CAFT With 1 Crash

(b) Latency achieved with crash

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 O
ve

rH
ea

d
(%

)

Granularity

Iso-Leval CAFT With 0 Crash
Iso-Level CAFT With 1 Crash

CAFT With 0 Crash
CAFT With 1 Crash

(c) Fault tolerance overhead

Fig. 6. Average normalized latency and overhead comparison between Iso-Level-CAFT
and CAFT for coarse grain graphs g(G) ≥ 1 (Bound and Crash cases, m = 10, ε = 1)

Iso-Level CAFT 271

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso Level CAFT With 0 Crash
Iso level CAFT-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT

(a) Latency bounds

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT With 2 Crash

CAFT With 0 Crash
CAFT With 2 Crash

(b) Latency achieved with crash

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 O
ve

rH
ea

d
(%

)

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT With 2 Crash

CAFT With 0 Crash
CAFT With 2 Crash

(c) Fault tolerance overhead

Fig. 7. Average normalized latency and overhead comparison between Iso-Level-CAFT
and CAFT for coarse grain graphs g(G) ≥ 1 (Bound and Crash cases, m = 10, ε = 3)

272 M. Hakem

5 Conclusion

In this paper, an efficient fault-tolerant scheduling algorithm (Iso-Level CAFT)
for heteorgeneous systems is studied and analysed. Iso-Level CAFT is based on
an active replication scheme, and is able to drastically reduce the communication
overhead induced by task replication, which turns out a key factor in improving
performance when dealing with realistic, communication contention aware, plat-
form models. The design of Iso-Level CAFT is motivated by (i) the search for a
better load-balance and (ii) the generation of fewer communications. These goals
are achieved by scheduling a chunk of ready tasks simultaneously, which enables
for a global view of the potential communications. To assess the performance of
Iso-Level CAFT, simulation studies were conducted to compare it with CAFT,
which seems to be its main direct competitor from the literature. We have shown
that Iso-Level CAFT is very efficient both in terms of computational complexity
and quality of the resulting schedule.

An extension of Iso-Level CAFT would be to extend it to the context of
pipelined workflows made up of collections of identical task graphs (rather than
dealing with a single graph as in this paper). We would then need to solve
a challenging tri-criteria optimization problem (latency, throughput and fault-
tolerance).

References

1. Beaumont, O., Boudet, V., Robert, Y.: A realistic model and an efficient heuristic
for scheduling with heterogeneous processors. In: Proc. of the 11th Heterogeneous
Computing Workshop HCW 2002 (2002)

2. Benoit, A., Hakem, M., Robert, Y.: Fault tolerant scheduling of precedence task
graphs on heterogeneous platforms. In: Proc. of the 10th Int. Workshop in Advances
Parallel and Distributed Computational Models APDCM 2008, pp. 1–8 (2008),
http://graal.ens-lyon.fr/~abenoit/

3. Benoit, A., Hakem, M., Robert, Y.: Iso-Level CAFT: How to Tackle the Combination
of Communication Overhead Reduction and Fault Tolerance Scheduling. In: RR
2008-25, LIP, ENS Lyon, France (July 2008), http://graal.ens-lyon.fr/~mhakem/

4. Benoit, A., Hakem, M., Robert, Y.: Realistic models and efficient algorithms
for fault tolerance scheduling on heterogeneous platforms. In: Proc. of the 37th
IEEE Int. Conference on Parallel Processing ICPP 2008, pp. 246–253 (2008),
http://graal.ens-lyon.fr/~abenoit/

5. Sinnen, O., Sousa, L.: Experimental evaluation of task scheduling accuracy: Im-
plications for the scheduling model. IEICE Transactions on Information and Sys-
tems E86-D(9), 1620–1627 (2003)

6. Sinnen, O., Sousa, L.: Communication contention in task scheduling. IEEE Trans.
on Parallel and Distributed Systems 16(6), 503–515 (2005)

http://graal.ens-lyon.fr/~abenoit/
http://graal.ens-lyon.fr/~mhakem/
http://graal.ens-lyon.fr/~abenoit/

	Iso-Level CAFT: How to Tackle the Combination of Communication Overhead Reduction and Fault Tolerance Scheduling
	Introduction
	Framework
	The Iso-Level CAFT Scheduling Algorithm
	Reducing Communication Overhead

	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

