
COMPLETE REGISTER ALLOCATION PROBLEMS

Ravi Sethi
The Pennsylvania State University

Abstract

The search for efficient algorithms for reg-
ister allocation dates back to the time of the
first Fortran compiler for the IBM 704. Since
then, many variants of the problem have been con-
sidered; depending on two factors: (i) the par-
ticular model for registers, and (2) the defini-
tion of the term "computation of a program" e.g.
whether values may be computed more than once.
We will show that several variants of the reg-
ister allocation problem for straight line pro-
grams are polynomial complete. In particular we
consider, (i) the case when each value is computed
exactly once, and (2) the case when values may be
recomputed as necessary. The completeness of the
third problem considered is surprising. A
straight line program starts with a set of initial
values, and computes intermediate and final
values. Suppose, for each value, the register
that value must be computed into is preassigned.
Then, (3) the problem of determining if there is
a computation of the straight line program, that
computes values into the assigned registers, is
polynomial complete.

Keywords and phrases: register allocation,
program optimization, polynomial complete,
straight line program, dag.

i. Introduction

That register allocation is of interest is
evident from the number of studies that have
considered variants of the problem. While the
primary motivation has been the desire to produce
decent object code [1-15]; the problem has also
been found to occur during the removal of
recursion from programs [16]. The relation
between aspects of register allocation and aspects
of memory allocation has also been noted [17].
Register allocation therefore seems to be an
instance of a more general allocation problem.

Since flow of control within a program intro-
duces a level of uncertainty, many of the studies
cited have dealt only with straight line programs
[3-6,8,9,11-15]. For the class of straight line
programs that have no common subexpressions,
linear time, optimal allocation algorithms are
available [12-14]. We will study register
allocation for straight line programs in the
context of a set of graph games defined by

Walker [15].

Graphical representations of straight line
programs are intuitive, and fairly straightforward.
Arithmetric expressions have traditionally been
represented by trees. If common subexpressions are
merged, a tree becomes a directed acyclie graph
(dag) [18].

EXAMPLE I.i: Consider the evaluation of the

polynomial a + bx + cx 2 using the expression
(c*x+b) *x+a (Homer's rule). The dag correspond-
ing to this expression is given by figure 1.2.

t$

~3

Figure 1.2

Suppose all computation is done in registers.
Using three registers, the above dag might be
computed as follows:

reg I + c
reg 2 ÷ x
reg I ÷ reg I * reg 2
reg 3 ÷ b
reg i ÷ reg i + reg 3
reg i ÷ reg i * reg 2
reg 2 ÷ a
reg 3 ÷ reg i + reg 2

However, if only two registers are available,
then the following program might he used:

reg i ÷ c
reg 2 + x
reg i ÷ reg I * reg 2
reg 2 ÷ b
reg I ÷ reg i + reg 2

18e

reg 2 + x
reg 1 ÷ reg 1 * reg 2
reg 2÷a
reg I ÷ reg i + reg 2

In the latter program, node x is computed
twice.

For a formal definition of dag, and an
algorithm to construct a dag from a straight line
program, see [18].

Several problems, like that of determining
the chromatic number of a graph, have long defied
a nonenumerative solution. A class of such pro-
blems, referred to as the class of (polynomial)
complete problems has been defined in [19,21].
The class has the important property that if any
member of the class can be solved in time a poly-
nomial in some characteristic of the problem,
then all members of the class can be solved in
polynomial time. More importantly, if any
complete problem can be solved in polynomial time,
then all languages accepted by nondetermlnistic
Turing machines in polynomial time can be accepted
by deterministic Turing machines in polynomial
time [19,21]. Background results relating to the
term "polynomial complete" may be found in section
2.

Informally, the computation of a dag will be
viewed as a game played on the dag. The game
assumes that there is an infinite supply of label-
ed stones, where a stone represents a register.
Placing a stone on a node corresponds to computing
the node. Thus, a stone may be placed on a non-
leaf node x only when there are stones on all
directed descendants of x. It will be assumed in
section 3 that a node in a dag is computed exactly
once. The rules will be generalized in section 4
to permit a node to be recomputed. In each case,
it will be shown that given an integer k, the
problem of determining if a dag can be computed
using no more than k registers, is polynomial
complete.

When no node in a dag is recomputed, an
allocation for the dag may be viewed as a function
from nodes to registers. It should be clear that
not all functions from nodes to registers are
allocations. For example, it would not do to
assign all nodes to the same register. A some-
what less trivial example is given by Figure 1.3.
It will be shown in section 5 that the problem of
determining if a function from nodes to registers
is an allocation, is polynomial complete.

Figure 1.3

In order to appreciate why the last result
mentioned is surprising, consider the colouring
problem, which may be stated as follows: Given
an undirected graph G, a colouring of ~ is a
function from nodes in G to colours, such that
no two nodes, joined by an edge in G, may have
the same colour. Given an integer k, determine
if there is a colouring of G that uses no more
than k colours.

While it is known [21], that the colouring
problem is polynomial complete, given a function
from nodes to colours, it is easy to check if the
function is a colouring of the graph. In contrast
to checking for an allocation, all that needs to
be done is to check that no two nodes joined by an
edge are assigned the same colour.

Section 6 considers the implications of the
results in sections 3 and 4 to other register
allocation problems.

2. Polynomial Completeness

In order to define the class of "polynomial
complete problems", a number of concepts that are
basic to any discussion in language theory are
required. We will not define such terms as
deterministic Turing machines, nondeterministic
Turin$ machines, moves made by such machines, and
languages accepted by such machines. These
definitions may be found, for example, in [20].

Let Z be some alphabet. Let P be the
class of languages over Z, accepted by poly-
nomial time bounded deterministic Turing machines,
and let NP be the class of languages accepted
by polynomial time bounded nondeterministic
Turing machines. P is clearly a subset of NP.
It is not known if P = NP.

Just as languages accepted by Turing machines
are defined, it is possible to define the
"function computed" by a Turing machine. See [21],

for instance.

Let ~ be the class of functions from
e

into Z computed by polynomial time bounded
deterministic Turing machines. Let L and M
be languages. L is said to be reducible to
M, if there exists a function f ~ H, such that
f(x) is in M if and only if x is in L. L
is called (polynomial) complete if L is in NP,
and every language in NP is reducible to L.
Either all complete languages are in P, or none
of them is. The former alternative holds if and
only if P = NP [21]."

Demonstrating that all languages in NP are
reducible to a given language L is facilitated
by a theorem due to Cook [19]. Informally, Cook
showed that acceptance of a string in any lan-
guage in NP is reducible to determining if a
formula in the propositional calculus is satis-
fiable. We will have occasion to deal with this
problem in some detail.

DEFINITION: There is a set {Xl,X2,...,Xn}

183

of variables. If x is a variable, then the

symbols "x" and "x" are called literals, x

is called a complement of x, and x is called a
complement of x. A clause is a subset of the set

of literals. A clause C = {yl,Y2,...ym } will

often be represented by "C - Yl v Y2 v ... v Ym'"

If CI,C2,...,C m are clauses, then C, the

conjunction of the clauses, will be represented by

"C 1 A C 2 ^ ... ^ Cm". C will also be referred to

as an m~clause satisfiability problem over n
variables.

C is said to be satisfiable, if there exists
a set S which is a subset of the set of
literals, such that:

i. S does not contain a pair of complemen-
tary literals.

2. S n C. # ~, for i = 1,2 ,m.
i

If the set S exists, then a literal y in
S will be said to be true, or have value ~, and
the complement of the literal will be said to be
false, or have value 0. If a literal in a class
is true, the clause will be said to be true. D

It is easy to associate a language with the
set of satisfiability problems. Following Cook
[19], each variable can be represented by some
element in Z, followed by a number in binary
notation. Note that there may be an arbitrarily
large number of variables. The complement of a
variable can be represented, say, by the symbol
"~." followed by the representation of the
variable. The other connectives are "v" and
"^". When no confusion can occur, the term
"satisfiability problem" will be used to refer to
the corresponding string, generated as outlined
in this paragraph.

THEOREM (Cook): If a language L is in NP,
then L is reducible to the set of satisfiability
problems.

PROOF: See [19].

Just as satisfiability problems were deflned~
it is possible to define satisfiability problems
in with each clause has exactly three literals.

THEOREM (Cook): If a language L is in NP,
then L is reducible to the set of satisfiability
problems with exactly three literals per clause.

PROOF: Immediate from the result for satisfi-
ability problems with at most three literals per
clause [19]. D

The approach in the following sections will
be to show that the problem on hand can be
associated with a language L in NP, and that
the set of satisfiability problems with exactly
three literals per clause is reducible to L.

3. S atisfiability to Minimal AlloCation

Following Walker [15], the "computation" of a
dag will be viewed as a game played on the dag.

GAME i: Let there be an infinite supply of
labelled stones, where the stones may be thought of
as registers.

A move in game i is one of the following:

i. place a stone on a leaf
2. pick up a stone from a node

if there are stones on every direct descendant of a
node x, then:

3. place a stone on x, or
4. move a stone to x from one of the

direct descendants of x.

DEFINITION 3.1: A computation of a dag is a
sequence of moves in game l,that starts with no
stones on any node in the dag, place a stone at
most once on any node, and ends with stones on all
roots in the dag. D

PROBLEM I: Given an integer k, does there
exist a computation of a dag that uses no more than
k registers (nodes may not be recomputed). D

The polynomial completeness of problem 1 will
be demonstrated as follows: Given an m-clause
satisfiability problem over n variables, with
exactly 3 literals per clause, a dag D will be
constructed. If the problem is satisfiable, it
will be possible to compute D using some number,
say k, of registers. If the problem is not
satisfiable, then at least k + 1 registers will
be required to compute D.

D will have 2n nodes Xl,Xl,...,Xn,Xn,

that correspond to the literals, and m nodes

Cl,C2,...Cm, that correspond to the clauses. The

first stage of the computation of D will be to
compute exactly one of x k and Xk, for all k,

1 < k < n. This stage may be thought of as
"assigning" values to the literals.

EXAMPLE 3.2: Consider the schematic diagram
of a dag in Figure 3.3. Circles at nodes mean
that once placed, a stone may not be picked up from
these nodes. This effect can be achieved by defin-
ing a new node called the final node, and making a
all circled nodes direct descendants of the final
node. Since no nodes may be recomputed, a stone
placed on a circled node must remain there until
the final node is computed.

Triangles at some of the leaves mean that the
computation begins by placing stones on these
leaves. This feature can be implemented by defin-
ing a new node called the initial node, and making,
(a) all leaves with triangles direct descendants of
the initial node, and (b) all other nonleaf nodes
ancestors of the initial node.

184-

., Figure 3.3

Suppose that in addition to the stones on
leaves with triangles, there are 2n stones in
hand. If any node other than z I is now computed

we will never be able to compute z I. Once

computed, z I will hold a stone, and 2n-i stones

will then be available.

We now have a choice. We may either compute

Wl, or one of x I and Xl" Suppose x I is

computed. One stone will then be held at Xl,

leaving 2n-2 stones free. Note that at Ull is

now free to go to w . The 2n-2 free stones can-
i

not be used to compute Xl' but z 2 can easily

be computed. It is easy to see that for all

i, i < i < n, exactly one of x i and ~i can

be computed. Note also that had w I not been

present, it would have been possible to compute

both x 2 and x2, by skipping the computation of

x I or x I. D

The second stage computes the nodes
Cl,C2,...c m. If the "assignment" of values to

literals is such that each clause is true, then no
extra registers will be required. Otherwise an
extra register will have to be used. The

computation of these m nodes releases enough
stones to compute any nodes that are left to be
computed.

EXAMPLE 3.4: Consider a clause with two

literals Yl and Y2" (The generalization to

three literals is immediate). Figure 3.5 depicts

a portion of a day. Nodes Yi' Yl and Y2 are

in the part of the dag that is not shown. Yl is

Figure 3.5

a direct ancestor of fl' ~i and Y2 are direct

ancestors of f2" Nodes Yl and Yl are such

that Yl can be computed if and only if Yl is

not computed. Let stone i be on fl and stone 2

on f2"

185

Since the reduction of the satisfiability
problem to problem 1 will be sensitive to the
number of stones available, we want to ensure that
(I) if either Yl or Y2 is computed, a stone can

be moved to e, and (2) even if both Yl and Y2

are computed, neither of the stones can be picked
up (node c will hold a stone).

Since Yl is computed if and only if ~i is

not, it should be evident that the construction in
figure 3.5 satisfies both the above criteria.

The use of the letters c, f, r-u, w-z will
be consistent with their use in figures 3.3 and
3.5.

REDUCTION I: Given an m-clause satisfi-
ability problem over the n variables

Xl,X2,...,Xn, where for all i, 1 < i < m,

clause i has exactly three literals, Yil,Yi2

and Yi3' construct a dag D as follows:

Nodes: A u B u C u F u M u RST u U u W u X u Z

A = {aj I i ~ j ~ 2n + i}

B = {b. I i ! J < 2n - m}
3

C = {C i I 1 < i < m}

F = {fij I i <i < m, l!j J3}

M = {initial, d, final}

RST = {rkj I i < k < n, i ! J ! 2n-2k+2} u

{Skj,tkj I i !k ~ n, i ! J ! 2n-2k+l}

U " {ukj I i < k < n, i i J i 2}

W = {w k I 1 < k < n}

X = {Xk, ~ I i < k < n}

Z = {z k I 1 < k < n}

The nodes in the set A,B,F and U will be
leaves that are direct descendants of the initial
node. Stones will first be placed on these nodes.
Nodes in A will have only one direct ancestor -
the initial node. The first step will be to move
a stone from a node in A to the initial node.
The initial node, being a direct descendant of the
final node will hold one stone. The 2n stones
on the remaining nodes in A can be picked up.

These 2n stones will be used to "assign"
values to the literals, as in figure 3.3. Once
values have been "assigned" to all the literals,
i.e. w and z have been computed, there will

n n
be no stones free. As in figure 3.5, nodes in C
will be computed without using any stones in
addition to those already on nodes in F, if and
only if at least one literal in each clause is
true. Node d is computed when all the nodes in
C have been computed, releasing the stones on the
nodes in B. The set B is used to ensure that,
regardless of the value of m, at least 2n-I
stones will be free after d is computed, so
that the remaining nodes in X can be computed.

Edges E1 u E2 u...u El0

E1 = {(initial,g) I g e A U B U F u U}

E2 = {(g,initial) I g e C u RST u W}

E3 = {(final,g) I g ~ W u X u Z u {initial,d}}

E4 = {(Xk,Zk) , (i,Zk), (Xk,Ukl) (~,uk2) I

l<k<n}

E5 = {(Wk,Ukj) I I < k < n, 1 <_ j <_ 2}

E6 = {(Xk,Skj), (Xk,tkj) I !<--k<-- n' l<_J<2n-2k+l} u

{ (zk,rkj) l<k<n, l<_J_<2n-2k+2}

E7 = {(Zk,Wk_l) , (Zk,Zk_l) I 2 < k < n} u

{(ci,Wn), (ci,z n) I i < i < m}

E8 = {(ci,fi$) [i < i <_ m, i <_ j ! 3}

E9 {(d,g) | g e B u C}

For all i, 1 < i < m, clause i consists

of the literals Yil,Yi2 and Yi3" For all j,

1 ~ j ~ 3, since Yij is a literal, there exists

a k, 1 < k < n, such that Yij is either X k or

• . or the definition of the set El0, if

Yij = Xk' we use the symbol "Yij" to refer to

node Xk, and "Yij"_ to refer to node ~.

Otherwise, if_ Yij = Xk, we use the symbol "Yij"

to refer to x k and "Yij" to refer to x k.

El0 = {(Yij,fij)' (~ij'fik) I i < i < m,

I i J ~ 3, j + i < k < 3} D

DEFINITION: Given a set S, let #S give
the number of elements in S.

DEFINITION: Let the term (m-3,n) satisfi-
ability problem be used to refer to an m-clause
satisfiability problem over n variables, with
exactly three literals per clause.

LEMMA 3.6: Let D be the dag created by
reduction 1 for an (m-3,n) satisfiability problem.
If the problem is satisfiable, then D can be com-
puted using 3m + 4n + 1 + #B registers.

PROOF: Let q = 3m + 4n + 1 + #B. We will
give an algorithm to compute D using q stones.
Let the stones be numbered 1,2,...,q.

i. D has q leaves, given by the sets
A,B,F, and U. Place q stones on the leaves of
D as follows: stones 1,2,...3m on nodes in F;
stones 3m + l,...,3m + #B on the elements of B;
stones 3m + #B + l,...,3m + #B + 2n on the
elements of U; the remaining 2n + 1 stones on
the elements of A.

2. Let p = 3m + 2n + 1 + #B. Note that
stone p is on an element of A, and that the
initial node is the only direct ancestor of the
nodes in A. Move stone p up to the initial node,
and pick up stones p+l,p+2,...,p+2n.

3. Do 4 for k = 1,2,...,n. (See figure
3.3).

186

4. Place stone p+2k-l,...,p+2n on nodes
rkj, l_<j<2n-2k+2. Move stone p+2k-i up to Zk,

and pick up stones p+2k,...,p+2n. If the literal
x k is true for the problem to be satisfiable, then

place stone p+2k,...,p+2n on nodes Ski ,

l<j<_2n - 2k+l. Move stone p + 2k up to node Xk,

and pick up the stones p+2k+l,...,p+2n. Move the

stone at Ukl to w k.

If the literal x k is false, then place

stones p+2k,...,p+2n on nodes tkl,

l<j<_2n - 2k + I. Move stone p + 2k up to node

~, and pick stones p+2k+l,...,p+2n. Move up

the stone at Uk2 to w k.

If the value of x k is undefined, then

proceed as if x k were true.

5. Do 6 for i = 1,2,...,m. (see figure 3.5)

6. For clause i, Yil v Yi2 v Yi3' if Yil

is true, then move the stone which is at fil' up

c..l Otherwise, if Yi2 is true, then move the

stone at fi2 to c i. If Yi2 is also false,

then the conjunction of the clauses being satis-
fiable, Yi3 must be true. So move the stone at

fi3 to c i .

7. Move the stone at c I up to d. Pick up

• and the stones on the the stones at e2,c3, ..Cm,

elements of B. By construction,

m - 1 + #B > 2n - I.

8. Use the 2n-i stones in hand to compute
the nodes that remain to be computed.

It is easy to verify that the above algorithm
does indeed compute D.

D

LEMMA 3.7: Let D be the dag constructed by
reduction 1 for an (m-3,n) satisfiabillty pro-
blem. Let D be computed using 3m + 4n + 1 + #B
registers. Then, for all k, 1 < k < n, just

after z k is computed,

(a) for all j, 1 ~ j ~ k - i, at most one

of x. and x. has been computed.
3]

(b) 2n - 2k + 1 stones are free.

PROOF: Since the initial node is a direct
ancestor of all the leaves, and a descendant of
all other nonleaves, the first moves in the
computation must be to place stones on all the
leaves.

Since all elements of the set C are direct

ancestors of Zn, just after z n is computed,

none of the elements of C can have been computed.
Therefore stones on nodes in the set F cannot be
free. Node d, being an ancestor of the nodes in
C cannot have been computed, so stones on nodes

in the set B cannot be free. Moreover, the
initial node, being a direct descendant of the
final node will hold a stone• Therefore
3m + i + #B stones cannot be free.

basis: k = i. Node z I has 2n direct

descendants, rll,rl2,...,rl,2n. Since z I has

just been computed, at least 2n - i stones are
free.

Since all nodes in the set X are ancestors
of Zl, all nodes in X have yet to be computed.

Hence, stones on nodes in U cannot be free.
That leaves 2n stones, one of which is at z 1.

Hence, exactly 2n - i stones are free.

inductive step: Assume the lemma is true for
all smaller values, and consider Zk+ I.

From the inductive hypothesis, 2n - 2k + i
stones are free just after z k is computed.

Note that since 2n - 2k + 1 stones are free,
none of the elements of the set

{Xl,X 1 Xk_l,i_ I} that remain to be computed

can be touched. 2n - 2j + i stones are required

to compute either x. or x.. For j < k,
] 3

2n - 2j + i > 2n - 2k + I.

By accounting for the number of stones held,
it can be seen that w k cannot have a stone on

it. Thus, the next node computed is either one of

and i' or w k. Suppose one of x k and x k

is computed. Then a stone can be moved from one

of Ukl and Uk2, as appropriate, to w k. More-

once one of x k and ~ is computed, over,

2n - 2k stones will be free, and the other element

of {Xk, i} cannot be computed•

If neither x k nor ~ is computed, w k

must still be computed before Zk+ I. Therefore,

again, 2n - 2k stones will be free. Since
Zk+ I requires 2n - 2k stones, the free stones

must be saved for the direct descendants of Zk+l•

D

LEMMA 3.8: Let D be ~he dag constructed
by reduction i for an (m-3,n) satisflability
problem. For all moves between (and not including)
the moves at which w and d are computed,

n
there are no stones free.

PROOF: From lemma 3.7, I stone is free when
z is computed. It is easy to see that just
n

after w is computed, ther are no stones free.
n

Suppose the lemma is false• Then at some
move between the moves at which w n and d are

computed, there is at least one stone free. Let
move k + i be the first such move at which

187

there is a free stone.

Consider move k. By hypothesis, there are
no free stones at move k. Thus move k computes
a node, say v, by taking a stone from a direct
descendant of v, to v. Since we are interest-
ed only in moves between the moves that compute
w and d, v can only be an element of the set
C~ Since nodes in C have d as a direct
ancestor, the stone at node v cannot be free at
the next move. Hence the stone that is freed must
be on a direct descendant of v.

Since v is an element of C, let v be
ci, for some i~ 1 < i < m. By construction, c i

has fil' fi2 and fi3 as direct descendants.

Let clause i be Yil v Yi2 v Yi3" For all j,

i ~ j j 3, let Yij and Yij refer to elements

of the set X, as given in the specificication of
the set EiO of edges.

Case I: A stone is moved from fil to c..l

Then node Yil' a direct ancestor of fil must

have already been computed. From lermna 3.7, Yil

has not yet been computed. Thus fi2 and fi3

have a direct ancestor, Yil' that has yet to be

computed. Hence, the stones at fi2 and fi3 can-

not be free, contradicting the supposition that
there is a free stone at move k + i.

The remaining cases follow quite simply.
0

LEMMA 3.9: Let D be the dag constructed
by reduction 1 for an (m-3,n) satisfiability
problem. If D is computed using ? ~+ 4n # ~
3m + 4n + 1 + #B registers, then the conjunction
of the clauses is satisfiable.

PROOF: From lemma 3.7, for all k, l<k<_n,

at most Jne of x k and ~ has been computed,

just after the computation of z n. If ~k has

been computed, assign the value true to the

literal Xk, and false to ~. Otherwise assign

the value false to Xk, and true to ~. Suppose

this assignment of values is such that the con-
junction of the clauses is not satisfied. Then
we will show that a contradiction must occur.

If the conjunction is not satisfied, there
must be at least one clause, say i, l<_i<_m,
such that all literals in caluse i are false.

Let these literals be Yil' Yi2 and Yi3" Since

Yil is a literal, for some k, l<k<n, Yil is

either x k or __ ~. If Yil is Xk, then from

the assignment of values to literals, Yil being

false, x k has not yet been computed.

Similarly if Yil is ~, then ~ has not yet

been computed. Evidently, fil will have a direct

ancestor that has not yet been computed. Similarly,

fi2 and fi3 will also have direct ancestors

that have not been computed. Thus the stones at

fil' fi2 and fi3 will be held there.

From lemma 3.8, there are no free stones when
c i is computed~ Hence c i cannot be computed

without using an extra stone. But then D cannot
be computed using 3m + 4n + i + #B stones.
Contradiction

LEMMA 3.10: Problem I is in NP.

PROOF: If k ~ n, the number of nodes in a

dag D, then the dag can be computed using no
more than k registers. Therefore, suppose k<n.

Given the dag D, and the integer k, let T
be a multitape nondeterministic Turing machine
that generates a sequence of n pairs,

(il,Xl),(i2,x2),...,(in,Xn), 1 _< i.] _< k, and xj

is a node in D. The integers can be represented
in binary notation, and the nodes by the symbol
"x" followed by an integer in binary notation.
The length of the sequence will be O(n log n).

Intuitively, the pair (i,x) may be thought
of as specifying that the stone i is placed on
node x.

The Turing machine then scans the sequence
generated to see if there is a computation of D
that corresponds to the sequence. The time taken
by T is clearly polynomial in n, and indepen-
dent of k. From [20], there is a one-tape non-
deterministic Turing machine that accepts problem
1 in polynomial time.

THEOREM 3.11: Given an integer k, the pro-
blem of determining if there is a computation of a
dag that uses no more than k registers, is poly-
nomial complete (no recomputation of nodes).

PROOF: Note that the statement of the
theorem refers to problem i.

From [19,21], the satisfiability problem with
exactly three literals per clause is polynomial
complete. Therefore, given lemmas 3.6-3.10,
all we need to show is that the dag D construct-
ed by reduction 1 for an (m-3,n) satisfiability
is constructed deterministically in polynomial
time.

Note that the number of nodes in D depends
only on n, the number of variables, and m, the
number of clauses. Moreover, the number of nodes

in D is 0(n2+m). Of the sets EI-Ei0 of edges,
Ei-E9, depend only on n and m. A list of
ordered pairs of nodes, specifying the edges in D

188

can be constructed in one pass over the satisfi-
ability problem.

0

4. Permittin$ Recomputation

The reduction of the last section relied
heavily on the ability to hold stones at designat-
ed nodes. If recomputation is permitted, the con-
structions of the last section are no longer
adequate. However, we will show how minor modifi-
cations of the construction in the last section
permit the reduction to work.

DEFINITION 4.1: The computation of a dag is
a sequence of moves in game i, that starts with no
stones on any node in the dag, and ends with
stones on all the roots in the dag.

EXAMPLE 4.2: Consider the dag in figure 4.3.
In order to compute node b, m stones must be
placed on the nodes al,a2,...,a m. In order to

compute node d, stones must be placed on nodes
in the set

C~

Figure 4.3

C = {Cl,C2,...,Cm}. If there are exactly m

stones that may be used, once stones are placed
on all nodes in the set C, none of the nodes in
C may be recomputed. In order to recompute a node
in C, there must be a stone on b. Since it
takes m stones to compute b, recomputing a
node in C is tantamount to starting afresh.

Clearly, treating d as the "initial" node,
and elements of C as "leaves", we can ensure
that no "leaves" are recomputed.

D

EXAMPLE 4.4: Consider the dag in figure 4.5.
As in example 3.2, let a circle at a node mean
that the node is a direct descendant of a final
node that is the last node to be computed. Tri-
angles at leaves h I and h 2 mean that the

computation starts by placing stones on these
leaves. Moreover, assume that h I and h 2 may

not be recomputed. From example 4.2, such an
assumption is enforceable. We will show how a
stone may be held at node z.

h~

Figure 4.5

Suppose that in addition to the 2 stones on

h I and h2, there are 3 stones available.

Since z must be computed before x, there is
little point in placing one of these three stones
on Sl-S 3. In order to compute z, there must be

stones on rl-r 4. Since h 2 may not be recomputed,

the remaining four stones must be placed on rl-r 4.

The important point is that a stone may not be held
at h I. Since h I may not be recomputed, neither

r I or r 2 may be recomputed. Node rl, being a

direct descendant of the "final" node, will the~e-
fore hold a stone.

Consider node z. Since z is a direct des-
cendant of the "final" node, there must be a stone
on z when the "final" node is computed. In order
to compute node x, there must be stones on

Sl,S2,S 3 and z. Since at most five stones may be

used, and one is held at rl, stones may not be

held at either h 2 or r 2. Since r 2 may not 5e

recomputed, the stone at z must remain there
until the "final" node is computed.

D

REDUCTION 2: Let the terms used here be as in
reduction I. Let sets C,F,U,W,X, and Z be as
in reduction i.

Nodes: AuBuCuFuHuLuMuRSTVuUuWuXuZ

A = {ajll ! j ! 2n + 2}

B = {bjll ! J ! 2n - m + i}

H = {hill ! J ! 4n}

L = {£jll ! J J 3m + 8n + 2 + #B}

M = {pivot, initial, d, final}

RSTV = {rkjll < k < n, I ! J ~ 2n - 2k + 4} u

{Skj,tkj,Vkjll < k < n, 1 < j < 2n - 2k+3}

Edses: E0 u E1 u...u El0

189

~, X, .." •
o"

/

q' V ~ '~" ~+~

E0 = {(pivot,g) Jg£L}u{(g,pivot)JgEAuBuFuHuU}

E1 = {(initial,g) Jg£AuBuFuHuU}

E2 = {(g,initial) JgeCuRSrV}

m3 = {(final,g) JgEWuXuZu{rkl,Skl,tkl,Vk2Jl<k<n}

U {initial,d,Vnl}}

E4 = {(Xk,Zk) , (~,Zk),(Xk,Ukl),(~,uk2) l<k<n}

E5 = {(Vkl,Ukj)Jl<k<n , l<_j!2}u{(Vnl,h4n)}

E6 = {(~k,Skj),(~,tkj),(Wk,Vkj)Jl<k<n,

l<_j~2n - 2k + 3} u

{(zk,rkj)Jl<k<n, l~j~2n - 2k + 4}

E6' = {(rkj,h4k_3),(Skj,h4k_2),(tkj,h4k_l) ,

(Vk,j+l,h4k) Jl!k~n , l!j!2}

sets E7-Ei0 are as for reduction i. 0

THEOREM 4.7: Given an integer k, the pro-
blem of determining if there is a computation of a
dag that uses no more than k registers is poly-
nomial complete.

PROOF: Similar to the proofs in section 3.
For further details see [22]. D

5. Validating Register Allocations

In this section we consider a seemingly
simpler problem in register allocation. Suppose
no value is computed more than once. Then, for
any computation, a register can be associated with
each node. In other words, each computation de-
fines a function from nodes to registers. From
figure 1.3, the converse - for each function from
nodes to registers, there exists a computation -
is not true. Here we examine, if given a function
from nodes to registers, there exists a compu-
tation that computes nodes into those registers.

DEFINITION: Let Q = XlX2...x n be a

sequence of nodes in a dag. Node u is said to
appear before node v in Q, if for some
i, j, 1 < i < j ! n, u is x° and v is x..

-- l j

Node v is said to appear after node u in Q.
If a node u appears before node v, and v
appears before node w in Q, then v is said
to appear between u and w in Q. The term
occur may sometimes be substituted for "appear".

D

190

DEFINITION: Let Q = XlX2...x n be a sequence

of nodes in a dag D. Q is called a complete
sequence of nodes in D if every node in D
appears exactly once in Q.

DEFINITION: Given a dag D, let L be a
function from nodes in D into the set of names.
L will be called an allocation for D. The pair
(D,L) will often be referred to as a program dag,
or just program.

0

Suppose a value is in a specified register.
It should be retained in the register, at least as
long as it is needed. It will be needed until all
its direct ancestors have been computed.

DEFINITION: Given a program (D,L), Let Q
be a sequence of nodes in D. (Q,L) is said to
be consistent, if for all nodes u, v and w in
D, if

(i) u is a direct descendant of w, and
(2) v appears between u and w,

then L(u) ~ L(v).

DEFINITION: Let Q be a complete sequence
of nodes in a dag D. Q is called a realization
of a program (D,L), if (W,L) is consistent,
and for all nodes u and v in D, if u
appears before v in D, then v is not a
descendant of u.

Completeness of a sequence ensures that an
attempt will be made to compute every node. A
realization also forces descendants to he computed
before their ancestors. Consistency ensures that
the value of a node will be retained in the
appropriate register, as long as it is needed.

EXAMPLE 5.1: Example I.i gave a program to
compute the dag in figure 1.2 using three reg-
isters. The realization corresponding to that
program is given by figure 5.2.

node c x tl b t2 t3 a t4

stone i 2 1 3 i I 2 3

Figure 5.2

e b ~ a ~ l t2 t3 t4

i 2 3 2 i i I 3

Figure 5.3

Consider the sequence Q in figure 5.3. Q
is complete, since it contains all the nodes in D.
Moreover descendants appear before their ancestors
in Q. However Q is not a realization of D,
since (Q,L) is not consistent -- the value of
node x is needed to compute tl, but placing a
into register 2 destroys the value of x before
it can be used.

0

PROBLEM 3: Given a program dag (D,L), does
(D,L) have a realization? []

REDUCTION 3: Given an m-clause satisfl-
ability problem over n variables Xl,X2,...,Xn,

where for all i, i < i < m, clause i has

exactly 3 llterals, Yil,Yi2 and Yi3' construct

a program dag (D,L) as follows:

1. For all k, i < k < n, construct two

leaves s k and ~k' corresponding to the

literals x k ~. Let L(s k) = S k.

2. For all i, j, i < i < m, i ~ j ~ 3,

construct nodes Pij,qij, rij and ~l]' as in

figure 5.4, and edges (qij,Pi]), (plj,rij). Let

L(Pij) = Pij' e(qij)= Qij and L(rij)=e(~ij)=Rij.

Also construct the edges (qil,ri2), (qi2,ri3)

and (qi3,~il).

The subdag created in figure 5.4 corresponds

to clause i. The nodes rij and rij corres-

pond to the literals Ylj and Yij"

3. For all i, i < i < m, clause i con-

sists of the llterals Yil' Yi2 and Yi3" For

all J, 1 ~ j ~ 3, since Yij is a literal,

there exists a k, I < k < n, such that Yi] is

either x k or ~. If Yi] = Xk' we use the

symbol "Yij" to refer to node Sk, and "~ij" to

refer to node ~k" Otherwise, if Yl] = Xk' we

use the symbol "Yij" to refer to node s k and

"Yij" to refer to node s k-

For all i, J, I < ~ < m, I ~ j ~ 3, con-

struct the edges (rij,Yij) and (rij,Yij) .

LEMMA 5.5: Let (D,L) be the program con-
st~cted by reduction 3 for an (m-3,n) satisfl-
ability problem. If the conjunction of clauses is
satisfiable, then (D,L) has a realization.

PROOF: We will construct a realization for
(D,L).

I. Initially the sequence Q is empty. As
a convention, nodes may be added to Q on the
right only. Do 2 for k = 1,2,...,n.

2. If the literal x k is true for the con-

junction of clauses to be satisfiable, then add

Sk, all direct ancestors of Sk, and Sk to Q.

Otherwise, add ~., all direct ancestors of
and s k to Q.

Note that all direct ancestors of s k and

are elements of the set

{rij,ri] i < i < m, i ! J ~ 3}. Each element of

191

.J

this set has only one direct descendant. Moreover,
by construction, for all i, j, I < i < m,

i ~ j ! 3, both rij and rij cannot both be

direct ancestors of the same node. Therefore only

one of rij and rij has been added to Q.

Since L(rij) is equal only to L(rij) , (Q,L)

must so far be consistent.

3. For all i, j, i < i < m, i ~ j ! 3, if

rij has been added to Q, then add Pij and ~ij

to Q. Note that Pij is the unique direct

ancestor of rij , and that for all nodes x in

D, if x # Pij' then e(x) # L(Pij).

4. At this stage, note that for all i, j,

i < i < m, i j j j 3, ~ij has been added to the

list, but that rij may not have. For all i,

i < i < m, do 5.

5. Consider clause i, given by
Yil v Yi2 v Yi3" Since the conjunction of clauses

is satisfiable, clause i must be true. Without
loss of generality let Yil be true. We will

show that ril appears in Q before ~il"

Since Yil is a literal, for some k,

1 < k < n, Yil is either x k or ~. If Yil

is Xk, then, by construction, ril is a direct

ancestor of s k. Since Yil is true x k must be

true, so from part 2, above, s k and ril are

added to Q.

If, on the other hand, Yil is ~, then,

by construction, ril is a direct ancestor of ~K.

Since Yil is true, ~ is true, and Sk and

ril are added to Q by part 2.

Since both Pil and ri2 have been added to

Q, node qil can now be added to the sequence

Q. Once qil is added to Q, L(ri2), which

ri2 shares with ri2 , can be used for ri2 , un-

less of course, ri2 is already in Q. In

either case, qi2 can now be computed, and

similarly qi3"

U

Figure 5.6

LEMMA 5.7: Let u I, u 2, v I and v 2 be nodes

in a dag D such that for i = 1,2, u is a
i

direct ancestor of v i. Let L(u I) = L(u 2) and

L(v I) = L(v2). Let Q be a realization of (D,L).

Then V 1 appears before v 2 in Q if and only if

u I appears before u 2.

PROOF: Suppose u I appears before u2, but

that v 2 appears before v I. We will show that a

contradiction must occur.

Since Q is a realization of (D,L), descen-
dants must appear before their ancestors. Since
v I is a descendant of Ul, it follows that the

nodes appear in the order v 2, v I, u I, u 2. Since

u 2 is a direct ancestor of v2, and L(Vl)=L(v2) ,

(Q,L) cannot be consistent. Hence Q cannot be a
realization of (D,L) contradiction.

The converse follows similarly.

LEMMA 5.8: Let (D,L) be the program con-
structed by reduction 3 for an (m-3,n) satisfi-

19e

ability problem. Let Q be a realization of
(D,L). Then for all i, i < i < m there exists
a J, I ~ j ~ 3, such that rij appears before

rij in Q.

PROOF: Suppose the lemma is false. Then
there exists an i, 1 < i < m, such that for all

j, 1 ~ j ~ 3, rij appears before rlj in Q. We

will show that a contradiction must occur.

(In figure 5.4) note that L(~ij) = L(rij).

Thus, for (Q,L) to be consistent, any direct

ancestors of rij must appear before rlj in Q.

Note also that rij , being a descendant of qlj'

must appear before qij in Q. We therefore

conclude that:

qil before ri2

ri2 before qi2

qi2 before ri3

ri3 before qi3

qi3 before rll

rll before qil

Thus Q cannot be a realization of (D,L) con-
tradiction.

LEMMA 5.9: Let (D,L) be the program con-
structed by reduction 3 for an (m-3,n) satisfl-
ability problem. (D,L) has a realization if and
only if the conjunction of clauses is satisfiable.

PROOF: The if part is provided by lemma
5.5. So we only need to show that if (D,L) has
a realization then the conjunction of clauses is
satisfiable.

Let Q be a realization for (D,L). For all
k, i < k < n, if s k is computed before Sk,

assign the value true to Xk, otherwise assign

the value false to x k.

Suppose this assignment of values is such
that the conjunction of clauses is not satisfied.
Then we will show that a contradiction must occur.

Since the conjunction of clauses is not
satisfied, there must be at least one clause such
that all the literals in the clause are false.
Let clause i be such a clause.

From lemma 5.8, there exists a j, I ~ j ~ 3,

such that rij appears before rij. Without loss

of generality, let j be I. For some_ k,

i < k < n, ril either has s k or s k as

direct descendant.

case i: s k is a direct descendant of ril.

Since ril appears before ril, from lemma 5.7,

before Sk" Thus x k is assigned the S k appears

value true. By construction, the literal Yll

must be x k. Hence Yil must be true. Con-

tradiction.

The other case follows similarly.

D

LEnA 5.10: Problem 3 is in NP.

PROOF: Straightforward. D

THEOREM 5.11: Given a program (D,L) the
problem of determining if (D,L) has a realiza-
tion is polynomial complete.

PROOF: The construction of reduction 3 can
clearly be performed in polynomial time. The
theorem follows from lemma 5.5, 5.7-5.10.

D

6. Other Problems

The problems in sections 3 and 4 were con-
cerned with the number of registers used. When
recomputatlon is permitted, another concern might
be the length of the computation. Clearly, the
lower bound on the length of the computation is
given by the case in which no nodes are re-

computed. + This bound can be achieved by placing
a fresh stone on every node. Therefore it only
makes sense to talk of limiting the length of a
computation if there is also a bound on the
number of registers.

In addition to the game that has been con-
sidered so far, Walker [15], considers a number
of other games. For example, we may have a game
that models two levels of storage -- registers
and core memory.

GAME 2: Let there be a finite set of r
red stones (registers) RI,R 2 ,Rr, and an

infinite set of black stones (core locations)

Li,L2,-.-

A move in ~ame 2 is one of the following:

i. place a black stone on a leaf
2. exchange a red stone for a black stone
3. exchange a black stone for a red stone

if there are red stones on every direct descen-
dant of a node x, then:

4. place a red stone on x, or
5. move a red stone to x from one of the

direct descendants of x
0

+We should really exclude moves that pick up
stones when determining the length of a com-
putation, since such a move is not necessary in
practice.

193

Given a fixed value of r, there are 0(n r)
ways of arranging red stones on nodes in the dag.
Note that the black stones can be treated as
indistinguishable. Thus it is expected that pro-
blems based on game 2 will be in NP. Moreover,
problems based on game 2 easily encompass problems
based on game i.

Another possible game arises from the incor-
poration of "parallel assignment" instructions.
Note that the dag in figure 7.1 would require three

Figure 6.1

stones if computed using the definition of com-
putation in sections 3 and 4. But, if instead of
allowing a stone to be placed on only one node at
a time, stone could be placed on all direct
ancestors of a set of nodes, then the dag in
figure 6.1 could be computed using two stones.

GAME 3: Let there be an infinite supply of
labelled stones. A move in same 3 is one of the
following:

i. place a stone on a leaf
2. pick up a stone from a node

if there are stones on all direct descendants of
a set of nodes X = {Xl,X2,...,Xn} , then:

3. places stones on a subset of X, or
4. for some subset W of X, move stones

to nodes in W as follows:

For all w c W, move a stone to w from a direct
descendant of w.

Note that it is not necessary to consider
combinations of 3 and 4 above.

D

It is expected that the reductions in
sections 3 and 4 would also work for problems based
on game 3.

7. Practical Sisnificance

Fortunately, the dags used in the reductions
in this paper tend not to occur in practice. In
most programs straight line sections tend to be
fairly small. The practical significance of the
results that have been presented is twofold: (i)
Since the dags that occur in practice tend to be
simple, it would be worthwhile to study register
allocation for restricted classes of dags; (2) If
the dags are small enough, then efficient enumer-
ative techniques might be worth considering.

and Jeff Ullman are greatly appreciated.

References

I. J. W. Backus, et al, The FORTRAN automatic
coding system. Proc. WJCC ii (1957) 188-198,
also in S. Rosen (ed) Programming systems and
languages, McGraw-Hill, New York. (1967) 29-
47.

2. J. C. Beatty, A global register assignment
algorithm, in R. Rustin (ed) Design and
optimization of compilers, Prentice-Hall,
Englewood Cliffs, N. J. (1972) 65-68.

3. J. C. Beatty, An axiomatic approach to code
optimization for expressions. JACM 19,4
(Oct. 1972), 613-640.

4. M. A. Breuer, Generation of optimal code for
arithmetic expressions via faetorization,
CACM 12,6 (June 1969) 333-340.

5. V. A. Busam, D. W. Englund, Optimization of
expressions in FORTRAN, CACM 12,12 (Dec. 1969),
666-674.

6. G. Chroust, Scope conserving expression
evaluation, IFIP '71, TA-3, 178-182.

7. W. H. E. Day, Compiler assignment of data
items to registers, IBM Sys. J. 9,4 (1970)
281-317.

8. L. P. Horwitz, R. M. Karp, R. E. Miller,
S. Winograd, Index reglster allocation,
JACM 13,. (Jan. 1966) 43-61.

9. K. Kennedy, Index register allocation in
straight line code and simple loops. In R.
Rustin (ed) Design and optimization of
compilers, Prentice-Hall, Englewood Cliffs,
N. J., (1972) 51-64.

i0. E. S. Lowry, C. W. Medlock, Object code
optimization CACM 12,1 (Jan. 1969) 13-22.

ii. T. Marill, Computational chains and the
simplification of computer programs, IRE Trans.
on Else. Comp. EC-ii,2 (April 1962) 173-180.

12. Ikuo Nakata, On compiling algorithms for
arithmetic expressions, CACM 10,8 (Aug. 1967)
492-494.

13. R. R. Redziejowski, On arithmetic expressions
and trees, CACM 12,2 (Feb. 1969) 81-84.

14. R. Sethi, J. D. Ullman, The generation of
optimal code for arithmetic expressions, JACM
17, 4 (Oct. 1970) 715-728.

15. S. A. Walker, Some graph games related to the
efficient calculation of expressions, IBM Res.
Rep. RC-3628 (Nov. 1971) 17 p.

Acknowledsments: Interest, suggestions and
criticism by John Bruno, Neil Jones, Ray Strong

194

16.

17.

18.

19.

20.

21.

22.

S. A. Walker, H. R. Strong, Characterizations
of flow chartable recursions, 4th Ann. Sym.
on theory of computing, Denver, Colo. (May
1972) 18-34.

L. A. Belady, A study of replacement algor-
ithms for a virtual storage computer, IBM
Sys. J. 5,2 (1966) 78-101.

A. V. Aho, J. D. Ullman, Optimization of
straight llne prugrams, SIAM J. Computing i,I
(Mar. 1972) 1-19.

S. A. Cook, The complexity of theorem-proving
procedures, 3rd. Ann. Sym. on Th. of Comput-
ing, Shaker Heights, Ohio (May 1971), 151-158.

J. E. Hopcroft, J. D. Ullman, Formal lan-
guages and their relation to automata,
Addison Wesley, Reading, Mass. (1969).

R. M. Karp, Reducibility among combinatorial
problems, Tech. Rep. No. 3, Computer Science
Dept., Univ. of Cal., Berkeley (April 1972).

R. Sethi, Complete register allocation pro-
blems, Tech. Rep. No. 134, Computer Science
Dept., Penn State Univ., Univ. Park, Pa.
(Jan. 73).

~95

