
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
79

50
--

FR
+E

N
G

RESEARCH
REPORT
N° 7950
May 2012

Project-Teams GRAND-
LARGE,ROMA

Unified Model
for Assessing
Checkpointing Protocols
at Extreme-Scale
George Bosilca, Aurélien Bouteiller, Elisabeth Brunet, Franck
Cappello, Jack Dongarra, Amina Guermouche, Thomas Herault, Yves
Robert, Frédéric Vivien, Dounia Zaidouni





RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Unified Model
for Assessing

Checkpointing Protocols
at Extreme-Scale

George Bosilca∗, Aurélien Bouteiller∗, Elisabeth Brunet†,
Franck Cappello‡§, Jack Dongarra∗, Amina Guermouche‡¶,

Thomas Herault∗, Yves Robert¶∗‖, Frédéric Vivien‡¶, Dounia
Zaidouni‡¶

Project-Teams GRAND-LARGE,ROMA

Research Report n° 7950 — May 2012 — 35 pages

Abstract: In this article, we present a unified model for several well-known checkpoint/restart
protocols. The proposed model is generic enough to encompass both extremes of the check-
point/restart space: on one side the coordinated checkpoint, and on the other extreme, a variety
of uncoordinated checkpoint strategies (with message logging). We identify a set of parameters
that are crucial to instantiate and compare the expected efficiency of the fault tolerant protocols,
for a given application/platform pair. We then propose a detailed analysis of several scenarios,
including some of the most powerful currently available HPC platforms, as well as anticipated
Exascale designs. This comparison outlines the comparative behaviors of checkpoint strategies at
scale, thereby providing insight that is hardly accessible to direct experimentation.

Key-words: Fault-tolerance, checkpointing, coordinated, hierarchical, model, exascale

∗ University of Tennessee Knoxville, USA
† Telecom SudParis, France
‡ INRIA
§ University of Illinois at Urbana Champaign, USA
¶ LIP, École Normale Supérieure de Lyon, France
‖ Institut Universitaire de France



Un modèle unifié pour l’évaluation des
protocoles de sauvegarde à très large échelle

Résumé : Nous présentons ici un modèle unifié de plusieurs protocoles
de sauvegarde de points de reprise (checkpoints) et de redémarrage. Le modèle
proposé est suffisamment générique pour contenir les situations deux extrêmes:
d’un côté le checkpoint coordonné, et de l’autre toute une famille de stratégies
non-coordonnées (avec enregistrement de messages).

Nous identifions un ensemble de paramètres cruciaux pour l’instantiation
et la comparaison de l’espérance de l’efficacité des protocoles de tolérance aux
pannes, pour un couple donné application/plate-forme. Nous proposons une
analyse détaillée de plusieurs scénarios, incluant certaines des plates-formes de
calcul existantes les plus puissantes, ainsi que des anticipations sur les futures
plates-formes exascale. Cette comparaison illustre le comportement relatif des
différentes stratégies à large échelle, fournissant des enseignements qu’il serait
très difficile, voire impossible, d’obtenir par l’expérimentation directe.

Mots-clés : Tolérance aux pannes, checkpoint, modèle, coordonné, hiérarchique,
exascale



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 3

1 Introduction

A significant research effort is focusing on the outline, characteristics, features,
and challenges of High Performance Computing (HPC) systems capable of reach-
ing the Exaflop performance mark [1, 2, 3, 4]. The portrayed Exascale systems
will necessitate, billion way parallelism, resulting in a massive increase in the
number of processing units (cores), but also in terms of computing nodes. Con-
sidering the relative slopes describing the evolution of the reliability of individual
components on one side, and the evolution of the number of components on the
other side, the reliability of the entire platform is expected to decrease, due to
probabilistic amplification. Executions of large parallel HPC applications on
these systems will have to tolerate a higher degree of errors and failures than
in current systems. Preparation studies forecast that standard fault tolerance
approaches (e.g., coordinated checkpointing on parallel file system) will lead to
unacceptable overheads at Exascale. Thus, it is not surprising that improving
fault tolerance techniques is one of the main recommendations isolated by these
studies.

In this paper we focus on techniques for tolerating the ultimate effect of
detected and uncorrectable hard and soft errors: the crash of processes (un-
detected errors, also known as silent errors, are out-of-scope of this analysis).
There are two main ways of tolerating process crashes, without undergoing
significant application code refactoring: replication and rollback recovery. An
analysis of replication feasibility for Exascale systems was presented in [5]. In
this paper we focus on rollback recovery, and more precisely on the comparison
of checkpointing protocols.

There are three main families of checkpointing protocols: (i) coordinated
checkpointing; (ii) uncoordinated checkpointing with message logging; and (iii)
hierarchical protocols mixing coordinated checkpointing and message logging.
The key principle in all these checkpointing protocols is that all data and states
necessary to restart the execution are regularly saved in process checkpoints.
Depending on the protocol, theses checkpoints are or are not guaranteed to
form consistent recovery lines. When a failure occurs, appropriate processes
rollback to their last checkpoints and resume execution.

Each protocol family has serious drawbacks. Coordinated checkpointing and
hierarchical protocols suffer a waste of computing resources when living pro-
cesses have to rollback and recover from a checkpoint, to help tolerate failures.
These protocols may also lead to I/O congestion when too many processes are
checkpointing at the same time. Message logging increases the memory con-
sumption, the checkpointing time, and slows-down the failure-free execution
when messages are logged. Our objective is to identify which protocol delivers
the best performance for a given application on a given platform. While sev-
eral criteria could be considered to make such a selection, we focus on the most
widely used metric, namely, the expectation of the total parallel execution time.

Fault-tolerant protocols have different overheads in fault-free and recovery
situations. These overheads depend on many factors (type of protocols, ap-
plication characteristics, system features, etc.) that introduce complexity and
limit the scope of experimental comparisons as they have been done several
times in the past [6, 7]. In this paper, we approach the fault tolerant proto-
col comparison from an analytical perspective. Our objective is to provide a
valid performance model covering the most suitable rollback recovery protocols

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 4

for HPC executions. Our model captures many optimizations proposed in the
literature, and can be used to explore the effects of novel optimizations, and
highlight the critical parameters to be considered when evaluating a protocol.
The main contributions of this paper are:

1. to provide a comprehensive model that captures many consistent roll-
back recovery protocols, including coordinated checkpoint, uncoordinated
checkpoint, and the composite hierarchical hybrids;

2. to provide a closed-form formula for the waste of platform computing
resources incurred by each checkpointing protocol. This formula is the
key to assessing existing and new protocols, and constitutes the first tool
that can help the community to compare protocols at very large scale, and
to guide design decisions for given application/platform pairs;

3. to instantiate the model on several realistic scenarios involving state-of-
the-art platforms, and future Exascale ones, thereby providing practical
insight and guidance.

The rest of this paper is organized as follows. Section 2 details the character-
istics of available rollback recovery approaches, and the tradeoff they impose on
failure-free execution and recovery. We also briefly discuss related work in this
section. In Section 3, we describe our model that partially unifies coordinated
rollback recovery approaches, and effectively captures coordinated, partially and
totally uncoordinated approaches as well as many of their optimizations. We
then use the model to analytically assess the performance of rollback recovery
protocols. We instantiate the model with realistic scenarios in Section 4, and
we present case-study results in Section 5, before concluding and presenting
perspectives.

2 Rollback Recovery Strategies

Rollback recovery addresses permanent (fail-stop) process failures, in the sense
that a process reached a state where either it cannot continue for physical rea-
sons or it detected that the current state has been corrupted and further con-
tinuation of the current computation is worthless. In order to mitigate the cost
of such failures, processes save their state on persistent memory (remote node,
disk, ...) by taking periodic checkpoints. When the state of a process is altered
by a failure, a replacement resource is allocated, and a previous state of the
process can be restored from a checkpoint. Clearly, to minimize the amount
of lost computation, the checkpoint must be as close as possible to the failure
point.

In a distributed system, many inter-dependent processes participate in the
computation, and a consistent global state of the application not only captures
the state of each individual process, but also captures the dependencies between
these states carried by messages [8]. In the context of checkpoint-based rollback
recovery, the state of processes after some have reloaded from a checkpoint forms
the recovery line. Any message altering the deterministic behavior of the appli-
cation, and crossing a recovery line, must be available for restarted processes, in
order to maintain a consistent global state. Protocols taking checkpoints with-
out a guarantee of consistency are subject to the domino effect, and may lead
to a restart of the execution from the beginning. Such protocols are excluded
from this study.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 5

Ensuring a consistent recovery can be achieved by two approaches, whose
key difference is the level of coordination imposed on the recovery procedure.
On one extreme, coordinating checkpoints, where after a failure, the entire appli-
cation rolls back to a known consistent global state. On the opposite extreme,
only the failed process rolls back to a checkpoint, in which case the recovery line
must be augmented with additional information in order to avoid inconsistent
dependencies during the re-execution phase, a method known as message log-
ging [9]. Recent advances in message logging [10, 11, 12] have led to composite
algorithms, called hierarchical checkpointing, capable of partial coordination of
checkpoints while retaining message logging capabilities to remove the need for
a global restart.

The goal of the model presented in this paper, is to capture the largest
possible spectrum of checkpointing techniques, in order to propose a holistic
description of all viable approaches. Based on this unified model, an assessment
between the different classical techniques can be made, allowing for a deeper
understanding of the advantages and drawbacks of each particular approach.

2.1 Coordinated Checkpointing

Several algorithms have been proposed to coordinate checkpoints, the most com-
monly used being the Chandy-Lamport algorithm [8]. The main requirement
to form a globally consistent recovery line, characterized by the absence of in-
transit messages at the checkpoint line, is often implemented by completely
silencing the network during checkpoint phases [13]. Coordinated algorithms
possess the advantage of having almost no overhead outside of checkpointing
periods, but require that every process, even if unaffected by failures, rolls back
to its last checkpoint, as only this recovery line is guaranteed to be consistent.
Arguably, the checkpoint and the recovery are costly operations, increasing the
strain on the I/O subsystem.

2.2 Message Logging

Message Logging is a family of algorithms that provide a consistent recovery
strategy from checkpoints taken at independent dates and without rolling back
the surviving processes, a feature expected to increase resilience to adverse fail-
ure patterns [6]. As the recovery line includes the arbitrary state of processes
that do not rollback to a checkpoint, the restarted processes must undergo a
directed replay, in order to reach a state that is part of a consistent global state.
Such a replay requires two supplementary bits of information, not captured by
the traditional process checkpoint: 1) the Event log, which contains the out-
come of all nondeterministic events that happened during the lost computation;
and 2) the Payload log, which enables replaying reception of messages sent to
restarted processes before the recovery line.

Payload copy can be highly optimized; in particular, the sender-based ap-
proach [9] permits the payload copy operation to be completely overlapped with
the send operation itself. However, this extra data becomes part of the process
checkpoint, and hence the amount of data to be stored on stable storage di-
rectly depends on the communication intensity of the application. On the other
side, the fact that the recovery is a directed replay, rather than a complete

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 6

coordinated restart, conveys two potential benefits. During the replay, mes-
sage receptions are immediately available from the log and emissions are mostly
discarded, hence the communication overhead is greatly reduced. As a result
the replay of processes restarted from checkpoint may progress faster than the
original execution [6]. Second, as the failure recovery is constrained to processes
directly impacted, other processes may continue to progress concurrently with
the recovery, until they need to interact with one of the replaying processes.
However, it can be argued that for tightly coupled applications, very little com-
putation is completed before depending (transitively) on a replaying process.

2.3 Hierarchical Checkpointing

Hierarchical checkpointing protocols are a recent refinement of fault tolerant
protocols, gathering advantages from both coordinated checkpointing and mes-
sage logging while minimizing the drawbacks. They are designed to avoid
the global restart associated with coordinated checkpointing while drastically
limiting the volume of message to log compared to message logging protocols
[10, 12, 11]. These hierarchical schemes partition the processes of the applica-
tion in groups, based on heuristics such as network proximity or communication
intensity. Each group checkpoints independently, but processes belonging to the
same group coordinate their checkpoints (and recovery), in order to spare some
of the payload log. Communications between groups continue to incur payload
logging. However, because processes belonging to a same group follow a co-
ordinated checkpointing protocol, the payload of messages exchanged between
processes of the same group is not needed during replay.

The optimizations driving the choice of the size and shape of groups are
varied. A simple heuristic is to checkpoint as many processes as possible, si-
multaneously, without exceeding the capacity of the I/O system. In this case,
groups do not checkpoint in parallel. Groups can also be formed according to
hardware proximity and communication patterns. In such approaches, there
may be opportunity for several groups to checkpoint concurrently. Without loss
of generality, we consider that all groups of the application enter their check-
point phase in turn, thus making the whole execution appear as a parallel work
phase, followed by a checkpointing phase made of a sequence of checkpoints.
The model we propose captures the intricacies of these grouping strategies, and
we instantiate a variety of meaningful scenarios in Section 4.

2.4 Related work

The study of the optimal period of checkpoint for sequential jobs (or parallel jobs
checkpointed in a coordinated way) has seen many studies presenting different
order of estimates: see [14, 15], and [16, 17] that consider weibull distributions,
or [18] that considers parallel jobs. The selection of the optimal checkpoint-
ing interval is critical to extract the best performance of any rollback-recovery
protocol. However, although we use the same approach to find the optimal
checkpoint interval, we focus our study on the comparison of different protocols
that were not captured by the models these works considered.

The literature proposes different works as [19, 20, 21, 22, 23] on the modeling
of coordinated checkpointing protocols. [24] focus on refining failures prediction;
[20], and [19] focus on the optimized uses of the available resources: some may be

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 7

kept in backup in order to replace the down ones and others may be even shut-
down in order to decrease the failure risk or to prevent storage consumption by
saving less checkpoints snapshots. [23] proposes a scalability model where they
compare the impact of failures on application performance with and without
coordinated checkpointing. The major difference with these works lays in the
unified model for coordinated and hierarchical protocols, and the inclusion of
more parameters (like recovery of the checkpoint transfer cost with overlapping
computation), refinning the model.

More scare papers present the modeling of uncoordinated or hierarchical
checkpointing. [25] models a periodic checkpointing on fault-aware parallel
tasks that do not communicate. From our point of view, this specificity does
not match the uncoordinated checkpointing with message logging we consider.
In this paper, the three families of checkpointing protocols are targeted : the
coordinated, the uncoordinated and the hierarchical ones. To the best of our
knowledge, it is the first attempt at providing a unified model for this large
spectrum of protocols.

3 Model and Analytical Assessment

In this section, we formally state the unified model, together with the closed-
form formula for the waste optimization problem. We start with the description
of the abstract model (Section 3.1). Processors are partitioned into G groups,
where each group checkpoints independently and periodically. To help follow
the technical derivation of the waste, we start with one group (Section 3.2)
before tackling the general problem with G ≥ 1 groups (Section 3.3). We even
deal with a simplified model with G ≥ 1 before tackling the fully general model,
which requires three additional parameters (pay-load overhead, faster execution
replay after a failure, and increase in checkpoint size due to message logging).
We end up with a complicated formula that characterizes the waste of resources
due to checkpointing. This formula can be instantiated to account for all the
checkpoint protocols described in Section 2, see Section 4 for examples. Note
that in all scenarios, we model the behavior of tightly coupled applications,
meaning that no computation can progress on the entire platform as long as the
recovery phase of a group with a failing processor is not completed.

3.1 Abstract model

In this section, we detail the main parameters of the model. We consider an
application that executes on ptotal processors subject to failures.

Units– To avoid introducing several conversion parameters, we instantiate
all the parameters of the model in seconds. The failure inter-arrival times,
the durations of a downtime, checkpoint, or recovery are all expressed in sec-
onds. Furthermore, we assume (without loss of generality) that one work unit
is executed in one second, when all processors are computing at full rate. One
work-unit may correspond to any relevant application-specific quantity. When
a processor is slowed-down by another activity related to fault-tolerance (writ-
ing checkpoints to stable storage, logging messages, etc.), one work-unit takes
longer than a second to complete.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 8

Failures and MTBF– The platform consists of ptotal identical processors.
We use the term “processor” to indicate any individually scheduled compute
resource (a core, a socket, a cluster node, etc) so that our work is agnostic
to the granularity of the platform. These processors are subject to failures.
Exponential failures are widely used for theoretical studies, while Weibull or
log-normal failures are representative of the behavior of real-world platforms [26,
27, 28, 29]. The mean time between failures of a given processor is a random
variable with mean (MTBF ) µ (expressed in seconds). Given the MTBF of one
processor, it is difficult to compute, or even approximate, the failure distribution
of a platform with ptotal processors, because it is the superposition of ptotal
independent and identically distributed distributions (with a single processor).
However, there is an easy formula for the MTBF of that distribution, namely
µp = µ

ptotal
.

In our theoretical analysis, we do not assume to know the failure distribution
of the platform, except for its mean value (the MTBF). Nevertheless, consider
any time-interval I = [t, t + T ] of length T and assume that a failure strikes
during this interval. We can safely state that the probability for the failure
to strike during any sub-interval [t′, t′ + X] ⊂ I of length X is X

T . Similarly,
we state that the expectation of the time m at which the failure strikes is
m = t + T

2 . Neither of these statements rely on some specific property of
the failure distribution, but instead are a direct consequence of averaging over
all possible interval starting points, that will correspond to the beginning of
checkpointing periods, and that are independent of failure dates.

Tightly-coupled application– We consider a tightly-coupled application exe-
cuting on the ptotal processors. Inter-processor messages are exchanged through-
out the computation, which can only progress if all processors are available.
When a failure strikes some processor, the application is missing one resource
for a certain period of time, the downtime. Then, the application recovers from
the last checkpoint (recovery time) before it re-executes the work done since
that checkpoint and up to the failure. Under a hierarchical scenario, the useful
work resumes only when the faulty group catches up with the overall state of
the application at failure time. Many scientific applications obey to the previous
scheme. Typically, the tightly-coupled application will be an iterative applica-
tion with a global synchronization point at the end of each iteration. However,
the fact that inter-processor information is exchanged continuously or at given
synchronization steps (as in BSP-like models [30]) is irrelevant: in steady-state
mode, all processors must be available concurrently for the execution to actually
progress. While the tightly-coupled assumption may seem very constraining, it
captures the fact that processes in the application depend on each other, and
progress can be guaranteed only if all processes are present to participate to the
computation.

Blocking or non-blocking checkpoint– There are various scenarios to model
the cost of checkpointing, so we use a very flexible model, with several pa-
rameters to instantiate. The first question is whether checkpoints are blocking
or not. In some architectures, we may have to stop executing the application
before writing to the stable storage where checkpoint data is saved; in that
case checkpoint is fully blocking. In other architectures, checkpoint data can be
saved on the fly into a local memory before the checkpoint is sent to the resilient
disk,while computation can resume progress; in that case, checkpoints can be
fully overlapped with computations. To deal with all situations, we introduce

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 9

a slow-down factor α: during a checkpoint of duration C, the work that is per-
formed is αC work units, instead of C work-units if only computation takes
place. In other words, (1− α)C work-units are wasted due to checkpoint jitter
perturbing the progress of computation. Here, 0 ≤ α ≤ 1 is an arbitrary param-
eter. The case α = 0 corresponds to a fully blocking checkpoint, while α = 1
corresponds to a fully overlapped checkpoint, and all intermediate situations
can be represented.

Periodic checkpointing strategies– For the sake of clarity and tractability, we
focus on periodic scheduling strategies where checkpoints are taken at regular
intervals, after some fixed amount of work-units have been performed. This
corresponds to an infinite-length execution partitioned into periods of duration
T . We partition T into T = W + C, where W is the amount of time where
only computations take place, while C corresponds to the amount of time where
checkpoints are taken. The total amount of work units that are executed during
a period of length T is thus Work = W +αC (recall that there is a slow-down
due to the overlap). In a failure-free environment, the waste of computing
resources due to checkpointing is (see Figure 1):

Waste =
T −Work

T
=

(1− α)C

T
(1)

As expected, if α = 1 there is no overhead, but if α < 1 (actual slowdown, or even
blocking if α = 0), checkpointing comes with a price in terms of performance
degradation.

For the time being, we do not further quantify the length of a checkpoint,
which is a function of several parameters. Instead, we proceed with the abstract
model. We envision several scenarios in Section 4, only after setting up the
formula for the waste in a general context.

Processor groups– As described above, we assume that the platform is par-
titioned into G groups of same size. Each group contains q processors (hence
ptotal = Gq). For the sake of the presentation, we first compute the waste when
G = 1 before discussing the case where G ≥ 1. When G = 1, we speak of a
coordinated scenario, and we simply write C, D and R for the duration of a
checkpoint, downtime and recovery. When G ≥ 1, we speak of a hierarchical
scenario. Each group includes q processors and checkpoints independently and
sequentially in time C(q). Similarly, we use D(q) and R(q) for the durations of
the downtime and recovery. Of course, if we let G = 1 in the (more general)
hierarchical scenario, we retrieve the value of the waste for the coordinated sce-
nario. As already mentioned, we derive a general expression for the waste for
both scenarios, before further specifying the values of C(q), D(q), and R(q) as
a function of q and the various architectural parameters under study.

3.2 Waste for the coordinated scenario (G = 1)

The goal of this section is to compute a formula for the expected waste in the
coordinated scenario where G = 1. Recall that the waste is the fraction of
time that the processors do not compute at full rate, either because they are
checkpointing, or because they recover from a failure. Recall too that we write
C, D, and R for the checkpoint, downtime, and recovery using a single group
of ptotal processors.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 10

T

CT − C

P2

P3

P0

P1

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Figure 1: Illustrating the waste due to checkpointing in a failure-free envi-
ronment: there is a slowdown of duration C at the end of every period of
length T = W + C. The total work that is executed during such a period is
Work = W + αC work units.

∆

αC CT − CRDTlost

P2

P1

P0

P3

Time spent checkpointingTime spent working Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime

T

Time

Figure 2: Coordinated checkpoint: illustrating the waste when a failure occurs
during the work phase.

∆

CT − CαCRDTlostT − C

T

P3

P0

P1

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Figure 3: Coordinated checkpoint: illustrating the waste when a failure occurs
during the checkpoint phase.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 11

We obtain the following equation for the waste, which we explain below, and
illustrate with Figures 2 and 3:

Wastecoord =
(1− α)C

T
(2)

+
1

µp

T − C
T

[
R+D + αC +

T − C
2

]
(3)

+
1

µp

C

T

[
R+D + αC + T − C +

C

2

]
(4)

• (2) is the portion of the execution lost in checkpointing, even during a
fault-free execution, see Equation (1).

• (3) is the overhead of the execution time due to a failure during a work
interval (see Figure 2). D+R is the duration of the downtime and recovery.
We add the time needed to re-execute the work that had already completed
during the period, and that has been lost due to the failure. First, we
need to re-execute the work done in parallel with the last checkpoint (of
duration C). This takes a time αC since no checkpoint activity is taking
place during that replay. Then we re-execute the work done in the work-
only area, which had a duration of Tlost. On average, the failure happens
in the middle of the interval of length T − C, hence the term Tlost has
expected value Tlost = T−C

2 . The previous quantity is weighted by its
probability: when a fault occurs, it occurs during the work period with
probability (T −C)/T . Finally, this execution overhead occurs each time
a fault occurs, that is, on average, once every µp.

• (4) is the overhead due to a failure during a checkpoint (see Figure 3).
The reasoning is similar. Just as before, we re-execute the work done
in parallel with the previous checkpoint (of duration αC), then the work
done in the work-only area (of duration T − C), and finally the work
done during the checkpoint (of duration Tlost as it is re-executed while
checkpoints are taken). In expectation, Tlost = C/2. We weight with the
probability of the event, now equal to C/T .

After simplification of Equations (2) to (4), we get:

Wastecoord =
(1− α)C

T
+

1

µp

(
D +R+

T

2
+ αC

)
(5)

We point out that Equation (5) is valid only when T � µp: indeed, we made
a first-order approximation when implicitly assuming that we do not have more
than one failure during the same period. In fact, the number of failures during
a period of length T can be modeled as a Poisson process of parameter T

µp
; the

probability of having k ≥ 0 failures is 1
k! (

T
µp

)ke
− T
µp . Hence the probability of

having two or more failures is π = 1− (1 + T
µp

)e
− T
µp . Enforcing the constraint

T ≤ 0.1µp leads to π ≤ 0.005, hence a valid approximation when bounding the
period range accordingly.

In addition to the previous constraint, we must enforce the condition C ≤ T ,
by construction of the periodic checkpointing policy. Without the constraint

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 12

C ≤ T ≤ 0.1µp, the optimal checkpointing period T∗ that minimizes the ex-

pected waste in Equation (5) is T∗ =
√

2µpC(1− α). However, this expression
for T∗ (which is known as Young’s approximation [14] when α = 0) may well
be out of the admissible range. Finally, note that the optimal waste may never
exceed 1, since it represents the fraction of time that is “wasted”. In this latter
case, the application no longer makes progress.

3.3 Waste for the hierarchical scenario (G ≥ 1)

In this section, we compute the expected waste for the hierarchical scenario.
We have G groups of q processors, and we let C(q), D(q), and R(q) be the
duration of the checkpoint, downtime, and recovery for each group. We assume
that the checkpoints of the G groups take place in sequence within a period (see
Figure 4). We start by generalizing the formula obtained for the coordinated
scenario before introducing several new parameters to the model.

3.3.1 Generalizing previous scenario with G ≥ 1

We obtain the following intricate formula for the waste, which we explain term
by term below, and illustrate with Figures 4 to 7:

Wastehierarch =
T −Work

T
+

1

µp

(
D(q) +R(q) + Re-Exec

)
(6)

Work = T − (1− α)GC(q) (7)

Re-Exec =

T−GC(q)

T

1

G

G∑
g=1

[
(G−g+1)αC(q) +

T−GC(q)

2

]
(8)

+
GC(q)

T

1

G2

G∑
g=1

[
(9)

g−2∑
s=0

(G− g + s+ 2)αC(q) + T −GC(q) (10)

+GαC(q) + T −GC(q) +
C(q)

2
(11)

+

G−g∑
s=1

(s+ 1)αC(q)

]
(12)

• The first term in Equation (6) represents the overhead due to checkpoint-
ing during a fault-free execution (same reasoning as in Equation (1)), and
the second term the overhead incurred in case of failure. Failures strike
every µp seconds on average; each of them induces a downtime of duration
D(q), a recovery of duration R(q), and the re-execution of some amount
of work, which is captured in the term Re-Exec.

• (7) provides the amount of work units executed within a period of length T ,
namely T − GC(q) at full speed, and αGC(q) during the G checkpoints.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 13

Note that when given a group checkpoints, all groups endure the same
slowdown, because the application is tightly-coupled and can only progress
at the pace of the slowest resource.

• (8) represents the time needed for re-executing the work when the failure
happens in a work-only area, i.e., during the first T − GC(q) seconds
of the period. Thanks to message-logging, only the failing group must
rollback and re-execute some work. The re-execution time depends upon
the group which is hit by the failure, and we average over all groups: see
Figure 4. If the failure hits group g, where 1 ≤ g ≤ G, then we need
to re-execute the work done in parallel with the last checkpoint of all
groups following g, including itself. There are G − g + 1 such groups,
hence the term (G − g + 1)αC(q). Just as for the coordinated approach,
note that the work that has been executed in time (G − g + 1)C(q) is
now re-executed faster, since no checkpoint activity is taking place during
that replay. Then, on average, the failure happens in the middle of the
interval of length T − GC(q), hence the term Tlost has expected value

Tlost = T−GC(q)
2 . The total time needed for re-execution is then weighted

by the probability for the failure to happen during the work-only area,

namely T−GC(q)
T .

• (9) deals with the case where the fault happens during a checkpoint, i.e.
during the last GC(q) seconds of the period (hence the first term that
represents the probability of this event). There are G2 cases to average
upon. Indeed, assume that the failure hits group g, where 1 ≤ g ≤ G.
The failure took place while one of the G groups was checkpointing. We
distinguish three cases, depending upon whether the latter group is a
group preceding g, group g itself, or a group following g.

– (10) is for the case when the fault happens before the checkpoint
of group g. More precisely, see Figure 5: there are s groups that
have completed their checkpoints, and the failure took place during
the checkpoint of group s + 1, where 0 ≤ s ≤ g − 2. The amount of
wasted time is ∆−T , with the notations of the figure, and is explained
as follows: (i) the work done in parallel with the last checkpoint of
all groups following g, including g itself, which amounts to (G− g +
1)αC(q), just as before; (ii) the work done during the first T −GC(q)
seconds of the period; and (iii) the work done while the s + 1 first
groups were checkpointing, re-executed faster, namely in time (s +
1)αC(q). Note that we do not need to take the expected value of the

term Tlost (which is C(q)
2 ), because terms cancel in the equation, as

shown in the figure. Note also that we assume that the downtime of
the struck group starts after the end of the current checkpoint (by
group s+ 1), while some (short) overlap might be possible in theory.

– (11) is for the case when the fault happens during the checkpoint of
group g, see Figure 6. This case is quite similar to the previous case,
and we retrieve the quantity (G− g+ 1)αC(q) + (T −GC(q)) + (s+
1)αC(q), with s = g − 1. As outlined in the figure, in contrast with
the previous case, the faulty group is the one that is currently check-
pointing: instead of re-executing the corresponding work at a faster

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 14

rate, we have lost half of the checkpoint duration: the expectation of

Tlost is C(q)
2 .

– (12) is the case when the fault happens after the checkpoint of group
g, during the checkpoint of group g+s, where g+1 ≤ g+s ≤ G. See
Figure 7: in this last case, the incurred overhead is much smaller.
Because the failure took place after the checkpoint of group g, we
only re-execute, at a faster rate, the work that was done during the
checkpoints of groups g to g+ s, which amounts to a time ((g+ s)−
g + 1)αC(q). Note that we made the same simplification as for case
(10), assuming no overlap between the downtime and the end of the
current checkpoint.

T

α(G−g+1)C

RD G.C

T−G.C−Tlost

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Figure 4: Hierarchical checkpoint: illustrating the waste when a failure occurs
during the work phase.

∆

α(s.C + Tlost)

R (G−s−1)C

α(C − Tlost)
T −G.C(G−g+1)C

α(G−g+1)C

D

C − Tlost
Tlost

s.CT −G.C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Figure 5: Hierarchical checkpoint: illustrating the waste when a failure occurs
during the checkpoint phase, and before the checkpoint of the failing group.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 15

∆

α(g − 1)C

(G−g)C

C − Tlost

TlostT −G.C
α(G−g+1)C
RD

Tlost

(g − 1)C(G−g+1)C T −G.C

G2

Gg

G3

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Figure 6: Hierarchical checkpoint: illustrating the waste when a failure occurs
during the checkpoint phase, and during the checkpoint of the failing group.

∆

(g − 1)C

(G− s− g)C

α(C−Tlost)
α(s.C + Tlost)

RD

C − Tlost
s.C TlostT −G.C

Gg

G4

G3

G5

G1

Re-executing slowed-down workRecovery timeDowntime

Time spent working with slowdownTime spent working Time spent checkpointing

Time

Figure 7: Hierarchical checkpoint: illustrating the waste when a failure occurs
during the checkpoint phase, and after the checkpoint of the failing group.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 16

After simplification (using a computer algebra software), we obtain:

Wastehierarch =
1

2µpT
×
T 2

+GC(q)
[
(1− α)(2µp − T ) + (2α− 1)C(q)

]
+T
[
2(D(q) +R(q)) + (α+ 1)C(q)

]
+(1− 2α)C(q)2

 (13)

Of course this expression reduces to Equation (5) when G = 1. Just as for the
coordinated scenario, we enforce the constraint

GC(q) ≤ T ≤ 0.1µp (14)

The first condition is by construction of the periodic checkpointing policy, and
the second is to enforce the validity of the first-order approximation, assuming
at most one failure per period.

3.3.2 Refining the model

We introduce three new parameters to refine the model when the processors
have been partitioned into several groups. These parameters are related to the
impact of message logging on execution, re-execution, and checkpoint image
size, respectively.

Impact of message logging on execution and re-execution– With several groups,
inter-group messages need to be stored in local memory as the execution pro-
gresses, and event logs must be stored in a reliable storage, so that the recovery
of a given group, after a failure, can be done independently of the other groups.
This induces an overhead, which we express as a slowdown of the execution rate:
instead of executing one work-unit per second, the application executes only λ
work-units, where 0 < λ < 1. Typical values for λ are said to be λ ≈ 0.98,
meaning that the overhead due to payload messages is only a small percent-
age [31, 11].

On the contrary, message logging has a positive effect on re-execution after
a failure, because inter-group messages are stored in memory and directly ac-
cessible after the recovery (as explained in Section 2.2). Our model accounts for
this by introducing a speed-up factor ρ during the re-execution. Typical values
for ρ lie in the interval [1..2], meaning that re-execution time can be reduced up
to by half for some applications [6].

Fortunately, the introduction of λ and ρ is not difficult to account for in
the expression of the expected waste: in Equation (6), we replace Work by
λWork and Re-Exec by Re-Exec

ρ and obtain

Wastehierarch =
T − λWork

T
+

1

µp

(
D(q) +R(q) +

Re-Exec

ρ

)
(15)

where the values of Work and Re-Exec are unchanged, and given by Equa-
tions (7) and (8 – 12) respectively.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 17

Impact of message logging on checkpoint size– Message logging has an impact
on the execution and re-execution rates, but also on the size of the checkpoint.
Because inter-group messages are logged continuously, the size of the checkpoint
increases with the amount of work that is executed before a checkpoint. Consider
the hierarchical scenario with G of q processors. Without message logging,
the checkpoint time of each group is C0(q), and to account for the increase in
checkpoint size due to message logging, we write the equation

C(q) = C0(q)(1 + βλWork)⇔ β =
C(q)− C0(q)

C0(q)λWork
(16)

As before, λWork = λ(T − (1−α)GC(q)) (see Equation (7)) is the number
of work units, or application iterations, completed during the period of duration
T , and the parameter β quantifies the increase in the checkpoint image size per
work unit, as a proportion of the application footprint. Typical values of β are
given in the examples of Section 4. Combining with Equation (16), we derive
the value of C(q) as

C(q) =
C0(q)(1 + βλT )

1 +GC0(q)βλ(1− α)
(17)

The first constraint in Equation (14), namely GC(q) ≤ T , now translates
into

GC0(q)(1 + βλT )

1 +GC0(q)βλ(1− α)
≤ T

which leads to

GC0(q)βλα ≤ 1 and T ≥ GC0(q)

1−GC0(q)βλα
(18)

4 Case Studies

In this section, we instantiate the previous model to evaluate different case
studies. We propose three generic scenarios for the checkpoint protocols, three
application examples that provide different values for the parameter β, and four
platform instances.

4.1 Checkpointing algorithm scenarios

Coord-IO– The first scenario considers a coordinated approach, where the
duration of a checkpoint is the time needed for the ptotal processors to write
the memory footprint of the application onto stable storage. Let Mem denote
this memory, and bio represents the available I/O bandwidth. Then we have
C = CMem, where CMem = Mem

bio
.

In most cases we have equal write and read speed access to stable storage,
and we let R = C = CMem, but in some cases we have different values, for
example with the K-Computer (see Table 1). As for the downtime, the value D
is the expectation of the duration of the downtime. With a single processor, the
downtime has a constant value, but with several processors, the duration of the
downtime is very difficult to compute: a processor can fail while another one is
down, thereby leading to cascading downtimes. The exact value of the downtime
with several processors is unknown, even for failures distributed according to an

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 18

exponential law, but an upper bound can be provided (see [32] for details). In
most practical cases, the lower bound of the downtime of a single processor is ex-
pected to be very accurate, and we use a constant value for D in our case studies.

Hierarch-IO– The second scenario uses a number of relatively large groups.
Typically, these groups are composed so as to take advantage of the application
communication pattern [11, 12]. For instance, if the application executes on a
2D-grid of processors, a natural way to create processor groups is to have one
group per row (or column) of the grid. If all processors of a given row belong
to the same group, horizontal communications are intra-group communications
and need not to be logged. Only vertical communications are inter-group com-
munications and, as such, need to be logged.

With large groups, there are enough processors within each group to saturate
the available I/O bandwidth, and the G groups checkpoint sequentially. Hence
the total checkpoint time without message logging, namely GC0(q), is equal to
that of the coordinated approach. This leads to the simple equation

C0(q) =
CMem

G
=

Mem

Gbio
(19)

where Mem denotes the memory footprint of the application, and bio the avail-
able I/O bandwidth. Similarly as before, we let R(q) for the recovery (either
equal to C(q) or not), and use a constant value D(q) = D for the downtime.

Hierarch-Port– The third scenario investigates the possibility of having a
large number of very small groups, a strategy proposed to take advantage of
hardware proximity and failure probability correlations [10]. However, if groups
are reduced to a single processor, a single checkpointing group is not sufficient
to saturate the available I/O bandwidth. In this strategy, multiple groups of
q processors are allowed to checkpoint simultaneously in order to saturate the
I/O bandwidth. We define qmin as the smallest value such that

qminbport ≥ bio (20)

Here bport is the network bandwidth of a single processor. In other words, qmin

is the minimal size of groups so that Equation (19) holds.
Small groups typically imply logging more messages (hence a larger growth

factor of the checkpoint per work unit β, and possibly a larger impact on com-
putation speed λ). Coming back to an application executing on a 2D-grid of
processors, twice as many communications will be logged (assuming a symmet-
rical communication pattern along each grid direction). However, let us ompare
recovery times in the Hierarch-Port and Hierarch-IO strategies; assume
that R0(q) = C0(q) for simplicity. In both cases Equation (19) holds, but the
number of groups is significantly larger for Hierarch-Port, thereby ensuring
a much shorter recovery time.

4.2 Application examples

We study the increase in checkpoint size due to message logging by detailing
three application examples: 2D- and 3D-stencil computations, and linear al-
gebra kernels such as matrix product. These examples are typical scientific

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 19

applications that execute on 2D-or 3D-processor grids, but they exhibit a dif-
ferent increase rate parameter β, as shown below.

2D-Stencil– We first consider a 2D-stencil computation: a real matrix of
size n × n is partitioned across a p × p processor grid, where p2 = ptotal. At
each iteration, each matrix element is averaged with its 8 closest neighbors,
which requires rows and columns that lie at the boundary of the partition to
be exchanged (it is easy to generalize to larger update masks). Each processor
holds a matrix block of size b = n/p, and sends four messages of size b (one
in each grid direction) at each iteration. Then each element is updated, at the
cost of 9 double floating-point operations. The (parallel) work for one iteration

is thus Work = 9b2

sp
, where sp is the speed of one processor.

With the Coord-IO scenario, C = CMem = Mem
bio

. Here Mem = 8n2 (in
bytes), since there is a single (double real) matrix to store. As already men-
tioned, a natural (application-aware) group partition is with one group per row
(or column) of the grid, which leads to G = q = p. Such large groups corre-
spond to the Hierarch-IO scenario, with C0(q) = CMem

G . At each iteration,
vertical (inter-group) communications are logged, but horizontal (intra-group)
communications are not logged. The size of logged messages is thus 2pb = 2n
for each group. If we checkpoint after each iteration, C(q)−C0(q) = 2n

bio
, and we

derive from Equation (16) that β =
2npsp
n29b2 =

2sp
9b3 . We stress that the value of β

is unchanged if groups checkpoint every k iterations, because both C(q)−C0(q)
and Work are multiplied by a factor k. Finally, if we use small groups of size
qmin, we have the Hierarch-Port scenario. We still have C0(q) = CMem

G , but
now the value of β has doubled since we log twice as many communications.

Matrix-Product– Consider now a typical linear-algebra kernel involving sev-
eral matrix products. For each matrix-product, there are three matrices in-
volved, so Mem = 24n2 (in bytes) and C = CMem = Mem

bio
for the Coord-IO

scenario. Just as before, each matrix is partitioned along a 2D-grid of size p×p,
but now each processor holds three matrix blocks of size b = n/p. Consider
Cannon’s algorithm [33] which has p steps to compute a product. At each step,
each processor shifts one block vertically and one block horizontally, and the

work is Work = 2b3

sp
. In the Hierarch-IO scenario with one group per grid

row, only vertical messages ar logged, so that C(q) − C0(q) = b2

bio
. We derive

that β =
sp
6b3 . Again, β is unchanged if groups checkpoint every k steps, or every

matrix product (k = p). In the Coord-Port scenario with groups of size qmin,
the value of β is doubled. In both scenarios, we have C0(q) = CMem

G (but many
more groups in the latter).

3D-Stencil– This application is similar to 2D-Stencil, but exhibits larger
values of β. We have a 3D matrix of size n partitioned across a 3D-grid of
size p, where 8n3 = Mem and p3 = ptotal. Each processor holds a cube of size
b = n/p. At each iteration, each pixel is averaged with its 27 closest neighbors,

so that Work = 27b3

sp
. Each processor sends the six faces of its cube, one in

each direction. In addition to the Coord-IO scenario, there are now three
hierarchical scenarios: A) Hierarch-IO-Plane where groups are horizontal
planes, of size p2. Only vertical communications are logged, which represents

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 20

Name Number of Number of Number of cores Memory I/O Network Bandwidth (bio) I/O Bandwidth per processor (bport)
cores processors ptotal per processor per processor Write Read Write Read

Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s 20GB/s
K-Computer 705,024 88,128 8 16GB 96GB/s 150GB/s 20GB/s 20GB/s
Exascale Slim 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s 200GB/s
Exascale Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s 400GB/s

Table 1: Basic characteristics of platforms used to feed the model.

Name Scenario G Checkpoint Checkpoint β for β for
(qmin if app.) Saving Time Loading Time 2D-Stencil Matrix-Product

Coord-IO 1 2,048s 2,048s / /
Titan Hierarch-IO 136 15s 15s 0.0001098 0.0004280

Hierarch-Port 1,246 (qmin = 15) 1.6s 1.6s 0.0002196 0.0008561
Coord-IO 1 14,688s 9,400s / /

K-Computer Hierarch-IO 296 50s 32s 0.0002858 0.001113
Hierarch-Port 17,626 (qmin = 5) 0.83s 0.53s 0.0005716 0.002227

Coord-IO 1 64,000s 64,000 / /
Exascale-Slim Hierarch-IO 1,000 64s 64s 0.0002599 0.001013

Hierarch-Port 200,000 (qmin = 5) 0.32s 0.32s 0.0005199 0.002026
Coord-IO 1 64,000s 64,000 / /

Exascale-Fat Hierarch-IO 316 217s 217s 0.00008220 0.0003203
Hierarch-Port 33,333 (qmin = 3) 1.92s 1.92s 0.00016440 0.0006407

Table 2: Parameters G, qmin, C, R, C(q), R(q) and β for all platform/scenario
combinations with 2D-Stencil and Matrix-Product. The equation C0(q) =
C/G always hold.

two faces per processor. We derive β =
2sp
27b3 ; B) Hierarch-IO-Line where

groups are lines, of size p. Twice as many communications are logged, which
represents four faces per processor. We derive β =

4sp
27b3 ; C) Hierarch-Port

with groups of size qmin. All communications are logged, which represents six

faces per processor. We derive β =
6sp
27b3 . Note that the order of magnitude of

b is the cubic root of the memory per processor for 3D-Stencil, while it was
its square root for 2D-Stencil and Matrix-Product, so β will be larger for
3D-Stencil than for the other two applications.

4.3 Platforms

We consider multiple platforms, existing or envisioned, that represent state-of-
the-art targets for HPC applications. Table 1 presents the basic characteristics
of the platforms we consider. The machine named Titan represents the fifth
phase of the Jaguar supercomputer, as presented by the Oak Ridge Leadership
Computing Facility1. The cumulated bandwidth of the I/O network is targeted
to top out at 1 MB/s/core, resulting in 300GB/s for the whole system. We
consider that all existing machines are limited for a single node output by the
bus capacity, at approximately 20GB/s. The K-Computer machine, hosted by
Riken in Japan, is the fastest supercomputer of the Top 500 list at the time
of writing. Its I/O characteristics are those presented during the Lustre File
System User’s Group meeting, in April, 2011 [34], with the same bus limitation
for a single node maximal bandwidth. The two exa-scale machines represent
the two most likely scenarios envisioned by the International Exascale Software
Project community [1], the largest variation being on the number of cores a
single node should host. For all platforms, we let the speed of one core be 1

1http://www.olcf.ornl.gov/computing-resources/titan/

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 21

Gigaflops, and we derive the speed of one processor sp by multiplying by the
number of cores.

4.4 Parameters

Tables 2 and 3 summarize key parameters for all platform/scenario combina-
tions. In all instances, we use the following default values: ρ = 1.5, λ = 0.98 and
α = 0.3. It turns out that these latter parameters have very little impact on the
results, and we refer to the companion research report for further details [35].

Name Scenario G β for 3D-Stencil
Coord-IO 1 /

Titan Hierarch-IO-Plane 26 0.001476
Hierarch-IO-Line 658 0.002952
Hierarch-Port 1,246 0.004428

Coord-IO 1 /
K-Computer Hierarch-IO-Plane 45 0.003422

Hierarch-IO-Line 1,980 0.006844
Hierarch-Port 17,626 0.010266

Coord-IO 1 /
Exascale-Slim Hierarch-IO-Plane 100 0.003952

Hierarch-IO-Line 10,000 0.007904
Hierarch-Port 200,000 0.011856

Coord-IO 1 /
Exascale-Fat Hierarch-IO-Plane 47 0.001834

Hierarch-IO-Line 2,154 0.003668
Hierarch-Port 33,333 0.005502

Table 3: Parameters G and β for all platform/scenario combinations with 3D-
Stencil. The equation C0(q) = C/G always hold (see Table 2 for values of
C).

5 Results

This section covers the results of our unified model on the previously described
scenarios (one for coordinated checkpointing and two for hierarchical checkpoint-
ing) applied to four platforms, two that reflect existing top entries of Top500,
and two on envisioned Exascale machines. In order to allow fellow researchers
access to the model, results and scenarios proposed in this paper, we made our
computation spreadsheet publicly available. 2

We start with some words of caution. First, the applications used for this
evaluation exhibit properties that makes them a difficult case for hierarchical
checkpoint/restart techniques. These applications are communication intensive,
which leads to a noticeable impact on performance (due to message logging). In
addition, their communication patterns create logical barriers that make them
tightly-coupled, giving a relative advantage to all coordinated checkpointing

2http://perso.ens-lyon.fr/frederic.vivien/Data/Resilience/SC2012Hierarchical/

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 22

methods (due to the lack of independent progress). However, these applications
are more representative of typical HPC applications than loosely-coupled (or
even independent) jobs, and their communication-to-computation ratio tends to
infinity with the problem size (full weak scalability). Next, we point out that the
theoretical values used in the instanciation of the model are overly optimistic,
based on the values released by the constructors and not on measured values.
Finally, we stress that the horizontal axis of all figures is the processor MTBF
µ, which ranges from 1 year to 100 years, a choice consistent with the usual
representation in the community. In the following discussion, we often refer
to the platform MTBF µp, which is obtained by dividing µ by the number of
processors ptotal (see Section 3.1).

On platforms exhibiting characteristics similar to today’s top entries in the
Top500, namely Titan and K-Computer, we encounter a quite familiar envi-
ronment (Figure 8(a)). Clearly, the key factors impacting the balance between
coordinated and hierarchical protocols are the communication intensity of the
applications (2D-Stencil, Matrix-Product and 3D-Stencil), and the I/O
capabilities of the system. On both platforms, the coordinated protocol has a
slow startup, preventing the application from progressing when µp is under a
system limit directly proportional to the time required to save the coordinated
checkpoint. This limit is close to µp = 4.32 hours on Titan, and due to the
limited I/O capacity of K-Computer, it is non-existent, even if the MTBF of
each processor is over 100 years. The cost of logging the messages and the extra
checkpoint data is detrimental to the hierarchical protocols (even considering
the most promising approach), once µp is over 14.75 hours for 2D-Stencil, 9.64
hours for Matrix-product and 4.59 hours for the 3D-Stencil on Titan. On the
K-Computer, once µp is over 15 hours, the hierarchical approaches slowly drive
the application forward (at 7% of the normal execution rate).

Moving into the future realms of Exascale platforms, we face a big disap-
pointment. With a predicted value of C = CMem = 68, 000 seconds, all protocols
have a waste equal to 1, regardless of the configuration (Slim of Fat) , the ap-
plication, and the value of µ. This simply means that no progress at all can
be made in the execution! This drastic conclusion leads up to re-evaluate the
situation under more optimistic values of CMem, as detailed below. Indeed, with
smaller values of CMem, the Exascale platforms show quite divergent behaviors.
If we consider a platform-wide checkpoint time in the order of CMem = 1000
seconds (around 3 hours, see Figure 8(b)), the Exascale-Slim platform will be
unable to drive the execution forward at a reasonable rate, and this indepen-
dant on the protocol. Similarly, as long as the platform MTBF µp is under
19.19 hours for 2D-Stencil, 27.74 hours for Matrix-Product and 43.82 hours
for 3D-Stencil, no hierarchical protocol can fulfill the requirement for allowing
the application to progress. However, after these limits have been reached the
scalability of the hierarchical approaches increase steeply. In the case of the
Exascale-Fat platform, the story is significantly more optimistic. The coordi-
nated checkpoint is not preventing the application progress as long as µp is over
12.12 hours. For values of µp under this limit, the hierarchical protocols offer a
reasonable alternative.

If we drastically decrease the checkpoint time yet by an order of magnitude
(to CMem = 100 seconds, see Figure 8(c)), we have a more positive picture. In
most cases hierarchical protocols seem more suitable for such type of platforms.
While they struggle when the communication intensity increases (the case of

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 23

the 3D-Stencil) they provide limited waste for all the other cases.
These results provide a theoretical foundation and a quantitative evaluation

of the drawbacks of checkpoint/restart protocols at Exascale. They can be used
as a first building block to drive the research field forward, and to design plat-
forms with specific requirements. However, we acknowledge that many factors
have a strong impact on our conclusions. The design of future Exascale ma-
chines (Slim or Fat), the MTBF of the each processor and, last but not least,
the communication intensity of the applications running at that scale, will all
finally determine what protocol is the most suitable. In fact the strong conclu-
sion of our figures is that in order to construct scientific platforms at scales that
can efficiently execute grand challenge applications, we need to solve a quite
simple equation: checkpoint less, or checkpoint faster.

6 Conclusion

Despite the increasing importance of fault tolerance in achieving sustained, pre-
dictable performance, the lack of models and predictive tools has restricted the
analysis of fault tolerant protocols to experimental comparisons only, which are
painfully difficult to realize in a consistent and repeated manner. This paper in-
troduces a comprehensive model of rollback recovery protocols that encompasses
a wide range of checkpoint/restart protocols, including coordinated checkpoint
and an assortment of uncoordinated checkpoint protocols (based on message
logging). This model provides the first tool for a quantitative assessment of all
these protocols.

The instantiation of the most popular checkpoint strategies on current ma-
chines follow the same tendencies as those obtained from experimental cam-
paigns, a result which supports the accuracy of the model. Instantiation on
future platforms enables the investigation and understanding of the behavior of
fault tolerant protocols at scales currently inaccessible. The results presented
in Section 5 highlight the following tendencies:

• Hardware properties will have tremendous impact on the efficiency of fu-
ture platforms. Under the early assumptions of the projected Exascale
systems, rollback recovery protocols are mostly ineffective. In particular,
significant efforts are required in terms of I/O bandwidth to enable any
type of rollback recovery to be competitive. With the appropriate pro-
vision in I/O (or the presence of distributed storage on nodes), rollback
recovery can be competitive and significantly outperform replication [5]
(which by definition cannot reach better than 50% efficiency).

• Under the assumption that I/O network provision is sufficient, the relia-
bility of individual processors has a significant impact on rollback recovery
efficiency, and is the main criterion driving the threshold of coordination
in the fault tolerant protocol. Our results suggest that a modest improve-
ment over the current state-of-the-art in terms of hardware component
reliability, is sufficient to reach an efficient regime for rollback recovery.
This suggests that most research efforts, funding and hardware provisions
should be directed to I/O performance rather than improving component
reliability in order to increase the scientific throughout of Exascale plat-
forms.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 24

• The model outlines some realistic ranges where hierarchical checkpointing
can outperform coordinated checkpointing, thanks to its faster recovery
from individual failures. This is an early result that had already been out-
lined experimentally at smaller scales, but it has been difficult to project
at future scales.

Finally, as we are far from a comprehensive understanding of future Exascale
applications and platform characteristics, we hope that the community will be
interested in instantiating our publicly available model with other scenarios and
case-studies. Future work will be devoted to simulations from synthetic or log-
based failure traces to complement the analytical model provided in this paper
with more experimental data.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 25

T
it

an

(a
)

C
u

rre
n
t

p
la

tfo
rm

sK
-C

om
p

u
te

r

2D-Stencil Matrix-Product 3D-Stencil

E
x
as

ca
le

-S
li

m

(b
)

E
x
a
sc

a
le

p
la

tfo
rm

s,
C

=
1,0

0
0

E
x
as

ca
le

-F
at

2D-Stencil Matrix-Product 3D-Stencil

E
x
as

ca
le

-S
li

m (c
)

E
x
a
sc

a
le

p
la

tfo
rm

s,
C

=
100

E
x
as

ca
le

-F
at

2D-Stencil Matrix-Product 3D-Stencil

Figure 8: Waste as a function of processor MTBF µ

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 26

E
x
a
sc

al
e-

S
li

m (c
)

E
x
a
sc

a
le

p
la

tfo
rm

s,
C

=
1
0

E
x
as

ca
le

-F
at

2D-Stencil Matrix-Product 3D-Stencil

Figure 9: Waste as a function of processor MTBF µ

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 27

Impact of ρ Impact of λ Impact of α

2D-Stencil Hierarchical

3D-Stencil Hierarchical-Port

3D-Stencil Hierarchical-Plane

3D-Stencil Hierarchical-Line

Matrix Product Hierarchical

Figure 10: Impact of the parameters ρ, λ, and α on the relative gain of the
hierarchical protocols with respect to the coordinated one on the Titan platform.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 28

Impact of ρ Impact of λ Impact of α

2D-Stencil Hierarchical

3D-Stencil Hierarchical-Port

3D-Stencil Hierarchical-Plane

3D-Stencil Hierarchical-Line

Matrix Product Hierarchical

Figure 11: Impact of the parameters ρ, λ, and α on the relative gain of the
hierarchical protocols with respect to the coordinated one on the K-computer
platform.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 29

Impact of ρ Impact of λ Impact of α

2D-Stencil Hierarchical

3D-Stencil Hierarchical-Port

3D-Stencil Hierarchical-Plane

3D-Stencil Hierarchical-Line

Matrix Product Hierarchical

Figure 12: Impact of the parameters ρ, λ, and α on the relative gain of the
hierarchical protocols with respect to the coordinated one on the Exascale-Slim
platform.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 30

Impact of ρ Impact of λ Impact of α

2D-Stencil Hierarchical

3D-Stencil Hierarchical-Port

3D-Stencil Hierarchical-Plane

3D-Stencil Hierarchical-Line

Matrix Product Hierarchical

Figure 13: Impact of the parameters ρ, λ, and α on the relative gain of the
hierarchical protocols with respect to the coordinated one on the Exascale-Fat
platform.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 31

Impact of ρ Impact of λ Impact of α

2D-Stencil Hierarchical

3D-Stencil Hierarchical-Port

3D-Stencil Hierarchical-Plane

3D-Stencil Hierarchical-Line

Matrix Product Hierarchical

Figure 14: Impact of the parameters ρ, λ, and α on the relative gain of the
hierarchical protocols with respect to the coordinated one on the Exascale-Slim
platform (with CMem = 100s).

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 32

Impact of ρ Impact of λ Impact of α

2D-Stencil Hierarchical

3D-Stencil Hierarchical-Port

3D-Stencil Hierarchical-Plane

3D-Stencil Hierarchical-Line

Matrix Product Hierarchical

Figure 15: Impact of the parameters ρ, λ, and α on the relative gain of the
hierarchical protocols with respect to the coordinated one on the Exascale-Fat
platform (with CMem = 100s).

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 33

References

[1] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka,
P. Messina, T. Moore, R. Stevens, A. Trefethen, and M. Valero, “The
international exascale software project: a call to cooperative action by
the global high-performance community,” Int. J. High Perform. Comput.
Appl., vol. 23, no. 4, pp. 309–322, 2009.

[2] EESI, “The European Exascale Software Initiative,” 2011, http://www.
eesi-project.eu/pages/menu/homepage.php.

[3] V. Sarkar et al., “Exascale software study: Software chal-
lenges in extreme scale systems,” 2009, white paper available at:
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/
ECSS%20report%20101909.pdf.

[4] S. Ashby et al., “The opportunities and challenges of exascale computing,”
2010, white paper available at: http://science.energy.gov/∼/media/ascr/
ascac/pdf/reports/Exascale subcommittee report.pdf.

[5] K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold, “Evaluating the
Viability of Process Replication Reliability for Exascale Systems,” in Pro-
ceedings of the 2011 ACM/IEEE Conf. on Supercomputing, 2011.

[6] A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello,
“MPICH-V: a multiprotocol fault tolerant MPI,” IJHPCA, vol. 20, no. 3,
pp. 319–333, 2006.

[7] S. Rao, L. Alvisi, H. M. Viny, and D. C. Sciences, “Egida: An extensi-
ble toolkit for low-overhead fault-tolerance,” in In Symposium on Fault-
Tolerant Computing. Press, 1999, pp. 48–55.

[8] K. M. Chandy and L. Lamport, “Distributed snapshots : Determining
global states of distributed systems,” in Transactions on Computer Sys-
tems, vol. 3(1). ACM, February 1985, pp. 63–75.

[9] S. Rao, L. Alvisi, and H. M. Vin, “The cost of recovery in message logging
protocols,” in 17th Symposium on Reliable Distributed Systems (SRDS).
IEEE CS Press, October 1998, pp. 10–18.

[10] A. Bouteiller, T. Herault, G. Bosilca, and J. J. Dongarra, “Correlated set
coordination in fault tolerant message logging protocols,” in Proc. of Euro-
Par’11 (II), ser. LNCS, vol. 6853. Springer, 2011, pp. 51–64.

[11] A. Guermouche, T. Ropars, M. Snir, and F. Cappello, “HydEE: Failure
Containment without Event Logging for Large Scale Send-Deterministic
MPI Applications,” in Proceedings of IEEE IPDPS 2012, to appear.

[12] C. L. M. Esteban Meneses and L. V. Kalé, “Team-based message log-
ging: Preliminary results,” in Workshop Resilience in Clusters, Clouds,
and Grids (CCGRID 2010)., 2010.

[13] J. S. Plank, “Efficient Checkpointing on MIMD Architectures,” Ph.D. dis-
sertation, Princeton University, jun 1993.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 34

[14] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Comm. of the ACM, vol. 17, no. 9, pp. 530–531, 1974.

[15] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” FGCS, vol. 22, no. 3, pp. 303–312, 2004.

[16] Y. Ling, J. Mi, and X. Lin, “A variational calculus approach to optimal
checkpoint placement,” IEEE Trans. on computers, pp. 699–708, 2001.

[17] T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, “Distribution-free checkpoint
placement algorithms based on min-max principle,” IEEE TDSC, pp. 130–
140, 2006.

[18] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien, “Check-
pointing strategies for parallel jobs,” INRIA, France, Research Report 7520,
Jan. 2011, available at http://graal.ens-lyon.fr/∼fvivien/.

[19] J. S. Plank and M. G. Thomason, “Processor allocation and checkpoint
interval selection in cluster computing systems,” Journal of Parallel and
Distributed Computing, vol. 61, p. 1590, 2001.

[20] H. Jin, Y. Chen, H. Zhu, and X.-H. Sun, “Optimizing HPC Fault-Tolerant
Environment: An Analytical Approach,” in Parallel Processing (ICPP),
2010 39th International Conference on, 2010, pp. 525 –534.

[21] L. Wang, P. Karthik, Z. Kalbarczyk, R. Iyer, L. Votta, C. Vick, and
A. Wood, “Modeling Coordinated Checkpointing for Large-Scale Super-
computers,” in Proceedings of ICDSN’05, 2005, pp. 812–821.

[22] R. Oldfield, S. Arunagiri, P. Teller, S. Seelam, M. Varela, R. Riesen, and
P. Roth, “Modeling the impact of checkpoints on next-generation systems,”
in Proceedings of IEEE MSST’07, 2007, pp. 30 –46.

[23] Z. Zheng and Z. Lan, “Reliability-aware scalability models for high perfor-
mance computing,” in Proc. of IEEE Cluster’09, 2009, pp. 1 –9.

[24] M.-S. Bouguerra, D. Trystram, and F. Wagner, “Complexity Analysis of
Checkpoint Scheduling with Variable Costs,” IEEE Transactions on Com-
puters, vol. 99, no. PrePrints, 2012.

[25] M. Wu, X.-H. Sun, and H. Jin, “Performance under failures of high-end
computing,” in Proc. of ACM/IEEE Supercomputing’07, 2007, pp. 48:1–
48:11.

[26] T. Heath, R. P. Martin, and T. D. Nguyen, “Improving cluster availabil-
ity using workstation validation,” SIGMETRICS Perf. Eval. Rev., vol. 30,
no. 1, pp. 217–227, 2002.

[27] B. Schroeder and G. A. Gibson, “A large-scale study of failures in high-
performance computing systems,” in Proc. of DSN, 2006, pp. 249–258.

[28] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and
S. Scott, “An optimal checkpoint/restart model for a large scale high per-
formance computing system,” in IPDPS’08. IEEE, 2008, pp. 1–9.

RR n° 7950



Unified Model for Assessing Checkpointing Protocols at Extreme-Scale 35

[29] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and F. Cappello,
“Modeling and tolerating heterogeneous failures in large parallel systems,”
in Proc. ACM/IEEE Supercomputing’11. ACM Press, 2011.

[30] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, 1990.

[31] A. Bouteiller, G. Bosilca, and J. Dongarra, “Redesigning the message log-
ging model for high performance,” Concurrency and Computation: Practice
and Experience, vol. 22, no. 16, pp. 2196–2211, 2010.

[32] M. Bougeret, H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni, “Us-
ing group replication for resilience on exascale systems,” INRIA, Research
report RR-7876, February 2012.

[33] L. E. Cannon, “A cellular computer to implement the Kalman filter algo-
rithm,” Ph.D. dissertation, Montana State University, 1969.

[34] S. Sumimoto, “An Overview of Fujitsu’s Lustre Based File System,” Lustre
Filesystem Users’ Group Meeting, Orlando, USA., April 2011.

[35] G. Bosilca, A. Bouteiller, E. Brunet, F. Cappello, J. Dongarra,
A. Guermouche, T. Hérault, Y. Robert, F. Vivien, and D. Zaidouni,
“Unified model for assessing checkpointing protocols at extreme-scale,”
INRIA, Research report RR-7950, May 2012. [Online]. Available:
graal.ens-lyon.fr/∼yrobert

RR n° 7950



RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


