
J. Parallel Distrib. Comput. 65 (2005) 1497–1514
www.elsevier.com/locate/jpdc

Optimizing the steady-state throughput of scatter and reduce operations on
heterogeneous platforms

A. Legrand, L. Marchal, Y. Robert∗

LIP, UMR CNRS-INRIA 5668, ENS Lyon, France

Received 10 September 2003; received in revised form 2 November 2004; accepted 31 May 2005
Available online 15 July 2005

Abstract

In this paper, we consider the communications involved by the execution of a complex application, deployed on a heterogeneous
large-scale distributed platform. Such applications intensively use collective macro-communication schemes, such as scatters, personalized
all-to-alls or gather/reduce operations. Rather than aiming at minimizing the execution time of a single macro-communication, we focus
on the steady-state operation. We assume that there is a large number of macro-communications to perform in pipeline fashion, and we
aim at maximizing the throughput, i.e., the (rational) number of macro-communications which can be initiated every time-step. We target
heterogeneous platforms, modeled by a graph where resources have different communication and computation speeds. The situation is
simpler for series of scatters or personalized all-to-alls than for series of reduces operations, because of the possibility of combining various
partial reductions of the local values, and of interleaving computations with communications. In all cases, we show how to determine the
optimal throughput, and how to exhibit a concrete periodic schedule that achieves this throughput.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Scheduling; Cluster; Heterogeneity; Scatter; Reduce; Macro-communication; Steady-state mode

1. Introduction

In this paper, we consider the communications involved
by the execution of a complex application, deployed on
a heterogeneous “grid” platform. Such applications inten-
sively use macro-communication schemes, such as broad-
casts, scatters, all-to-all or reduce operations.

These macro-communication schemes have often been
studied with the goal of minimizing their makespan, i.e., the
time elapsed between the emission of the first message by
the source, and the last reception. But in many cases, the
application has to perform a large number of instances of
the same operation (for example if data parallelism is used).
When dealing with such a series of macro-communications,
pipelining is mandatory to achieve good performance. The

∗ Corresponding author. Fax: +33 4 72 72 80 80.
E-mail addresses: arnaud.legrand@ens-lyon.fr (A. Legrand),

loris.marchal@ens-lyon.fr (L. Marchal), Yves.Robert@ens-lyon.fr
(Y. Robert).

0743-7315/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2005.05.021

relevant objective becomes the optimization of the through-
put, i.e., the average number of macro-communications ex-
ecuted per time-unit. In this paper, we focus on scatter and
reduce operations (note that broadcasts are dealt with in
the companion paper [6]). Here are the definitions of these
operations:

Scatter: One processor Psource sends a distinct message to
each processor belonging to the set S = {Pt0 , Pt1 , . . . , PtN }.
The set S may well be a strict subset of all the processors
composing the platform; the remaining processors may be
involved by forwarding some messages, or may be not in-
volved at all.

Series of scatters: The same source processor performs
a series of SCATTER operations, i.e., consecutively sends a
large number of different messages to the set S of target
processors.

Reduce: Each processor Pi belonging to a set R =
{Pr0 , Pr1 , . . . , PrN } of participating processors has a local
value vi . The goal is to calculate v = v0 ⊕ · · · ⊕ vN , where
⊕ is an associative operator. Note that ⊕ is not necessarily

http://www.elsevier.com/locate/jpdc
mailto:arnaud.legrand@ens-lyon.fr
mailto:loris.marchal@ens-lyon.fr
mailto:Yves.Robert@ens-lyon.fr

1498 A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514

commutative. 1 The result v is to be stored on processor
Ptarget. Just as before, the set R may well be a strict subset
of all the processors composing the platform;

Series of reduces: A series of REDUCE operations is to be
performed, from the same set R of participating processors,
and to the same target Ptarget.

The efficient implementation of series of macro-
communications primitives is of great practical impor-
tance. Consider for instance the class of problems that
are addressed by collaborative computing efforts such
as SETI@home [34], factoring large numbers [14], the
Mersenne prime search [31], and those distributed com-
puting projects organized by companies such as Entropia
[16]: for these problems, the execution usually begins with
the distribution of a large number of input files, which
correspond to the input data needed by each participat-
ing computing resource. This distribution is nothing else
than a SERIES OF SCATTERS operation. Similarly, SERIES

OF REDUCES operations frequently occur in linear algebra
(e.g., a conjugate-gradient algorithm involving scalar prod-
ucts at each step), in combinatorial optimization (e.g., to
determine current maxima or minima in branch-and-bound
executions), and to sort or gather data in a particular order:
we refer to [32] for a detailed list of applications.

As already mentioned, for the SCATTER and REDUCE prob-
lems, the goal is to minimize the makespan of the opera-
tion. For the SERIES version of these problems, the goal is
to pipeline the different scatter/reduce operations so as to
reach the best possible throughput in steady-state operation.
In this paper, we propose a new algorithmic strategy to solve
this problem. The main idea is the same for the SERIES OF

SCATTERS and SERIES OF REDUCES problems, even though
the latter turns out to be more difficult, because of the pos-
sibility of combining various partial reductions of the local
values, and of interleaving computations with communica-
tions. But in both cases, we succeed in deriving a sched-
ule that optimizes the throughput, and this derivation is ob-
tained with a complexity polynomial in the platform size,
independently of the number of macro-communications to
be executed.

The rest of the paper is organized as follows. Section 2
describes the model used for the target computing platform
model, and states the one-port assumptions for the opera-
tion mode of the resources. Section 3 deals with the SERIES

OF SCATTERS problem. Section 3.5 is devoted to the exten-
sion to personalized all-to-all operations. The more complex
SERIES OF REDUCES problem is described in Section 4. Sec-
tion 5 presents some experimental results. Section 6 gives

1 When the operator is commutative, there is more freedom to assemble
the final result. Of course it is always possible to perform the reduction
with a commutative operator, but without taking advantage of the com-
mutativity. The MPI_Reduce function [35] includes predefined opera-
tions which are commutative, but allows for user-defined operations that
are not.

an overview of related work. Finally, we provide some con-
cluding remarks in Section 7.

2. Framework

In this section we introduce the platform model. Then,
we give some background on steady-state scheduling tech-
niques. Finally, we bring in some notations that will be used
throughout the text.

2.1. Platform model

We adopt a model of heterogeneity close to the one devel-
oped by Bhat et al. [10]. The network is represented by an
edge-weighted graph G = (V , E, c). This graph may well
include cycles and multiple paths. Each edge e is labeled
with the value c(e), the time needed to transfer of a message
of unit size through the edge.

Among different scenarios found in the literature (see Sec-
tion 6), we adopt the widely used (and realistic) one-port
model: at each time-step, a processor is able to perform at
most one emission and one reception. When computation
is taken into account, we adopt a full overlap assumption:
a processor can perform computations and (independent)
communications simultaneously.

To state the model more precisely, suppose that processor
Pi starts sending a message of length � at time t . This transfer
will last �×c(i, j) time-steps. Note that the graph is directed,
so there is no reason to have c(i, j) = c(j, i) (and even
more, the existence of edge (i, j) does not imply that of link
(j, i)). The one-port model imposes that between time-steps
t and t + � × c(i, j):

• processor Pi cannot initiate another send operation (but
it can perform a receive operation and an independent
computation),

• processor Pj cannot initiate another receive operation (but
it can perform a send operation and an independent com-
putation),

• processor Pj cannot start the execution of tasks depending
on the message being transferred.

2.2. Steady-state scheduling

Rather than minimizing the total execution time (i.e., the
“makespan”), our goal is to maximize the throughput in
steady-state mode, i.e., the number of SCATTER or REDUCE

operations initiated per time-unit. This approach has been
pioneered by Bertsimas and Gamarnik [8].

There are three main reasons for focusing on the steady-
state operation. First is simplicity, as the steady-state
scheduling is really a relaxation of the makespan minimiza-
tion problem. Initialization and clean-up phases are ignored,
and the emphasis is on the design of a periodic schedule.
Precise ordering and allocation of tasks and messages are

A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514 1499

not required. The key idea is to characterize the activity
of each resource during each time-unit. For the SERIES OF

SCATTERS problem, one only needs to determine which
fraction of time each processor spends communicating with
which neighbor. In addition, for the SERIES OF REDUCES

problem, one needs to determine which fraction of time
each processor spends computing which reduction. The ac-
tual schedule then arises “naturally” from these quantities,
as explained in Section 3.3.

Second is efficiency, as steady-state scheduling provides,
by definition, a periodic schedule, which is described in
compact form and is thus possible to implement efficiently
in practice. Third is adaptability: because the schedule is
periodic, it is possible to dynamically record the observed
performance during the current period, and to inject this
information into the algorithm that will compute the optimal
schedule for the next period. This makes it possible to react
on the fly to resource availability variations.

In the following, we express both optimization problems
(SERIES OF SCATTERS and SERIES OF REDUCES) as a set of
linear constraints, in order to build a linear program. We
solve the linear program in rational numbers, with standard
tools like lpsolve [7] or Maple [13]. Once each activity
variable has been computed, the final periodic schedule can
be constructed owing to an automated procedure, systematic
although technical. The key idea is to scale the rational val-
ues output by the solution of the linear program, to obtain
integer numbers, and the length of the period of the sched-
ule is determined by this scaling. Once we have the activity
pattern during a period, we basically reproduce it to derive
the final schedule. We outline the actual construction step-
by-step in Section 3.3.

2.3. Common notations

A few variables and constraints are common to the SERIES

OF SCATTERS and SERIES OF REDUCES problems, because
they arise from the one-port model. Let s(Pi → Pj) be the
fraction of time spent by processor Pi to send messages to
Pj during one time-unit. This quantity is a rational number
between 0 and 1

∀Pi, ∀Pj , 0�s(Pi → Pj)�1. (1)

When we express the communications of a given processor
Pi during a time-unit, the one-port model imposes the fol-
lowing constraints:

∀ Pi,
∑

Pj ,(i,j)∈E

s(Pi → Pj)�1

(outgoing messages from Pi), (2)

∀ Pi,
∑

Pj ,(j,i)∈E

s(Pj → Pi)�1

(incoming messages to Pi). (3)

With steady-state scheduling we do not need to determine
the precise ordering in which the different communications
are executed by Pi : instead we take a macroscopic point of
view and simply bound the total amount of data sent and
received every time-unit.

We will later add further constraints corresponding to each
specific problem under study. We first explain how to use the
steady-state framework on the simpler SERIES OF SCATTERS

problem.

3. Series of scatters

Recall that a scatter operation involves a source processor
Psource and a set of target processors S; the source processor
has a message mk , of size �k , to send to each processor Pk ∈
S. We focus here on the pipelined version of this problem:
processor Psource aims at sending a large number of different
same-size messages to each target processor Pk ∈ S.

3.1. Linear program

First, we introduce a few definitions for the steady-state
operation

• mk is the type of the messages whose destination is pro-
cessor Pk . The size of such messages is �k ,

• send(Pi → Pj , mk) is the fractional number of messages
of type mk which are sent on the edge (i, j) within a time-
unit.

The relation between send(Pi → Pj , mk) and s(Pi → Pj)

is expressed by the following equation:

∀ Pi, Pj , s(Pi → Pj)

=
∑

k

send(Pi → Pj , mk) · �k · c(i, j), (4)

where the sum is over indices k such that Pk ∈ S.
The fact that some packets are forwarded by a node Pi

can be seen as a “conservation law”: all the packets reaching
a node which is not their final destination are transferred
to other nodes. For example, in Fig. 1, node Pi receives 7
messages for Pk , and forwards them all to other processors.

5mk

2mk

3mk

4mk

Pi

Fig. 1. Example of the conservation law, with Pi �= Pk .

1500 A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514

This idea is expressed by the following constraint:

∀ Pi, i �= source ∀mk, k �= i,∑
Pj ,(j,i)∈E

send(Pj → Pi, mk)

=
∑

Pj ,(i,j)∈E

send(Pi → Pj , mk). (5)

As stated in Eq. (5), the conservation law does not apply
to the source processor Psource, from which all messages
originate.

Moreover, the throughput at processor Pk is the number
of messages mk received at Pk every time-unit. We have to
compute the sum of all messages of type mk received by Pk

via all its incoming edges. We also have to impose that the
same throughput TP is achieved at each target node. This
leads to the following constraint:

∀Pk ∈ S,
∑

Pi,(i,k)∈E

send(Pi → Pk, mk) = TP. (6)

We summarize all previous constraints in the following
linear program:

STEADY-STATE SCATTER PROBLEM ON A GRAPH SSSP(G)

Maximize TP,

subject to
∀ Pi, ∀Pj , 0�s(Pi → Pj)�1
∀ Pi,

∑
Pj ,(i,j)∈E s(Pi → Pj)�1

∀ Pi,
∑

Pj ,(j,i)∈E s(Pj → Pi)�1
∀ Pi, Pj , s(Pi → Pj) = ∑

k send(Pi → Pj , mk)

· �k · c(i, j)

∀ Pi, ∀mk, k �= i,
∑

Pj ,(j,i)∈E send(Pj → Pi, mk)

= ∑
Pj ,(i,j)∈E send(Pi → Pj , mk)

∀ Pk, k ∈ T
∑

Pi,(i,k)∈E send(Pi → Pk, mk) = TP.

This linear program can be solved in polynomial time by
using tools like lpsolve [7], Maple [13] or MuPaD [36].
The solution will be a set A of rational numbers character-
izing the activity on each edge. Before explaining how to
construct an actual schedule from the values in A, we deal
with a little example.

3.2. Toy example

To illustrate the use of the linear program, consider the
simple example described on Fig. 2. Fig. 2(a) presents the
topology of the network, where each edge e is labeled with
its communication cost c(e). In this simple case, one source
Ps sends a series of messages to two target processors P0
and P1. We let �0 = �1 = 1.

Figs. 2(b) and (c) show the values output by the linear
program. We have multiplied all values by a factor 12 to
obtain integer numbers. In Fig. 2(b), we represent the num-
ber of messages of each type going through the network,
whereas Fig. 2(c) describes the occupation of each edge. The

11

2/3 4/34/3

Pb Pb PbPa Pa Pa

Ps Ps Ps

P0 P0P0P1 P1P1

6m1

6m1
3m0

3m0

3m03m0 3

2
4

8

9

(a) (b) (c)

Fig. 2. Toy example for the SERIES OF SCATTERS problem. All values
are given for a period of 12. The achieved throughput is 6 messages every
12 time-units: (a) topology, (b) send values (times 12) and (c) s values
(times 12).

throughput achieved with this solution is TP = 1
2 , which

means that one scatter operation is executed every two time-
units. We point out that all the messages destined to pro-
cessor P0 do not take the same route: some are transferred
by Pa , and others by Pb. Our framework allows for using
multiple routes in order to reach the best throughput.

3.3. Constructing a schedule

A solution A to the linear program SSSP(G) is a set of
values send(Pi → Pk, mk) and s(Pi → Pj). From this
set, one needs to construct a (periodic) schedule, that is a
way to decide which specific messages are transmitted by
each edge during each period. We start by expressing all the
rational numbers in A as the quotient of two relatively prime
integers, and the period T of the schedule is set to the least
common multiple of all denominators. Formally, we write
send(Pi → Pk, mk) = ui,j,k

vi,j,k
, s(Pi → Pj) = xi,j

yi,j
, and we let

T = lcm(lcmi,j,k(vi,j,k), lcmi,j (yi,j)) (where lcm denotes
the least common multiple).

Once we have the period T , we know the number of
messages of each type that circulates along each edge dur-
ing each period. Obviously, the first and last periods will
be different, but let us concentrate on steady-state operation
for the time being. We have to orchestrate all the required
communications so that one-port constraints are always sat-
isfied. This is not directly enforced by the linear program.
Indeed, we know from the linear program that locally, each
processor needs no more than T units of time to send all
the messages that it is scheduled to send to all its neighbors.
However, from a global point of view, several communica-
tions will have to be scheduled simultaneously on the plat-
form. In the one-port model, two communications can be
scheduled concurrently only if they involve edges with dif-
ferent sources and different targets. In other words neither
two emissions nor two receptions should ever overlap on
one node (but simultaneously sending and receiving is al-
lowed). The global orchestration of the communications is
achieved using a weighted-matching algorithm, as detailed
in [5]. We recall the basic principles of this algorithm. From
our platform graph G, and the result of the linear program,

A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514 1501

we build a bipartite graph GB = (VB, EB, eB) as follows:

• for each node Pi in G, create two nodes P send
i and P recv

i ,
one in charge of emissions, the other of receptions.

• for each non-zero value send(Pi → Pj , mk), insert an
edge between P send

i and P recv
j labeled with the time

needed by corresponding transfers during a period,
namely

send(Pi → Pj , mk) · �k · c(i, j) · T .

We are looking for a decomposition of this graph into a
set of subgraphs where a node (sender or receiver) is occu-
pied by at most one communication task. This means that at
most one edge reaches each node in the subgraph. In other
words, only communications corresponding to a matching
in the bipartite graph can be performed simultaneously, and
the desired decomposition of the graph is in fact an edge
coloring. The weighted edge coloring algorithm of Schrijver
[33, vol. A, Chapter 20] provides in time O(|E|) a poly-
nomial number of matchings, which we use to perform the
different communications.

Rather than going into technical details, we illustrate this
algorithm on the previous example. The bipartite graph con-
structed when multiplying by T the send(Pi → Pj , mk)

and s(Pi → Pj) values returned by the linear program is
represented on Fig. 3(a). It can be decomposed into four
matchings, represented on Figs. 3(b)–(e).

These matchings explain how to split the communications
to build a schedule. Such a schedule is described on Fig.
4(a). We assume that the transfer of a message can be split
into several parts (for example, the fifth message transferred
from Pb to P1 is sent during the first and the third part of
the period, corresponding to the first and third matchings.
If needed, we can avoid splitting the transfer of a message
by multiplying again by the least common multiple of all
denominators appearing in the number of messages to be
sent in the different matchings. In our example, since this
least common multiple is 4, this produces a schedule of
period 48, represented on Fig. 4(a).

The final period is potentially very large, but we discuss
in Section 4.6 how to approximate the result for a smaller
period.

There remains to discuss the initialization and clean-up
phases. For the initialization, the simplest solution is to let
the source processor Psource sequentially send to each pro-
cessor Pi the total number of messages of each type that it re-
ceives during a period. This quantity is easy to compute from
the solution A of the linear program: indeed, Pi receives∑

Pj
send(Pj → Pi, mk) messages of type mk . Of course

such an initialization process takes longer than needed and
could be easily improved. However, the key-point is that the
total time I needed by Psource to send all these messages is
bounded by a constant that depends on the platform and on
T , but not on the total number of macro-communications to
be performed. This simple observation will be important to
prove the asymptotic optimality of the final schedule in Sec-

3 3
6

8
2

4

Pa
send Pa

recv Pb
send recvPb

Ps
send

recvP0
recv

P1

6

6 9
2 m1)

 (6m
1)

(6m1) (3m0)

 (3m0)

3 (3m0)

1 (1m0)

2 (3m0)

2 (2m0)

(3 m 0
)

(3m
0)

Ps
send Ps

send

Ps
send Ps

send

Pa
send Pa

send

Pa
send Pa

send

Pa
recv Pa

recv

Pa
recv Pa

recv

Pb
send Pb

send

Pb
send Pb

send

recvPb
recvPb

recvPb
recvPb

recv
P1

recv
P1

recv
P1

recv
P1

recvP0
recvP0

recvP0
recvP0

(6m0)

(
3 9

4 m0)(

1 3
4 m0)(

2 3
2 m1)(

(a)

(b) (c)

(d) (e)

Fig. 3. Bipartite Graph of the example and its decomposition into match-
ings. Edges are labeled with the communication times for each type of
message going through the edge. The corresponding number of messages
is mentioned between brackets: (a) Bipartite Graph, (b) Matching 1, (c)
Matching 2, (d) Matching 3 and (e) Matching 4.

tion 3.4. For the clean-up phase, we adopt a similar (slow)
method and sequantially route the last messages circulating
along the platform edges, again in constant time.

Before moving to the proof of asymptotic optimality, we
point out a technical but important point. Because the value
of T arises from the linear program, log T is indeed a num-
ber polynomial in the problem size, but T itself is not. The
description of what happens at every time-step during a time
period would have a size exponential in the problem size.
Fortunately, our description of the final schedule is expressed
in a “compact” way: there is a polynomial number of inter-
vals (corresponding to the matchings), and for each inter-
val a polynomial (even linear) description of the activity of
each resource. This also applies to the sequential initializa-
tion and clean-up phases, so altogether we have provided a
polynomial characterization of the entire schedule (see [5]
for further details).

1502 A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514

Fig. 4. Different possible schedules for the example: (a) schedule if we
allow for splitting messages (period=12) and (b) schedule without any
split message (period=48).

3.4. Asymptotic optimality

In this section, we prove that the previous periodic sched-
ule is asymptotically optimal: basically, no scheduling al-
gorithm (even non-periodic) can execute more scatter op-
erations in a given time-frame than ours, up to a constant
number of operations. This section is devoted to the formal
statement of this result, and to the corresponding proof.

Given a platform graph G = (P, E, c), a source processor
Psource holding an infinite number of messages destined to
a set S of target processors, and a time bound K , define
opt(G, K) as the optimal number of messages that can be
received by every target processor in a succession of scatter
operations, within K time-units. Let TP(G) be the solution
of the linear program SSSP(G) of Section 3.1 applied to this
platform graph G. We have the following result:

Lemma 1. opt(G, K)�TP(G) × K .

Proof. Consider an optimal schedule (not necessarily peri-
odic), such that the number of messages sent by the source
processor within the K time-units is maximal. For each edge
(Pi, Pj), let N(Pi → Pj , mk) be the number of messages
for Pk sent by Pi to Pj . Let S(Pi → Pj) be the total occupa-
tion time of the edge (Pi, Pj). Then the following equations
hold true:

• ∀Pi, ∀Pj , S(Pi → Pj) = ∑
mk

N(Pi → Pj , mk)· �k ·
c(i, j) (by definition of S(Pi → Pj)).

• ∀Pi, ∀Pj , 0�S(Pi → Pj)�K (schedule executed
within K time-units).

• ∀Pi,
∑

Pj ,(i,j)∈E

S(Pi → Pj)�K (time for Pi to send

messages in the one-port model).
• ∀Pi,

∑
Pj ,(j,i)∈E

S(Pj → Pi)�1 (time for Pi to receive

messages in the one-port model).
• ∀Pi, i �= source, ∀mk, k �= i,

∑
Pj ,(j,i)∈E

N(Pj → Pi, mk)

= ∑
Pj ,(i,j)∈E

N(Pi → Pj , mk) (conservation law for mes-

sages forwarded by Pi to Pk).
• ∀Pk ∈ S, opt (G, K) = ∑

Pj ,(j,k)∈E N(Pj → Pk, mk)

(same number of messages received on each target node).

Let send(Pi → Pj , mk) = N(Pi→Pj ,mk)

K
and s(Pi → Pj) =

S(Pi→Pj)

K
. All the equations of the linear program SSSP(G)

hold, hence opt(G,K)
K

�TP(G), since TP is the optimal
value. �

Again, this lemma states that no schedule can send more
messages that the steady-state. There remains to bound the
loss due to the initialization and the clean-up phase in our
periodic solution, in order to come up with a well-defined
scheduling algorithm based upon steady-state operation.
Consider the following algorithm (assume that K is large
enough):

• Solve the linear program for SSSP(G), compute the
throughput TP(G). Determine the period T such that
every communication time is an integer.

• Initialization phase: Psource sequentially sends
∑

Pj

send(Pj → Pi, mk) messages of type mk to each proces-
sor Pi . This requires a total time I , which is independent
of K .

• Let J be the sequential time needed for each processor
Pi to send

∑
Pj

send(Pi → Pj , mk) messages of type
mk to each target processor Pk . Again, J is a constant
independent of K .

• Let r = �K−I−J
T

�.
• Steady-state scheduling: during r periods of time T , oper-

ate the platform in steady state, according to the solution
of SSSP(G).

• Clean-up: sequentially circulate all messages to their final
destination. This requires at most J time-units. Do nothing
during the very last units (K − I − J may not be evenly
divisible by T).

• The number of messages sent to each node by this al-
gorithm within K time-units is at least the number of
messages sent during the steady-state phase, which is
steady(G, K) = r × T × T P (G).

Proposition 1. The previous scheduling algorithm based on
the steady-state operation is asymptotically optimal:

lim
K→+∞

steady(G, K)

opt(G, K)
= 1.

A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514 1503

Proof. Using the previous lemma, opt(G, K)�TP(G) ×
K . From the description of the algorithm, we have
steady(G, K) = r × T × TP(G) = ⌊

K−I−J
T

⌋ · T · T P (G).
Since TP(G), I and T are constants independent of K , the
result holds. �

This concludes the proof of the main result of this section:

Theorem 1. The previous scheduling algorithm based on
the steady-state operation provides a polynomial solution
to the SERIES OF SCATTERS problem which is asymptoti-
cally optimal, among all possible schedules (not necessarily
periodic).

3.5. Extension to personalized all-to-alls

We have dealt with the SERIES OF SCATTERS problem,
but the same equations can be used in the more general
case of a SERIES OF PERSONALIZED ALL-TO-ALLS. In this
context, a set of source processors sends a series of distinct
messages to a set of target processors. The messages are
now typed with the source and the destination processors:
mk,l is a message emitted by Pk and destined to Pl ; its size
is �k,l . The constraints stand for the one-port model, and for
conservation of the messages. The throughput has to be the
same for each sender, and for each target node. This leads
to the linear program summarizing all these constraints:

STEADY-STATE PERSONALIZED ALL-TO-ALL PROBLEM ON
A GRAPH SSPA2A(G)

Maximize TP,
subject to
∀ Pi, ∀Pj , 0�s(Pi → Pj)�1
∀ Pi,

∑
Pj ,(i,j)∈E s(Pi → Pj)�1

∀ Pi,
∑

Pj ,(j,i)∈E s(Pj → Pi)�1
∀ Pi, ∀Pj , s(Pi → Pj)

= ∑
k,l send(Pi→Pj ,mk,l)·�k,l ·c(i,j)

∀ Pi,∀ mk,l, k �= i, l �= i,
∑

Pj ,(j,i)∈E send(Pj → Pi, mk,l)

= ∑
Pj ,(i,j)∈E send(Pi → Pj , mk,l)

∀ Pk, ∀mk,l

∑
Pi,(k,i)∈E send(Pk → Pi, mk,l)

= TP
∀ Pl, ∀mk,l

∑
Pi,(i,l)∈E send(Pi → Pl, mk,l)

= TP.

After solving this linear system, we proceed exactly as
for the SERIES OF SCATTERS. We compute the period of the
schedule as the least common multiple of all denominators
in the solution, and we build a valid schedule using the
weighted-matching algorithm. Furthermore, we can prove
the same result of asymptotic optimality:

Theorem 2. The previous scheduling algorithm based on
the steady-state operation provides a polynomial solution to
the SERIES OF PERSONALIZED ALL-TO-ALLS problem which
is asymptotically optimal, among all possible schedules (not
necessarily periodic).

4. Series of reduces

After introducing our framework on the (relatively) sim-
ple SERIES OF SCATTERS operation, we move on to a more
complex collective communication primitive, the SERIES OF

REDUCES operation, which involves both communications
and computations. Achieving good performances is much
more challenging (but more interesting) for the SERIES OF

REDUCES problem. We focus our experiments on this prob-
lem (see Section 5).

We recall the sketch of a reduce operation: each pro-
cessor Pri in the set R = {Pr0 , . . . , PrN } initially owns
a value vi . The goal is to compute the reduction v of
these values: v = v0 ⊕ · · · ⊕ vN , where ⊕ is an as-
sociative, but not necessarily commutative operator. We
impose that at the end, the result is stored in proces-
sor Ptarget. The reduce operation is more complex than
the scatter operation, because computational tasks are in-
serted, in order to merge the different messages into new
“reduced” ones. For 0�k�m�N , let v[k,m] denote the
partial result corresponding to the reduction of the values
vk, . . . , vm:

v[k,m] = vk ⊕ · · · ⊕ vm.

The initial values vi = v[i,i] will be reduced into par-
tial results until the final result v = v[0,N] is reached.
As ⊕ is associative, two partial results can be reduced as
follows:

v[k,m] = v[k,l] ⊕ v[l+1,m].

We let Tk,l,m denote the computational task associated to
this reduction.

We start by giving an example of a non-pipelined reduce
operation, in order to illustrate how to interpret this oper-
ation as a reduction tree. Next, we move to the SERIES OF

REDUCES problem: we explain how to derive the linear pro-
gram, and how to build a schedule using the result of this
linear program.

4.1. Introduction to reduction trees

Consider the simple example of a network composed of
three processors P0, P1, P2 owning the values v0, v1, v2, and
linked by a fully connected topology (see Fig. 6(a)). The
target processor is P0. One way to perform the reduction of
{v0, v1, v2} is the following schedule:

1. P2 sends its value v2 to P1,
2. P1 computes the partial reduction v[1,2] = v1 ⊕ v2 (task

T1,1,2),
3. P0 sends its value v0 to P1,
4. P1 computes the final result v[0,2] = v0 ⊕ v[1,2] (task

T0,0,2),
5. P1 sends the final result v = v[0,2] to P0.

1504 A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514

P1

P1

P1

v1

T0,0,2

P0

v[0,2]

v0

v0

P2

v2

v2

T1,1,2

P0 → P1

P1 → P0

P2 → P1

Fig. 5. Simple example of a reduction tree.

Obviously, this may well not be the shortest way to per-
form the reduction! But we merely use the above sched-
ule to introduce reduction trees. Indeed, we represent the
schedule by a tree. We create one node for each value vi

on processor Pi , and for each task (either a communication
or a computation). We insert one edge n1 → n2 when the
result of node n1 is an input data of node n2. The reduc-
tion tree of the schedule described above is represented on
Fig. 5.

A schedule for a single reduction operation uses a sin-
gle reduction tree. As we are interested in the SERIES OF

REDUCES problem, we assume that each processor Pi ini-
tially has a set of values, indexed with a time-stamp: one
of these values is denoted as vt

i . The series of reductions
consists in the reduction of each set {vt

0, . . . , v
t
N } for each

time-stamp t . We can interpret each of these reductions as
a reduction tree, but two different reductions (for distinct
time-stamps t1 and t2) may well use two different reduction
trees.

4.2. Linear program

To describe the linear constraints of the SERIES OF

REDUCES problem, we use the following variables:

• send(Pi → Pj , v[k,l]) is the fractional number of mes-
sages of type v[k,l] and which are sent from Pi to Pj ,
within one time unit,

• cons(Pi, Tk,l,m) is the fractional number of tasks Tk,l,m

computed on processor Pi within one time unit. Note that
cons(Pi, Tk,l,m) also is the number of messages of type

[k, l] and [l + 1, m] consumed by Pi for this operation;
similarly, cons(Pi, Tk,l,m) is the number of new messages
of type [k, m] generated by Pi during this operation.

• �(Pi) is the time spent by Pi computing all tasks within
each time-unit. This quantity is obviously bounded:

∀Pi, 0��(Pi)�1. (7)

• size(v[k,l]) is the size of one message containing a value
v[k,l].

• w(Pi, Tk,l,m) is the time needed by processor Pi to com-
pute one task Tk,l,m.

The number of messages sent on edge (i, j) is related to
the communication time on this edge

∀ Pi, Pj , s(Pi → Pj)

=
∑
v[k,l]

send(Pi → Pj , v[k,l]) · size(v[k,l]) · c(i, j).

(8)

In the same way, the number of tasks computed by Pi is
related to the time spent for their computation

∀ Pi, �(Pi)

=
∑
Tk,l,m

cons(Pi, Tk,l,m) · w(Pi, Tk,l,m). (9)

The “conservation law” is more complicated than for the
SERIES OF SCATTERS problem. The following equation deals
with the number of messages of type v[k,m] that are received
and/or processed by a given processor Pi . On the left-hand
side, we add all possible sources for messages of type v[k,m]:
either they are sent to Pi by neighbors, or they are generated
in place by Pi from the combination of two messages of type
v[k,l] and v[l+1,m] (which is a task Tk,l,m, where k� l < m).
The right-hand side of the equation deals with how these
messages are utilized. Either they are forwarded by Pi to
some of its neighbors, or they are consumed in place. In the
latter case, a message of type v[k,m] can be combined with
a message of type v[m+1,n], (which is a task Tk,m,n with
n > m) or with a message of type v[n,m−1] (which is a task
Tn,k−1,m with n < k). We are led to the equation

∀ Pi, ∀v[k,m] such that
[k, m] �= [i, i] or ([k, m], Pi) �= ([0, N], Ptarget)∑
Pj ,(j,i)∈E

send(Pj → Pi, v[k,m])+
∑

k � l<m

cons(Pi, Tk,l,m)

=
∑

Pj ,(i,j)∈E

send(Pi → Pj , v[k,m])

+
∑
n>m

cons(Pi, Tk,m,n) +
∑
n<k

cons(Pi, Tn,k−1,m).

(10)

A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514 1505

As stated in the above equation, there are two exceptions
for the conservation law: (i) it is not verified for messages
v[i,i] on processor Pi , since we assume to have an unlimited
number of such messages in place; and (ii) it is not veri-
fied for the final, completely reduced message v = v[0,N]
on the target processor Ptarget. In fact, the number of mes-
sages v reaching Ptarget is the throughput TP that we want to
maximize

TP =
∑

Pj ,(j,target)∈E

send(Pj → Ptarget, v[0,N])

+
∑

0� l<N−1

cons(Ptarget, T0,l,N). (11)

If we summarize all these constraints, we are led to the
following linear program:

STEADY-STATE REDUCE PROBLEM ON A GRAPH SSR(G)

Maximize TP
subject to
∀ Pi, ∀Pj , 0�s(Pi → Pj)�1
∀ Pi,

∑
Pj ,(i,j)∈E s(Pi → Pj)�1

∀ Pi,
∑

Pj ,(j,i)∈E s(Pj → Pi)�1
∀ Pi, 0��(Pi)�1
∀ Pi, Pj , s(Pi → Pj) = ∑

v[k,l] send(Pi → Pj , v[k,l])
·size(v[k,l]) · c(i, j)

∀ Pi, �(Pi) = ∑
Tk,l,m

cons(Pi, Tk,l,m) · w(Pi, Tk,l,m)

∀ Pi, ∀v[k,m] such that [k, m] �= [i, i] or ([k, m], Pi)

�= ([0, N], Ptarget)
∑

Pj ,(j,i)∈E send(Pj → Pi, v[k,m])
+ ∑

k � l<m cons(Pi, Tk,l,m)

= ∑
Pj ,(i,j)∈E send(Pi → Pj , v[k,m])

+ ∑
n>m cons(Pi, Tk,m,n)

+ ∑
n<k cons(Pi, Tn,k−1,m)∑

Pj ,(j,target)∈E send(Pj → Ptarget, v[0,N])
+ ∑

0� l<n−1 cons(Ptarget, T0,l,N) = TP.

As we did for the SERIES OF SCATTERS problem, we solve
the linear program SSR(G) in rational numbers. The solu-
tion A is the set of the values of all the variables in the linear
program. We express each of the values in A as the quotient
of two relatively prime denominators, and we compute the
period T as the least common multiple of all denominators.
We let AT : A → N denote the function that returns the
product of each variable in A by T , hence returning inte-
ger values. For instance, AT (send(P1 → P2, v[1,1])) = 2
means that two messages of type v[1,1] are sent form P1 to
P2 every period of length T .

4.3. Constructing a schedule

Once the solution of SSR(G) is computed, we have to ex-
hibit a concrete schedule that achieves the optimal through-
put. As before, the intuitive idea is to start from the descrip-
tion of a period and to reproduce its pattern. This is illus-
trated in Fig. 6 for the simple example.

Reduction trees are the tool that we use to derive a com-
pact (polynomial) description of the final schedule. The
intuitive idea is the following: for each time-stamp t , a re-
duction tree is used to reduce the values vt

0, . . . , v
t
N−1. The

same tree may well be used by many time-stamps t , so we
introduce the weight of a reduction tree as the number of
time-stamps which use it during a period. If we used a sin-
gle tree during the period, the throughput would be equal to
the weight of the tree divided by T . Using several trees con-
currently, the total throughput will be the optimal value TP
returned by the linear program SSR(G). The set of weighted
trees is the compact description that we are aiming at. The
reduction trees corresponding to the example of Fig. 6 are
illustrated on Fig. 7.

To formally define a reduction tree, we first define a
task and its inputs. First, a task is either a computation
Tk,l,m on node Pi (written cons(Pi, Tk,l,m)) or the trans-
fer of a message v[k,m] from node Pi to node Pj (writ-
ten send(Pi → Pj , v[k,m])). An input of a task is a pair
(message, location). The inputs of a computational task
cons(Pi, Tk,l,m) are (v[k,l], Pi) and (v[l+1,m], Pi), and its
result is (v[k,m], Pi). The single input of a communication
task send(Pi → Pj , v[k,m]) is (v[k,m], Pi), and its result is
(v[k,m], Pj).

Definition 1. A reduction tree T is a list of tasks (computa-
tions or communications), such that an input of a task in T
is either the result of another task in T , or a message v[i,i]
on processor Pri .

To a reduction tree T , we associate the incidence function
�T , such that

∀ task ∈ {cons(Pi, Tk,l,m), send(Pi → Pj , v[k,m])},
�T (task) =

{
1 if task ∈ T ,

0 if task /∈ T .

We state the following result, which states that the opti-
mal throughput can be achieved by simultaneously using a
polynomial number of weighted trees:

Lemma 2. We can build in polynomial time a set of
weighted trees W = {(T , weight (T))}, with

• ∀T ∈ W, weight (T) ∈ N,
• the cardinal of W (denoted as card(W)) is polynomial

in the size of the topology graph G,
• ∑

T ∈W
weight (T) · �T = AT .

The constructive proof of this lemma will be given in
Section 4.4, in the form of an algorithm to extract reduction
trees from the solution AT . Assume for the moment that
Lemma 2 is true. Using this decomposition of the solution
into reduction trees, we can build a valid schedule for the
SERIES OF REDUCES problem. We use the same approach as

1506 A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514

Fig. 6. Exhaustive schedule derived from the results of the linear program: (a) the topology of the network. All nodes are participating, and we let
Pri = Pi . Initially, Pi owns the value vi . Each edge e is labeled with its communication cost c(e). Every processor can process any task in one time-unit,
except node P0 which can process any two tasks in one time-unit. The size of every message is 1. The target node is P0. (b, c) the solution of the linear
program (period T = 3), and the results of the linear program mapped on the topology graph and (d, e) the exhaustive description of a valid schedule
using the values given in 6(c). Three reductions are performed every three time-units. The values being reduced are labeled with their time-stamp (upper
index). Fig. 6(d) shows the non-pipelined schedule (for a single reduction), while Fig. 6(e) presents the pipelined version, leading to a throughput of one
reduce operation per time-unit.

P1

P0

v1

P1

v1

T0,0,2
P0

T0,0,2

P0

v[1,2]v0

P0

v0

v1

P2

v2

P2

v2v2

P2

T1,1,2

P1

T1,1,2

P1 → P2

P2 → P0

v[1,2]

P1 → P0

P2 → P1

(a) (b)

Fig. 7. Two reduction trees used in the schedule described in Fig. 6(d):
(a) reduction tree T0 (weight 1, throughput 1

3) and (b) reduction tree T1

(weight 2, throughput 2
3).

for the SERIES OF SCATTERS to orchestrate all the commu-
nications induced by the different trees, namely a weighted-
matching algorithm (note that all computational tasks can
be executed in any order). We construct a bipartite graph
GB = (VB, EB, eB) as follows:

• for each processor Pi , we add two nodes to VB : P send
i

and P recv
i ,

• for each communication task send(Pi → Pj , v[k,m]) in
each reduction tree T , we add an edge between P send

i and
P recv

j weighted by the time needed to perform the transfer

weight(T) · size(v[k,m]) · c(i, j).

The one-port constraints impose that the sum of the weights
of edges adjacent to a processor is smaller than the period
T . Using the same weighted-matching algorithm as in Sec-

A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514 1507

Fig. 8. Extracting reduction trees from a solution A.

tion 3.3, we decompose the graph into a weighted sum of
matchings such that the sum of the coefficient is less than
T . As previously, this gives a schedule for achieving the
throughput TP within a period T .

For the previous example, there are two reduction trees,
as illustrated below

On this example, there are two steps corresponding to
the two matchings. At each step, only the communications
occurring for a single reduction tree take place. This is not
true in the general case: each matching may well involve
communications belonging to several reduction trees.

4.4. Extracting trees

We present here an algorithm to extract reduction trees
from the solution AT . The algorithm is described on Fig. 8.

It constructs a set Trees of reduction trees with a greedy
approach: while we have not reached the throughput TP,
we search for a reduction tree T in the remaining tasks; we
weight this tree by the maximum throughput weight (T)

that it can produce, which is the minimum throughput of all
tasks used in the tree. Then, we update the solution AT by
decreasing all tasks used in T by a factor weight (T).

Proposition 2. The algorithm Extract_Trees(AT) pro-
duces a set of trees Trees such that:

• AT = ∑
T ∈T rees

weight (T) × �T ,

• the number of trees is polynomial in the size of the topology
graph G,

• the complexity of the algorithm is polynomial in the size
of G.

Proof. The proof is technical but not difficult. We refer the
reader to [24] for full details. �

4.5. Asymptotic optimality

We can prove the same result of asymptotic optimality
as for the scatter and personalized all-to-all operations (see
[24]):

Theorem 3. The previous scheduling algorithm based on
the steady-state operation provides a polynomial solution
to the SERIES OF REDUCES problem which is asymptoti-
cally optimal, among all possible schedules (not necessarily
periodic).

4.6. Approximation for a fixed period

The framework developed here gives a schedule for a
pipelined reduce problem with an integer throughput TP
during a period T . However, as already pointed out, this
period may be too large, from a practical viewpoint: for
instance we may want to reevaluate platform parameters
(CPU speeds and link bandwidths) every fixed amount of
time. We propose here to approximate the solution with a
periodic solution of period Tfixed.

Assume that we have the solution AT and its decomposi-
tion into a set of weighted reduction trees {T , weight(T)}.
We compute the following values:

r(T) =
⌊

weight(T)

T
× Tfixed

⌋
.

The one-port constraints are satisfied for {T , weight (T)}
on a period T , so they are still satisfied for {T , r(T)} on
a period Tfixed. So these new values can be used to build a
valid schedule whose period is Tfixed.

We can bound the difference between the throughput
1

Tfixed
× ∑

T ∈TREES r(T) of the approximated solution and

1508 A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514

the original throughput TP:

TP − 1

Tfixed
×

∑
T ∈TREES

r(T)

= T P −
∑

T ∈TREES

1

Tfixed
×

⌊
weight(T)

T
× Tfixed

⌋

�TP −
∑

T ∈TREES

1

Tfixed
×

(
weight (T)

T
× Tfixed − 1

)

� card(TREES)

tfixed
.

This shows that the approximated solution asymptotically
approaches the best throughput as Tfixed grows. We have
proven the following result:

Proposition 3. We can derive a steady-state operation for
periods of arbitrary length, whose throughput converges to
the optimal solution as the period size increases.

5. Experimental results

In this section we report results from the comparison
of our multi-tree approach with the reduction algorithm of
MPICH [17]. These results are obtained with the SimGrid
simulator [23], which we briefly describe below. Before-
hand, we work out an example of realistic size, to better
illustrate the decomposition into several weighted trees.

5.1. Working out a realistic example

The platform used for this example is generated by Tiers,
a random generator of topology [11]. The bandwidths of
the links and the computing speeds of the processors are
randomly chosen. The platform is represented on Fig. 9. We
assume that all the v[k,m] have the same size (10 MB) and that
all tasks need 10 Mflops to be computed on each processor.
The nodes taking part to the computation are the nodes of
the LAN networks generated by Tiers, they are shaded in
gray on the figure. The other (white) nodes are routers.

Fig. 10 presents the results of the linear program mapped
on the topology (the period is normalized to 1). The optimal
throughput is TP = 2

9 . Two reduction trees can be extracted
from these results with our algorithm, they are presented on
Figs. 11(a) and (b).

5.2. Comparison with MPICH

To compare our approach for the SERIES OF REDUCES

problem to existing solutions, we conduct simulations of our
algorithm and of a standard MPI algorithm for the REDUCE

operation. We choose to simulate the reduction algorithm
of the current MPICH implementation (version 1.2.6) of
MPI [17]. Although the operator of the reduction in the

0

1

10

5

8

2

14

10

speed: 17

11

speed: 15

1000

4

182

295

12

speed: 38

13

speed: 79

1000266

208

3

240

6

speed: 92

144

8

speed: 55

146

187 286

125

7

speed: 64

1000

9

speed: 75

1000

v7

v0

v5

v2

v4 v1

v6 v3

Fig. 9. A heterogeneous topology, generated by Tiers. Only gray-shaded
processors have some value to be reduced, and participate in the compu-
tation. White nodes are routers. The target node is node 6. Links are la-
beled by bandwidth (in MB/s), and nodes are labeled by their computing
speed (in Mflops/s).

MPI standard may well be commutative, MPICH does not
take advantage of this specification, which avoids having
different results due to round-off or over/underflows errors.
Thus, the MPICH algorithm can be compared fairly with
our “non-commutative” reduction operation. MPICH builds
a (single) binomial tree to perform a reduction operation.
In the following we compare the throughput that can be
achieved using the single MPICH tree with the throughput
obtained using our set of weighted trees.

Using Tiers, we generate more than 200 platforms with
30 nodes. We choose among the LAN nodes some hosts that
will participate to the SERIES OF REDUCES. Given a problem,
consisting of a platform graph and a set of hosts, we com-
pute the optimal throughput using the linear program of Sec-
tion 4.2. Then we extract a set of weighted reduction trees
which reaches this throughput with the algorithm presented
in Section 4.4. We derive a distributed algorithm to perform
the reduction operations, based on the local rules given by
the tree decomposition. We also compute a set of local rules
that allows to perform the reduction operations as MPICH
does, that is using a single binomial tree. Then, the through-

A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514 1509

node 0

node 1

[0,7]:2/9
[2,2]:1/9
[5,5]:1/9

node 5

[1,1]:1/9
[1,6]:1/9
[3,4]:1/9
[6,6]:1/9

[1,1]:1/9
[1,6]:1/9
[3,4]:1/9
[6,6]:1/9

node 2

[0,7]:2/9
[2,2]:1/9
[5,5]:1/9

[1,1]:1/9
[1,6]:1/9
[3,4]:1/9
[6,6]:1/9

node 3

[5,6]:1/9

node 6

cons[1,1,2]:1/9

[0,7]:2/9
[2,2]:1/9
[3,3]:2/9
[5,5]:1/9

node 8

cons[1,3,4]:1/9
cons[1,4,6]:1/9

[4,4]:1/9

[1,1]:1/9

[1,3]:1/9
[5,6]:1/9

node 4

[2,2]:1/9

node 10

cons[0,0,6]:1/9
cons[0,6,7]:2/9

[0,6]:1/9

node 12

cons[3,4,5]:1/9
cons[3,5,6]:1/9

[0,0]:1/9
[0,7]:2/9
[3,4]:1/9

[0,7]:2/9
[2,2]:1/9
[5,5]:1/9

[0,6]:1/9
[3,4]:1/9

[1,6]:1/9

[1,1]:1/9
[6,6]:1/9

[3,4]:1/9
[4,4]:1/9
[5,6]:1/9
[6,6]:1/9

[1,3]:1/9

node 7

cons[1,2,3]:1/9
cons[3,3,4]:1/9
cons[5,5,6]:1/9

[1,2]:1/9
[3,3]:2/9
[4,4]:1/9
[5,5]:1/9

[1,3]:1/9
[3,4]:1/9
[5,6]:1/9
[6,6]:1/9

[1,1]:1/9
[1,6]:1/9
[3,3]:2/9

[1,1]:1/9

node 9

[3,3]:2/9

[0,0]:1/9
[0,7]:2/9

node 11

[0,0]:2/9

[2,2]:1/9

[0,6]:1/9
[0,7]:2/9
[5,5]:1/9

node 13

cons[0,0,1]:1/9
cons[0,1,6]:1/9
cons[2,2,6]:1/9

[0,0]:1/9
[1,1]:1/9
[3,6]:1/9

[0,6]:1/9
[2,2]:1/9

v4

v1

v7

v5

v6

v3

v0

v2

Fig. 10. Results of the linear program. The target node is node 6 with index 4. Each link is labeled with the transfers scheduled through it during one
time-unit. For example, [1, 6] : 1

9 means that 1
9 message of type v[1,6] pass through the edge during one time-unit. In the same way, the computing

nodes are labeled with the tasks which they execute.

put achieved by these two approaches (our “multi-tree” ap-
proach, and the MPICH single-tree approach) is computed
by simulating both distributed algorithms over the SimGrid
simulator [23].

The main advantage of using simulation is the ability to
compare both algorithms on a wide variety of heteroge-
neous platforms, which would not be possible using real
experiments. Indeed, experiments on distributed heteroge-

1510 A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514

result: [0,7]
in node 6 (4)

transfer [0,7]
10 -> 4 -> 12 -> 5
-> 0 -> 1 -> 2 -> 6

cons[0,6,7]
in node 10 (7)

transfer [0,6]
13 -> 12 -> 5 -> 4

-> 10

cons[0,1,6]
in node 13 (2)

cons[2,2,6]
in node 13 (2)

transfer [3,6]
12 -> 13

cons[3,5,6]
in node 12 (5)

transfer [6,6]
7 -> 6 -> 2 -> 1
-> 0 -> 5 -> 12

cons[3,4,5]
in node 12 (5)

transfer [3,4]
7 -> 6 -> 2 -> 1

-> 0 -> 5 -> 4 -> 12

cons[3,3,4]
in node 7 (6)

transfer [4,4]
6 -> 7

transfer [3,3]
9 -> 8 -> 2 -> 6

-> 7

cons[0,0,1]
in node 13 (2)

transfer [1,1]
8 -> 2 -> 1 -> 0
-> 5 -> 12 -> 13

transfer [0,0]
11 -> 10 -> 4 -> 12

-> 13

result: [0,7]
in node 6 (4)

transfer [0,7]
10 -> 4 -> 12 -> 5
-> 0 -> 1 -> 2 -> 6

cons[0,6,7]
in node 10 (7)

cons[0,0,6]
in node 10 (7)

transfer [1,6]
8 -> 2 -> 1 -> 0

-> 5 -> 10

cons[1,4,6]
in node 8 (1)

transfer [5,6]
7 -> 6 -> 2 -> 3

-> 8

cons[5,5,6]
in node 7 (6)

transfer [5,5]
12 -> 5 -> 0 -> 1

-> 2 -> 6 -> 7

cons[1,3,4]
in node 8 (1)

transfer [4,4]
6 -> 2 -> 8

transfer [1,3]
7 -> 6 -> 3 -> 8

cons[1,2,3]
in node 7 (6)

transfer [3,3]
9 -> 8 -> 2 -> 6

-> 7

transfer [1,2]
6 -> 7

cons[1,1,2]
in node 6 (4)

transfer [2,2]
13 -> 12 -> 4 -> 5
-> 0 -> 1 -> 2 -> 6

transfer [1,1]
8 -> 3 -> 6

transfer [0,0]
11 -> 10

(a) (b)

Fig. 11. The two reduction trees extracted from the solution of the linear program (Fig. 10). Each tree has a throughput of 1
9 : (a) first reduction tree and

(b) second reduction tree.

neous platforms are technically difficult to drive, because
of their genuine instability of the platform. For example,
wide-area links are often shared with Internet traffic from
other applications, and their performance is not as constant
and reliable as the one of a dedicated cluster of worksta-
tions. In a word, it is almost impossible to guarantee that
a platform which is not dedicated to the experiment, will
remain exactly the same between two tests, thereby for-
bidding any meaningful comparison. Simulations are then
used to replace real experiments, so as to ensure the repro-
ducibility of measured data. Being faster than real experi-

ments, simulations enable to test the algorithms in a variety
of conditions. A key issue is the possibility to run the sim-
ulations against a realistic environment. SIMGRID [12,23]
is an event-driven toolkit providing a set of core abstrac-
tions and functionalities that can be used to easily build
simulators for specific application domains and/or comput-
ing environment topologies. Altogether, this motivated our
choice of using SIMGRID for comparing our approach with
MPICH.

The results of the SIMGRID simulations are presented in
Fig. 12. We observed that the results are linked to the pro-

A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514 1511

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

re
la

tiv
e

pe
rf

or
m

an
ce

 (
th

ro
ug

hp
ut

)

density of hosts among nodes

Fig. 12. Comparison of the throughput achieved by our multi-tree approach
over the MPICH single-tree algorithm.

portion of participating nodes among all platform nodes,
which is called density of hosts in the platform. These re-
sults show that our multi-tree approach reaches a throughput
two to three times higher than MPICH, especially when the
density of hosts among nodes gets higher.

The first explanation of these results is that we take topo-
logical informations into account, whereas MPICH does not:
on a heterogeneous platforms, we know which hosts are suit-
able for computation, and which links have good bandwidth.
These informations are taken into account in the linear pro-
gram, and they help build an efficient set of reduction trees.
On the contrary, MPICH builds its own tree without any of
these informations, based only on the logical indices of the
hosts.

As heterogeneous topologies lead to inefficient MPICH
reduction trees, we compare the two approaches in the case
that is supposed to be the most favorable to MPICH. We con-
sider a homogeneous fully connected topology. The platform
used for this simulation has 10 nodes with the same comput-
ing speed (100 Mflops/s) and each pair of processors is con-
nected by a link with the same bandwidth (100 MB/s). The
size of all messages is supposed to be the same (100 MB), as
well as the time needed to perform all tasks. The rationale to
this comparison with homogeneous CPU speeds, link band-
widths and message/task sizes is that the MPICH binomial
tree is likely to be as efficient as any tree in our solution
set. We perform several simulations with different compu-
tation to communication ratios: we let the size of tasks vary
from 0.1 to 106 Mflops. The results of these simulations are
shown in Fig. 13.

We observe that when computation costs gets higher, both
approaches give a lower throughput, but our algorithm re-
mains better than MPICH, and with a constant factor (about
4 times better in this case). This result comes from the abil-
ity of our multi-tree approaches to distribute the computa-
tion on all available hosts; it may result into more commu-
nications than in the MPICH algorithm, but in the case of

 0.0001

 0.001

 0.01

 0.1

 0.001 0.01 0.1 1 10 100 1000

th
ro

ug
hp

ut
 (

lo
ga

rit
hm

ic
 s

ca
le

)

ratio computation/communication (logarithmic scale)

multi-tree
mpich

Fig. 13. Throughput achieved by our multi-tree approach and by the
MPICH single-tree algorithm.

a high computation/communication ratio, their cost is not
important.

All these simulations highlight the main two advantages
of our approach over MPICH: (i) we take topological infor-
mation into account, thus we are able to schedule computa-
tion on the right hosts; and (ii) using several trees, we can
distribute the computation of a single task on several proces-
sors. Both considerations help us improving the throughput
of the steady-state reduction operation.

6. Related work

We briefly discuss related results from the literature,
which we classify in the following three categories:

Models: Following the homogeneous LogP model [15]
and its long-message extension LogGP [1], the parameter-
ized LogP model [21] has been proposed for heterogeneous
networks. However, these models involve many parameters
and are rather difficult to instantiate. Several simpler mod-
els have been considered in the literature for heterogeneous
platforms

• Banikazemi et al. [2] consider a simple model in which the
heterogeneity among processors is characterized by the
speed of the sending processors. In this model, the inter-
connection network is fully connected (a complete graph),
and each processor Pi requires ti time-units to send a (nor-
malized) message to any other processor. Some theoretical
results (NP-completeness and approximation algorithms)
have been developed for the problem of broadcasting a
message in this model: see [18,26,27].

• A more complex model is introduced in [3]: it takes not
only the time needed to send a message into account, but
also the time spent for the transfer through the network,
and the time needed to receive the message. All these three
components have a fixed part, and a part proportional to
the length of the message.

1512 A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514

• Yet another model of communication is introduced in
[10,9]: the time needed to transfer the message between
any processor pair (Pi, Pj) is supposed to be divided into
a start-up cost Ti,j and a part depending on the size m of
the message and the transmission rate Bi,j between the
two processors, m

Bi,j
.

• All previous models assume the one port protocol, which
we used throughout this paper: a given processor can send
data to at most one neighbor processor at a time. Usually,
overlapping this operation with one receiving (of indepen-
dent data) is allowed, hence the choice of the full overlap,
one-port model in this paper.

Collective communication schemes: Macro-communi-
cations have been widely studied, in particular for homo-
geneous topologies. For instance, some papers address the
problem of performing collective operation on meshes using
a wormhole routing model. In [37], a pipelined broadcast is
described for such a mesh, and its performances are tested
on a Cray T3D. On the same topology, Barnett et al. [4]
study another collective operation : the GLOBAL COMBINE

operation, very close to our REDUCE operation, excepted
that the operator used in the reduction is now associative
and commutative (the order of the elements to reduce has
no importance). In [4], the authors describe several efficient
algorithms to perform this operation based on a wormhole
routing model, but they are interested in the non-pipelined
version of the operation, and their goal is to minimize
the makespan of one COMBINE operation. Other collective
communications, such as multicast,scatter, all-to-all, per-
sonalized all-to-all and gather/reduce have been studied in
the context of heterogeneous platforms: see [19,25,28–30]
among others.

Communication libraries: MPI and its extensions provide
several routines for various macro-communications:

• The common standard MPI [35] describes many col-
lective communications, such as BROADCAST, GATHER,
ALLTOALL, and REDUCE.

• A recent implementation, called MPICH-G2 [20], is typ-
ically designed for clusters and the grid. To perform col-
lective communications, the MPICH-G2 implementation
groups processors into different subnets, gathered into lay-
ers, according to the communication possibilities avail-
able between to different processors (MPI, Globus and/or
TCP), and then perform hierarchical communications us-
ing these layers. However, pipelining communication is
still a project for a next implementation of MPI.

• There exist other communication libraries using the same
hierarchical approach: the ECO library [29] measures
the round-trip time between different processors to group
them into subnets, and then perform the communications
using this two-layer topology. The algorithms used inside
a given subnet depends upon some of its characteristics:
for example, the width of a broadcast tree will differ
in a switch-based network and in a bus-based network.

MagPIe [22] is another library which groups processors
into subnets. The use of only two layers (inter-subnet
and intra-subnet communications) is justified as follows
in [22]: the high cost of a wide-area communication
makes negligible the use of improvements of the commu-
nications inside a given cluster. To perform an efficient
collective communication, the main goal is to minimize
the use of inter-subnet communications.

7. Conclusion

In this paper, we have studied several collective commu-
nications, with the objective to optimize the throughout that
can be achieved in steady-state mode, when pipelining a
large number of operations. Focusing on series of scatters,
personalized all-to-alls and reduces, we have shown how
to explicitly determine the best steady-state scheduling in
polynomial time. The best throughout can easily be found
with linear programming, whereas a polynomial descrip-
tion of a valid schedule realizing this throughout is more
difficult to exhibit. In particular, we had to use reduction
trees to describe a polynomial schedule for the SERIES OF

REDUCES problem. It is important to point out that the con-
crete scheduling algorithms based upon the steady-state op-
eration are asymptotically optimal, in the class of all possi-
ble schedules (not only periodic solutions).

One major contribution of this paper is the use of steady-
state scheduling techniques to circumvent, so to speak, the
intrinsic difficulty of makespan minimization problem. We
have been successful for three problems, namely series of
scatters, personalized all-to-alls and reduces, as well as for
series of broadcasts [6]. However, there are other macro-
communication primitives that cannot be captured in this
framework: as shown in [5], it is NP-hard to determine the
best throughput that can be achieved for the following two
problems: (i) series of multicast operations, and (ii) series
of general parallel prefix computations, where each node
Pi must obtain the result v[0,i] of the reduction limited to
those processors whose rank is lower that its own rank. We
see that (ii) is very close the SERIES OF REDUCES problem.
It would be very interesting to characterize which macro-
communication primitives are amenable to a polynomial so-
lution when relaxed by steady-state techniques.

Main notations: For the sake of convenience, we provide
the list of the main notations used throughout the paper:

• Psource: source processor for scatter operations.
• Ptarget: destination processor for reduce operations.
• c(e) or ci,j : time to transfer a unit-size message on edge

e : Pi → Pj .
• s(Pi → Pj): time spent by Pi to send messages to Pj

every time-unit.
• mk: messages whose destination is processor Pk .
• �k: size of messages mk .

A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514 1513

• send(Pi → Pj , mk): number of mk messages sent on
edge Pi → Pj every time-unit.

• T P : throughput, i.e., number of macro-communications
initiated every time-step.

• vi or v[i,i]: initial value held by processor Pi .
• v[k,m]: reduction of values vk, . . . , vm.
• size(v[k,m]): size of v[k,m] messages.
• Tk,l,m: computational task associated to reduction v[k,m] =

v[k,l] ⊕ v[l+1,m].
• w(Pi, Tk,l,m): time needed by processor Pi to compute

one task Tk,l,m.
• send(Pi → Pj , v[k,l]): number v[k,l] messages sent on

edge Pi → Pj every time-unit.
• cons(Pi, Tk,l,m): number of tasks Tk,l,m computed by Pi

every time unit.
• �(Pi): time spent by Pi computing all tasks every time-

unit.
• T : reduction tree.
• weight (T): weight of T , i.e., number of time-stamps

which use it during a period.

Acknowledgments

We thank the reviewers for their comments and sugges-
tions, which greatly improved the final version of the paper.

References

[1] A. Alexandrov, M.F. Ionescu, K.E. Schauser, C.J. Scheiman, LogGP:
incorporating long messages into the LogP model for parallel
computation, J. Parallel Distributed Comput. 44 (1) (1997) 71–79.

[2] M. Banikazemi, V. Moorthy, D.K. Panda, Efficient collective
communication on heterogeneous networks of workstations, in:
Proceedings of the 27th International Conference on Parallel
Processing (ICPP’98), IEEE Computer Society Press, Silver Spring,
MD, 1998.

[3] M. Banikazemi, J. Sampathkumar, S. Prabhu, D. Panda, P.
Sadayappan, Communication modeling of heterogeneous networks
of workstations for performance characterization of collective
operations, in: HCW’99, the Eighth Heterogeneous Computing
Workshop, IEEE Computer Society Press, Silver Spring, MD, 1999,
pp. 125–133.

[4] M. Barnett, R. Littlefield, D.G. Payne, R. van de Geijn, On
the efficiency of global combine algorithms for 2-D meshes with
wormhole routing, J. Parallel Distributed Comput. 24 (2) (1995)
191–201.

[5] O. Beaumont, A. Legrand, L. Marchal, Y. Robert, Assessing the
impact and limits of steady-state scheduling for mixed task and
data parallelism on heterogenous platforms, Research Report RR-
2004-20, LIP, ENS Lyon, France, April 2004, Available at the url
http://graal.ens-lyon.fr/∼yrobert.

[6] O. Beaumont, A. Legrand, L. Marchal, Y. Robert, Pipelining
broadcasts on heterogeneous platforms, in: International Parallel and
Distributed Processing Symposium IPDPS’2004, IEEE Computer
Society Press, Silver Spring, MD, 2004.

[7] M. Berkelaar, LP_SOLVE, http://www.cs.sunysb.edu/∼algorith/
implement/lpsolve/implement.shtml.

[8] D. Bertsimas, D. Gamarnik, Asymptotically optimal algorithm for
job shop scheduling and packet routing, J. Algorithms 33 (2) (1999)
296–318.

[9] P. Bhat, C. Raghavendra, V. Prasanna, Adaptive communication
algorithms for distributed heterogeneous systems, J. Parallel
Distributed Comput. 59 (2) (1999) 252–279.

[10] P. Bhat, C. Raghavendra, V. Prasanna, Efficient collective
communication in distributed heterogeneous systems, in: ICDCS’99
19th International Conference on Distributed Computing Systems,
IEEE Computer Society Press, Silver Spring, MD, 1999, pp. 15–24.

[11] K.L. Calvert, M.B. Doar, E.W. Zegura, Modeling internet topology,
IEEE Comm. Mag. 35 (6) (June 1997) 160–163.

[12] H. Casanova, Simgrid: a toolkit for the simulation of application
scheduling, in: Proceedings of the IEEE Symposium on Cluster
Computing and the Grid (CCGrid’01), IEEE Computer Society, Silver
Spring, MD, May 2001.

[13] B.W. Char, K.O. Geddes, G.H. Gonnet, M.B. Monagan, S.M. Watt,
Maple Reference Manual, 1988.

[14] J. Cowie, B. Dodson, R.-M. Elkenbracht-Huizing, A.K. Lenstra, P.L.
Montgomery, J. Zayer, A world wide number field sieve factoring
record: on to 512 bits, in: K. Kim, T. Matsumoto (Eds.), Advances
in Cryptology—Asiacrypt ’96, Lecture Notes in Computer Science,
vol. 1163, Springer, Berlin, 1996, pp. 382–394.

[15] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos,
R. Subramonian, T.V. Eicken. LogP: towards a realistic model of
parallel computation, in: Proceedings of the Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
ACM Press, New York, 1993.

[16] Entropia. URL: http://www.entropia.com.
[17] W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-performance,

portable implementation of the MPI message passing interface
standard, Parallel Comput. 22 (6) (September 1996) 789–828 (see
also http://www-unix.mcs.anl.gov/mpi/mpich/).

[18] N. Hall, W.-P. Liu, J. Sidney, Scheduling in broadcast networks,
Networks 32 (14) (1998) 233–253.

[19] J.-I. Hatta, S. Shibusawa, Scheduling algorithms for efficient
gather operations in distributed heterogeneous systems, in: 2000
International Conference on Parallel Processing (ICPP’2000), IEEE
Computer Society Press, Silver Spring, MD, 2000.

[20] N.T. Karonis, B. Toonen, I. Foster, Mpich-g2: a grid-enabled
implementation of the message passing interface, J. Parallel
Distributed Comput. 63 (5) (2003) 551–563.

[21] T. Kielmann, H.E. Bal, S. Gorlatch, K. Verstoep, R.F. Hofman,
Network performance-aware collective communication for clustered
wide area systems, Parallel Comput. 27 (11) (2001) 1431–1456.

[22] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, R.A.F. Bhoedjang,
MagPIe: MPI’s collective communication operations for clustered
wide area systems, in: Seventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming PPoPP’99, Atlanta,
GA, 1999, pp. 131–140.

[23] A. Legrand, L. Marchal, H. Casanova, Scheduling distributed
applications: the SIMGRID simulation framework, in: Proceedings
of the Third IEEE International Symposium on Cluster Computing
and the Grid (CCGrid’03), May 2003.

[24] A. Legrand, L. Marchal, Y. Robert, Optimizing the steady-state
throughput of scatter and reduce operations on heterogeneous
platforms, Technical Report RR-2003-33, LIP, ENS Lyon, France,
June 2003. Available at the url http://graal.ens-lyon.fr/∼yrobert.

[25] R. Libeskind-Hadas, J.R.K. Hartline, P. Boothe, G. Rae, J. Swisher,
On multicast algorithms for heterogeneous networks of workstations,
J. Parallel Distributed Comput. 61 (11) (2001) 1665–1679.

[26] P. Liu, Broadcast scheduling optimization for heterogeneous cluster
systems, J. Algorithms 42 (1) (2002) 135–152.

[27] P. Liu, T.-H. Sheng, Broadcast scheduling optimization for
heterogeneous cluster systems, in: SPAA’2000 12th Annual ACM
Symposium on Parallel Algorithms and Architectures, ACM Press,
New York, 2000, pp. 129–136.

[28] P. Liu, D.-W. Wang, Reduction optimization in heterogeneous
cluster environments, in: 14th International Parallel and Distributed

http://graal.ens-lyon.fr/~yrobert
http://www.cs.sunysb.edu/~algorith/implement/lpsolve/implement.shtml.
http://www.cs.sunysb.edu/~algorith/implement/lpsolve/implement.shtml.
http://www.entropia.com
http://www-unix.mcs.anl.gov/mpi/mpich/
http://graal.ens-lyon.fr/~yrobert

1514 A. Legrand et al. / J. Parallel Distrib. Comput. 65 (2005) 1497–1514

Processing Symposium (IPDPS’2000), IEEE Computer Society Press,
Silver Spring, MD, 2000.

[29] B. Lowekamp, A. Beguelin, Eco: efficient collective operations for
communication on heterogeneous networks, in: 10th International
Parallel and Distributed Processing Symposium (IPDPS’96), IEEE
Computer Society Press, Silver Spring, MD, 1996.

[30] F. Ooshita, S. Matsumae, T. Masuzawa, Efficient gather operation
in heterogeneous cluster systems, in: Proceedings of the 16th
International Symposium on High Performance Computing Systems
and Applications (HPCS’02), IEEE Computer Society Press, Silver
Spring, MD, 2002.

[31] Prime, URL: http://www.mersenne.org.
[32] J. Reif, Synthesis of Parallel Algorithms, Morgan Kaufmann, Los

Altos, CA, 1993.
[33] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency,

Algorithms and Combinatorics, vol. 24, Springer, Berlin, 2003.
[34] SETI, URL: http://setiathome.ssl.berkeley.edu.
[35] M. Snir, S.W. Otto, S. Huss-Lederman, D.W. Walker, J. Dongarra,

MPI the Complete Reference, The MIT Press, Cambridge, MA, 1996.
[36] The MuPAD Group (B. Fuchssteiner et al.), MuPAD User’s Manual,

Wiley, New York, 1996.
[37] J. Watts, R. Van De Geijn, A pipelined broadcast for multidimensional

meshes, Parallel Process. Lett. 5 (2) (1995) 281–292.

Arnaud Legrand received the PhD degree
from Ećole normale supérieure de Lyon in
2003. He is currently a CNRS permanent
researcher in the ID-IMAG laboratory in
Grenoble. He is mainly interested in paral-
lel algorithm design for heterogeneous plat-
forms and in scheduling techniques.

Loris Marchal received the Master’s degree
from Ećole normale supérieure de Lyon in
2003. He is currently a PhD student in the
LIP laboratory at ENS Lyon. He is mainly
interested in parallel algorithm design for
heterogeneous platforms and in scheduling
techniques.

Yves Robert received the PhD degree from
Institut National Polytechnique de Greno-
ble in 1986. He is currently a full professor
in the Computer Science Laboratory LIP at
ENS Lyon. He is the author of four books,
90 papers published in international jour-
nals, and 110 papers published in interna-
tional conferences. His main research inter-
ests are scheduling techniques and parallel
algorithms for clusters and grids. He is a
senior member of IEEE and the IEEE Com-
puter Society, and serves as an associate
editor of IEEE Transactions on Parallel and
Distributed Systems.

http://www.mersenne.org
http://setiathome.ssl.berkeley.edu

