Impact of QoS on Replica Placement in Tree Networks

Anne Benoit Veronika Rehn Yves Robert

December 2006

LIP Research Report RR-2006-48

Abstract

This paper discusses and compares several policies to place replicas in tree networks, subject
to server capacity and QoS constraints. The client requests are known beforehand, while the
number and location of the servers are to be determined. We study three strategies. The first
two strategies assign each client to a unique server while the third allows requests of a client to
be processed by multiple servers. The main contribution of this paper is to assess the impact of
QoS constraints on the total replication cost. In this paper, we establish the NP-completeness of
the problem on homogeneous networks when the requests of a given client can be processed by
multiple servers. We provide several efficient polynomial heuristic algorithms for NP-complete
instances of the problem. These heuristics are compared to the optimal solution provided by
the formulation of the problem in terms of the solution of an integer linear program.

1 Introduction

This paper deals with the problem of replica placement in tree networks with Quality of Service
(QoS) guarantees. Informally, there are clients issuing several requests per time-unit, to be satisfied
by servers with a given QoS. The clients are known (both their position in the tree and their number
of requests), while the number and location of the servers are to be determined. A client is a leaf
node of the tree, and its requests can be served by one or several internal nodes. Initially, there
are no replicas; when a node is equipped with a replica, it can process a number of requests, up
to its capacity limit (number of requests served by time-unit). Nodes equipped with a replica, also
called servers, can only serve clients located in their subtree (so that the root, if equipped with a
replica, can serve any client); this restriction is usually adopted to enforce the hierarchical nature
of the target application platforms, where a node has knowledge only of its parent and children in
the tree. Every client has some QoS constraints: its requests must be served within a limited time,
and thus the servers handling these requests must not be too far from the client.

The rule of the game is to assign replicas to nodes so that some optimization function is
minimized and QoS constraints are respected. Typically, this optimization function is the total
utilization cost of the servers. In this paper we study this optimization problem, called REPLICA

PLACEMENT, and we restrict the QoS in terms of number of hops (QoS = distance to server). This
means for instance that the requests of a client who has a QoS range of qos = 5 must be treated
by one of the first five internal nodes on the path from the client up to the tree root.

We point out that the distribution tree (clients and nodes) is fixed in our approach. This
key assumption is quite natural for a broad spectrum of applications, such as electronic, ISP, or
VOD service delivery. The root server has the original copy of the database but cannot serve all
clients directly, so a distribution tree is deployed to provide a hierarchical and distributed access
to replicas of the original data. On the contrary, in other, more decentralized, applications (e.g.
allocating Web mirrors in distributed networks), a two-step approach is used: first determine
a “good” distribution tree in an arbitrary interconnection graph, and then determine a “good”
placement of replicas among the tree nodes. Both steps are interdependent, and the problem is
much more complex, due to the combinatorial solution space (the number of candidate distribution
trees may well be exponential).

Many authors deal with the REPLICA PLACEMENT optimization problem. Most of the papers
do not deal with QoS but instead consider average system performance such as total communication
cost or total accessing cost. Please refer to [1] for a detailed description of related work with no
QoS contraints.

Cidon et al [4] studied an instance of REPLICA PLACEMENT with multiple objects, where all
requests of a client are served by the closest replica (Closest policy). In this work, the objective
function integrates a communication cost, which can be seen as a substitute for QoS. Thus, they
minimize the average communication cost for all the clients rather than ensuring a given QoS for
each client. They target fully homogeneous platforms since there are no server capacity constraints
in their approach. A similar instance of the problem has been studied by Liu et al [8], adding a
QoS in terms of a range limit (QoS=distance), and whose objective is to minimize the number
of replicas. In this latter approach, the servers are homogeneous, and their capacity is bounded.
Both [4, 8] use a dynamic programming algorithm to find the optimal solution.

Some of the first authors to introduce actual QoS constraints in the problem were Tang and
Xu [11]. In their approach, the QoS corresponds to the latency requirements of each client. Different
access policies are considered. First, a replica-aware policy in a general graph with heterogeneous
nodes is proven to be NP-complete. When the clients do not know where the replicas are (replica-
blind policy), the graph is simplified to a tree (fixed routing scheme) with the Closest policy, and
in this case again it is possible to find an optimal dynamic programming algorithm. In [12], Wang
et al deal with the QoS aware replica placement problem on grid systems. In their general graph
model, QoS is a parameter of communication cost. Their research includes heterogeneous nodes
and communication links. A heuristic algorithm is proposed and compared to the results of Tang
and Xu [11].

Another approach, this time for dynamic content distribution systems, is proposed by Chen et
al [3]. They present a replica placement protocol to build a dissemination tree matching QoS and
server capacity constraints. Their work focuses on Web content distribution built on top of peer-to-
peer location services: QoS is defined by a latency within which the client has to be served, whereas
server capacity is bounded by a fan-out-degree of direct children. Two placement algorithms (a
native and a smart one) are proposed to build the dissemination tree over the physical structure.

In [1] we introduced two new access polices besides the Closest policy. In the first one, the
restriction that all requests from a given client are processed by the same replica is kept, but client
requests are allowed to “traverse” servers in order to be processed by other replicas located higher in

the path (closer to the root). This approach is called the Upwards policy. In the second approach,
access constraints are further relaxed and the processing of a given client’s requests can be split
among several servers located in the tree path from the client to the root. This policy with multiple
servers is called Multiple.

In this paper we study the impact of QoS constraints on these three policies. On the theoretical
side we prove the NP-completeness of Multiple/Homogeneous instance with QoS constraints, while
the same problem was shown to be polynomial without QoS [1]. This result shows the additional
combinatorial difficulties which we face when enforcing QoS constraints. On the practical side, we
propose several heuristics for all policies. We compare them through simulations conducted for
problem instances with different ranges of QoS constraints. We are also able to assess the absolute
performance of the heuristics, by comparing them to the optimal solution of the problem provided
by a formulation of the REPLICA PLACEMENT problem in terms of a mixed integer linear program.
The solution of this program allows us to build an optimal solution 3 for reasonably large problem
instances.

The rest of the paper is organized as follows. Section 2 explains the framework and the different
access policies in more details. Complexity results are presented in Section 4. Section 5 describes the
proposed heuristics, whereas experimental results can be found in Section 6. Section 7 summarizes
our contributions.

2 Framework and Placement Strategies

We consider a distribution tree 7 whose nodes are partitioned into a set of clients C and a set of
nodes N. The set of tree edges is denoted as £. The clients are leaf nodes of the tree, while A is
the set of internal nodes. A client ¢ € C is making r; requests per time unit to a database, with a
QoS qos;: the database must be placed not further than qos; hops on the path from the client to
the root.

A node j € N may or may not have been provided with a replica of the database. A node j
equipped with a replica (i.e. j is a server) can process up to W, requests per time unit from clients
in its subtree. In other words, there is a unique path from a client ¢ to the root of the tree, and
each node in this path is eligible to process some or all the requests issued by ¢ when provided with
a replica. We denote by R C N the set of replicas, and Servers(i) C R is the set of nodes which
are processing requests from client ¢. The number of requests from client ¢ satisfied by server s is
ris, and the number of hops between i and j € N is denoted by d(i, j). Two constraints must be
satisfied:

e Server capacity: Vs € R, Zieqseservers(i) ris < W

e QoS constraint: Vi € C,Vs € Servers(i), d(i,s) < qos;

Let r be the root of the tree. If j € N, then children(j) is the set of children of node j. If k # r is
any node in the tree (leaf or internal), parent(k) is its parent in the tree. If [: k — k' = parent(k)
is any link in the tree, then succ(l) is the link ¥" — parent(k’) (when it exists). Let Ancestors(k)
denote the set of ancestors of node k, i.e. the nodes in the unique path that leads from k& up to
the root r (k excluded). If k¥ € Ancestors(k), then path[k — k'] denotes the set of links in the path
from k to k’; also, subtree(k) is the subtree rooted in k, including k.

The objective function for the REPLICA PLACEMENT problem is defined as: Min} _pWs.
When the servers are homogeneous, i.e. Vs € N,W, = W, the optimization problem reduces to
finding a minimal number of replicas. This problem is called REPLICA COUNTING.

We consider three access policies in this paper. The first two are single server strategies, i.e.
each client is assigned a single server responsible for processing all its requests. The Closest policy
is the most restricted one: the server for client 7 is enforced to be the first server that can be found
on the path from ¢ upwards to the root. Relaxing this constraint leads to the Upwards policy.
Clients are still assigned to a single server, but their requests are allowed to traverse one or several
servers on the way up to the root, in order to be processed by another server closer to the root.
The third policy is a multiple server strategy and hence a further relaxation: a client ¢ may be
assigned a set of several servers. Each server s € Servers(i) will handle a fraction r; s of requests.
Of course) ri,s = r5. This policy is referred to as the Multiple policy.

s€Servers(i)

3 Linear programming formulation

In this section, we express the REPLICA PLACEMENT optimization problem in terms of an integer
linear program. We deal with the most general instance of the problem on a heterogeneous tree,
including QoS constraints, and bounds on resource usage (both server and link capacities). We
derive a formulation for each of the three server access policies, namely Closest, Upwards and
Multiple. This is an important extension to a previous formulation due to [7].

While there is no efficient algorithm to solve integer linear programs (unless P=NP), this for-
mulation is extremely useful as it leads to an absolute lower bound: we solve the integer linear
program over the rationals, using standard software packages [2, 6]. Of course the rational solution
will not be feasible, as it assigns fractions of replicas to server nodes, but it will provide a lower
bound on the storage cost of any solution.

3.1 Single server

We start with single server strategies, namely the Upwards and Closest access policies. We need
to define a few variables:

Server assignment

e z; is a boolean variable equal to 1 if j is a server (for one or several clients)
e y;; is a boolean variable equal to 1 if j = server(i)

o If j ¢ Ancestors(i), we directly set y; ; = 0.
Link assignment

e z;; is a boolean variable equal to 1 if link [€ path[i — r] is used when client i accesses
its server server(i)

o If [¢ path[i — | we directly set z;; = 0.

The objective function is the total storage cost, namely Zje w Sz We list below the con-
straints common to the Closest and Upwards policies: First there are constraints for server and
link usage:

e Every client is assigned a server: Vi € C, ZjeAncestors(i) vij = 1.

o All requests from i € C use the link to its parent: 2z;; ,parent(i) = 1

4

e Let i € C, and consider any link [: j — j' = parent(j) € path[i — r]. If j/ = server(i) then
link succ(l) is not used by i (if it exists). Otherwise 2; guccsy = 2iy- Thus:

Vi€ C,Vl: j — j = parent(j) € path[i — 7], 2; ucc(t) = Zii — iy’

Next there are constraints expressing that server capacities cannot be exceeded:

e The processing capacity of any server cannot be exceeded: Vj € N, > - riyij < Wjz;. Note
that this ensures that if j is the server of 4, there is indeed a replica located in node j.

Finally there remains to express the QoS constraints:
Vi € C,Vj € Ancestors(i),dist(4, j)yi; < qos;,

where dist(i,j) = path[i — k]. As stated previously, we could take the computational time of a
request into account by writing (dist(i, j) + comp;)y; ; < qos;, where comp; would be the time to
process a request on server j.

Altogether, we have fully characterized the linear program for the Upwards policy. We need
additional constraints for the Closest policy, which is a particular case of the Upwards policy (hence
all constraints and equations remain valid).

We need to express that if node j is the server of client ¢, then no ancestor of j can be the
server of a client in the subtree rooted at j. Indeed, a client in this subtree would need to be served
by 7 and not by one of its ancestors, according to the Closest policy. A direct way to write this
constraint is

Vi € C,Vj € Ancestors(i), Vi’ € C Nsubtree(j),Vj" € Ancestors(j), yi; <1 — yi j.

Indeed, if y; ; = 1, meaning that j = server(i), then any client ¢’ in the subtree rooted in j must
have its server in that subtree, not closer to the root than j. Hence y; ;; = 0 for any ancestor j'
of j.

There are O(s*) such constraints to write, where s = |C| + [N/ is the problem size. We can
reduce this number down to O(s®) by writing

Vi € C,Vj € Ancestors(i) \ {r},Vi' € C Nsubtree(j),y;; <1— 2yt j—parent(j)-
3.2 Multiple servers

We now proceed to the Multiple policy. We define the following variables:

Server assignment

e z; is a boolean variable equal to 1 if j is a server (for one or several clients)

e y;; is an integer variable equal to the number of requests from client ¢ processed by
node j

o If j ¢ Ancestors(i), we directly set y; ; = 0.

Link assignment

e 2;; is an integer variable equal to the number of requests flowing through link I €
path[i — r| when client ¢ accesses any of its servers in Servers(7)

o If [¢ path[i — | we directly set z;; = 0.

The objective function is unchanged, as the total storage cost still writes > JEN SCiT;- But the
constraints must be modified. First those for server and link usage:

e Every request is assigned a server: Vi € C, ZjEAncestors(i) Yij = Ti-
o All requests from ¢ € C use the link to its parent: z;; .parent(s) = Ti

e Let i € C, and consider any link [: j — j' = parent(j) € path[i — r|. Some of the requests
from 7 which flow through [will be processed by node j’, and the remaining ones will flow
upwards through link succ(l):

Vi€ C,Vl: j — j = parent(j) € path[i — 7], 2; succ(t) = Zii — iy’

The other constraints on server capacities and QoS are slightly modified:

o Servers: Vj € N, . covij < Wjz;. Note that this ensure that if j is the server for one or
more requests from i, there is indeed a replica located in node j.

e QoS: Vi € C,Vj € Ancestors(i),dist(i, j)yi; < qos;y; ;

Altogether, we have fully characterized the linear program for the Multiple policy.

3.3 An ILP-based lower bound

The previous linear programs contain boolean or integer variables, because it does not make sense
to assign half a request or to place one third of a replica on a node. Thus, it must be solved in
integer values if we wish to obtain an exact solution to an instance of the problem. This can be
done for each access policy, but due to the large number of variables, the problem cannot be solved
for platforms of size s > 50, where s = |N| + |C|. Thus we cannot use this approach for large-scale
problems.

However, we can relax the constraints and solve the linear program assuming that all variables
take rational values. The optimal solution of the relaxed program can be obtained in polynomial
time (in theory using the ellipsoid method [9], in practice using standard software packages [2, 6]),
and the value of its objective function provides an absolute lower bound on the cost of any valid
(integer) solution. For all practical values of the problem size, the rational linear program returns
a solution in a few minutes. We tested up to several thousands of nodes and clients, and we always
found a solution within ten seconds. Of course the relaxation makes the most sense for the Multiple
policy, because several fractions of servers are assigned by the rational program.

However, we can obtain a more precise lower bound for trees with up to s = 400 nodes and
clients by using a rational solution of the Multiple instance of the linear program with fewer integer
variables. We treat the y; ; and z;; as rational variables, and only require the z; to be integer
variables. These variables are set to 1 if and only if there is a replica on the corresponding node.
Thus, forbidding to set 0 < x; < 1 allows us to get a realistic value of the cost of a solution of the
problem. For instance, a server might be used only at 50% of its capacity, thus setting x = 0.5

would be enough to ensure that all requests are processed; but in this case, the cost of placing
the replica at this node is halved, which is incorrect: while we can place a replica or not but it is
impossible to place half of a replica.

In practice, this lower bound provides a drastic improvement over the unreachable lower bound
provided by the fully rational linear program. The good news is that we can compute the refined
lower bound for problem sizes up to s = 400, using GLPK [6]. In the next section, we show that this
refined bound is an achievable bound, and we provide an exact solution to the Multiple instance of
the problem, based on the solution of this mixed integer linear program.

3.4 An exact MIP-based solution for Multiple

Theorem 1. The solution of the linear program detailed in 3.2, when solved with all variables being
rationals except of the x;, is an achievable bound for the Multiple problem, and we can build an
exact solution in polynomial time, based on the LP solution.

Proof. Let us consider the solution of the LP program:

e VicC, z; €{0,1}

eVieCVjeN,y; €R

e VicC,VliecL, 2y €R

To prove that the lower bound obtained by this program is achievable, we are building an
integer solution where yé’ ; and zz{’l are integer numbers, keeping the same x; and without breaking
any constraints.

In the following, for any variable y, |y| is the integer part of y, and 7 the fractional part:
y= |yl +9,and g < 1.

Let us consider a client ¢ € C such that 35 € N | g; ; > 0, i.e. y; ; is not an integer. We consider
71 being the closest server to ¢ not serving an integer number of requests of client ¢, and more
generally ji, k = 1..K the servers on the path from i to the root, such that g; ;, > 0. We want to
move bits of requests in order to obtain an integer value for y; ;,. This elementary transformation
is called trans(i, j1). We consider the two following cases.

First case:
Z Yir 51 < le - (1 - gi7j1)
i/ Esubtree(j1)NC
In this case, there is enough space at server j; to fulfill an integer number of requests from
client 7. Since the total number of requests of client ¢ is an integer, Zle ¥i,j, is a non null
integer. Thus, 21522 Uij, = 1 — Ui 1, and we can move down 1 — g; ;, bits of requests from
servers ji, k = 2..K to j1. No constraints will be violated since there is enough space on the
server, and we lower requests in the tree so the bandwidth is non increasing on all links. The
move is done by changing the values of y; j, and recalculating the z;; for [€ path[i — r].
After such a transformation, y; ;, is an integer variable.

Second case: If server j; is already too full in order to add a fraction of requests from client 7,
we need to exchange some requests with other clients. First, if there is some free space
on the server, we start by filling completely server j; with fractions of requests of client ¢
from servers ji, kK = 2..K. We know there are such requests, otherwise y; ;, would be an
integer. This transformation is similar as the one done in the first case. We now have

2 ivesubtree(ji)nc Yirjin = Wi - Let us denote by it = 1..T" the clients i; € subtree(ji1) NC\ {i}
such that g;, ;, > 0. Since W}, is an integer and g; j, > 0, we have Zthl Yij1 = 1 — ¥ijy, and
also Zszz Ui j, = 1 — 9;j,- We can select in both sets 1 — g; j, bits of requests which will be
exchanged, i.e. bits of requests from client i; initially treated by j; will be moved on some
servers ji, which are in Ancestors(j1), and the corresponding amount of requests of i will be
moved back on server ji.

In this case, we may break a QoS constraint since it is not sure that clients i; can be served
higher than j; in order to respect their QoS. However, we will see that in the general trans-
formation process, we prevent such cases to happen. Note that all other constraints are still
fulfilled, in particular the bandwidth one, since we do not change the amount of requests
traversing each link, but just change the origin of these requests.

Once trans(i, j1) has been done, y; ;, is an integer, and notice that only non-integer bits of
requests have been moved, so we have not affected any integer part of the solution and we have
decreased at least by one the number of non-integer variables in the solution.

Let us detail now the complete transformation algorithm, in order to obtain an integer solution.
Particular attention must be paid to respect the QoS at all time.

for j € N taken in a bottom-up traversal order do
finish=1;
while (finish==1) do
C' = {i' € CNsubtree(j) | gi; > 0};
if ' == () then finish=0; else
i = Minycer (qos; — dist(i/, 5));
trans(i, 7);
end
end
end

We consider each server in a bottom-up order, so that we are sure that each time we perform an
elementary transformation, the server is the first one on the way from the client to the root having
a non integer number of requests. In fact, when transforming server j, each server in subtree(j) has
already been transformed, and thus have no fraction numbers of requests.

In order to transform server j, we look at the set C’ of clients having a non-integer number
of requests processed at j. If the set is empty, there is nothing to transform at j. Otherwise, we
perform the elementary transformation with the client ¢ which minimizes (qos; — dist(¢’, j)), for
i € C'. This ensures that when we perform an elementary transformation as in the second case
above, the QoS constraint will be respected for all clients ¢, since we are moving their requests
into servers at distance at most d = qos; — dist(4, j) from j, and their own QoS allows them to be
processed at a distance qos;, — dist(is, j) > d. Figure 1 illustrates this phase of the algorithm.

At the end of the while loop, server j is processing only integer numbers of requests, and thus
we will not modify its requests affectation any more in the following.

The constraints are all respected at all step of the transformation, and we do not add or remove
any replica, so the solution has exactly the same cost than the initial LP-based solution, and the
transformed solution is fully integer. Moreover, this transformation algorithm works in polynomial

K
. .. y
'x QoS limit for 4

QoS limit for ¢

qos; — dist(i,ﬁ)/’ K

Figure 1: Illustration of the transformation algorithm

Homogeneous Homogeneous/QoS
Closest polynomial [4, 8] polynomial [8]
Upwards NP-complete [1] NP-complete [1]
Multiple polynomial [1] NP-complete (this paper)

Table 1: Complexity results for the different instances of the REPLICA COUNTING problem.

time, in the worst case in |A/|+|C|? but most of the time it is much faster since the transformations
do not concern all clients simultaneously but only a few of them.
O]

4 Complexity Results

Table 1 gives an overview of complexity results of the different instances of the REPLICA COUNTING
problem (homogeneous servers). Liu et al [8] provided a polynomial algorithm for the Closest policy
with QoS constraints. In [1] we proved the NP-completeness of the Upwards policy without QoS.
This was a surprising result, to be contrasted with the fact that the Multiple policy is polynomial
under the same conditions [1].

An important contribution of this paper is the NP-completeness of the Multiple policy with QoS
constraints. As stated above, the same problem was polynomial without QoS, which gives a clear
insight on the additional complexity introduced by QoS constraints. We point out that all three
instances of the REPLICA PLACEMENT problem (heterogeneous servers with the Closest, Upwards
and Multiple policies) are already NP-complete without QoS constraints [1].

Theorem 2. The instance of the REPLICA COUNTING problem with QoS constraints and the
Multiple strategy is NP-complete.

Proof. The problem clearly belongs to the class NP: given a solution, it is easy to verify in
polynomial time that all requests are served, that all QoS constraints are satisfied and that no
server capacity is exceeded.

ayp by az by Az bam

Figure 2: The platform used in the reduction for Theorem 2.

To establish the completeness, we use a reduction from 2-PARTITION-EQUAL [5]. We consider
an instance Z; of 2-PARTITION-EQUAL: given 2m positive integers ai,as, ..., asy, does there
exist a subset I C {1 .,2m} of cardinal m such that > ;crai = > ;45 ai. Let S = ZZ | Qi
W = g and b; = 2 — 2al for 1 <i < 2m. We build the following instance Zy of our problem (see
Figure 2):

e Problem size: there are 5m — 1 clients ¢; and 3m — 1 internal nodes n;:

e Nodes: for 1 < j < 2m, node n; has capacity W; = W
- For 1 < j < 2m, the parent of node n; is node ng;,41
- For 2m 41 < j < 3m — 2, the parent of node n; is node n;41
- Node ngy,,—1 is the root r of the tree.

e Clients:
- For 1 < i < 2m, client ¢; has r; = a; requests of QoS qos; = 2, and its parent is node n;
- For 2m + 1 < i < 4m, client ¢; has r; = b;_a,,, requests of QoS qos, = m, and its parent is
node n;_om
-For 4m+1 < i < 5bm —1, client ¢; has r; = 1 request of QoS qos; = 1 and its parent is node

ni—2m-

Finally, we ask whether there exists a solution with total storage cost (2m — 1)W, i.e. with
2m — 1 servers. Clearly, the size of Zy is polynomial (and even linear) in the size of Z;. We now
show that instance Z; has a solution if and only if instance Zo does.

Suppose first that Z; has a solution. We assign a replica to each node n;, i € I (by hypothesis
there are m of them), and one in each of the m — 1 top nodes ngp+1 to ngm—1. All m — 1 clients
with QoS 1 are served by their parent.

For 1 < i < 2m there are tow cases:

- If ¢« € 7, both clients ¢; and c¢;19,, are served by their parent n;. Node n; serves a total of
a; +b; = % —a; < W requests.

-If i ¢ Z, client ¢; is served by node nop,+1 and client c;49., is served by one or several ancestors
of nom+1, i.e. nodes naomi2 to n3ym—1. Node nay,41, which also serves the unique request of client

10

Com+1, Serves a total of Zz’gé ;a; +1 =W requests. The m — 2 ancestors of na,,41 receive the load
Ei¢ 1bi = mS —28. They also serve m — 2 clients with a single request, hence a a total load of
(m—2)S+m—2= (m—2)W requests to distribute among them. This is precisely the sum of
their capacities, and any assignment will do the job.

Note that the allocation of requests to servers is compatible with all QoS constraints. All requests
with QoS 1 are served by the parent node. All requests with QoS 2, i.e. with value a;, are served
either by the parent node (if i € I) or by the grandparent node (if i ¢ I). Altogether, we have a
solution to Zs.

Suppose now that Zs has a solution with 2m — 1 servers. Necessarily, there is a replica located
in each of the top m — 1 nodes nom+1 to n3m—1, otherwise some request with QoS 1 would not be
served satisfactorily. Each of these nodes serves one of these requests, hence has remaining capacity
W—1=3.

There remain m servers which are placed among nodes ni to noy,. Let I be the set of indices
of those m nodes which have not received a replica. Necessarily, requests a;, with ¢ € I, are served
by node nap, 11, because of their QoS constraint. Hence), ;a; < g Next, all requests a; and
b;, with i € I, are served by nodes ng;,+1 to ngm—1, whose total remaining capacity is (m — 1)%
There are (3 ;.7 ai) + (m% — 23 ;1 a;) such requests, hence

S S
mg—Zai < (m—l)a.

From this equation we derive that .., a; > 5. Finally we have Y, ; a; = 5, with |I| = m, hence
a solution to Zs.
O

5 Heuristics for the Replica Placement Problem

In this section several heuristics for the Closest, Upwards and Multiple policies are presented. As
already pointed out, the quality of service is the number of hops that requests of a client are allowed
to traverse until they have to reach their server (QoS=distance). The code of all heuristics can
be found on the web [10]. All heuristics described below have polynomial, and even worst-case
quadratic, complexity O(s?), where s = |C| + [N is the problem size.

In the following, we denote by inreqQoS; the amount of requests that reach an inner node ¢
within their QoS constraints, and by inreq; the total amount of requests that reach i (including
requests whose QoS constraints are violated).

Closest Big Subtree First - CBS. In this heuristic we traverse the tree in top-down manner.
We place a replica on an inner node i if inreqQoS;, < W;. When the condition holds, we do not
process any other subtree of 7. If this condition does not hold, we process the subtrees of ¢ in
non-increasing order of inreqg;. Once no further replica can be added, we repeat the procedure. We
stop when no new replica is added during a pass.

Closest Small QoS First - CSQoS. This heuristic uses a different approach. We do not
execute a tree traversal. Instead, we sort all clients by non-decreasing order of qos;. In case of tie,
clients are sorted by non-increasing order of r;. For each client, we look for the server that can
process its subtree (inreqQoS; < W;) and which is the nearest to the root. If no server is found
for a client, we continue with the next client in the list. Once we reach a client in the list that

11

is already treated by an earlier chosen server, we delete all treated clients from the to-do list and
restart at the beginning of the remaining client list. The procedure stops either when the list is
empty or when the end of the list is reached.

Upwards Small QoS Started Servers First - USQoSS. Clients are sorted by non-decreasing
order of qos; (and non-increasing order of r; in case of tie). For each client i in the list we search for
an appropriate server: we take the next server on the way up to the root (i.e., an inner node that
is already equipped with a replica) which has enough remaining capacity to treat all the client’s
requests. Of course the QoS-constraints of the client have to be respected. If there is no server, we
take the first inner node j that satisfies W; > r; within the QoS-range and we place a replica in j.
If we still find no appropriate node, this heuristic has no feasible solution.

Upwards Small QoS Minimal Requests - USQoSM. This heuristic processes the clients
in the same order as the previous one, but the choice of the appropriate server differs. Among the
nodes in the QoS-range of client i, the node j with minimal (W; — inreqQoS,)-value is chosen as a
server if it can satisfy r; requests. Again it may happen that the heuristic cannot find a feasible
solution, whenever no inner node can be found for a client.

Upwards Minimal Distance - UMD. This heuristic requires two steps. In the first step,
so-called indispensable servers are chosen, i.e. inner nodes which have a client that must be treated
by this very node. At the beginning, all servers that have a child client with qos = 1 will be
chosen. This step guarantees that in each loop of the algorithm, we do not forget any client. The
criterion for indispensable servers is the following: for each client check the number of nodes eligible
as servers; if there is only one, this node is indispensable and chosen. The second step of UMD
chooses the inner node with minimal (W; — inreqQoS;)-value as server (if inreqQoS; > 0). Note
that this value can be negative. Then clients are associated to this server in order of distance, i.e.
clients that are next to the server are chosen first, until the server capacity W, is reached or no
further client can be found.

Multiple Small QoS Close Servers First - MSQoSC. The main idea of this heuristic is
the same as for USQoSS, but with two differences. Searching for an appropriate server, we take
the next inner node on the way up to the root which has some remaining capacity. Note that this
makes the difference between close and started servers. If this capacity W; is not sufficient (client
¢ has more requests, W; < r.), we choose other inner nodes going upwards to the root until all
requests of the client can be processed (this is possible owing to the multiple-server relaxation). If
we cannot find enough inner nodes for a client, this heuristic will not return a feasible solution.

Multiple Small QoS Minimal Requests - MSQoSM. This heuristic is a mix of USQoSM
and MSQoSC. Clients are treated in non-decreasing order of qos;, and the appropriate servers i are
chosen by minimal (W; — inreqQoS;)-value until all requests of clients can be processed.

Multiple Minimal Requests - MMR. This heuristic is the counterpart of UMD for the
Multiple policy and requires two steps. Step one is the same as in UMD, with extension to the
multiple-server policy: servers are added in the “indispensable” step, either when they are the only
possible server for a client, or when the total capacity of all possible inner nodes for a client ¢
is exactly r;. The server chosen in the second step is also the inner node with minimal (W; —
inreqQoS;)-value, but this time clients are associated in non-decreasing order of min(qos;, d(, 1)),
where d(i,7) is the number of hops between i and the root of the tree. Note that the last client
that is associated to a server, might not be processed entirely by this server.

Mixed Best - MB. This heuristic unifies all previous ones. For each tree, we select the best
cost returned by the previous eight heuristics. Since each solution of Closest is also a solution for

12

Upwards, which in turn is a valid solution for Multiple, this heuristic provides a solution for the
Multiple policy.

6 Experimental Plan

In this section we evaluate the performance of our heuristics on tree platforms with varying param-
eters. Through these experiments we want to assess the different access policies, and the impact
of QoS constraints on the performance of the heuristics. We obtain an optimal solution for each
tree platform with the help of a mixed integer linear program, see [1] for further details. We can
compute the latter optimal solution for problem sizes up to 400 nodes and clients, using GLPK [6].
This optimal solution gives us a feasible lower bound. We used this bound for all our experiments.

An important parameter in our tree networks is the load, i.e. the total number of requests

Yicc Ti

compared to the total processing power: A\ = ST W where C is the set of clients in the tree and
je

N the set of inner nodes. We tested our heuristics for A = 0.1,0.2,...,0.9, each on 30 randomly
generated trees of two heights: we made a first series of experiments where trees have a height
between 4 and 7 (in the following we call them small trees). In the second series, tree heights
vary between 16 and 21 (big trees). All trees have s nodes, where 15 < s < 400. To assess the
impact of QoS on the performance, we study the behavior (i) when QoS constraints are very tight
(qgos € {1,2}); (ii) when QoS constraints are more relaxed (the average value is set to half of the
tree height height); and (iii) without any QoS constraint at all (qos = height + 1).

We have computed the number of solutions for each lambda and each heuristic. The number
of solutions obtained by the linear program indicates which problems are solvable. Of course we
cannot expect a result with our heuristics for intractable problems. To assess the performance
of our heuristics, we have studied the relative performance of each heuristic compared to the
optimal solution. This allows to compare the cost of the different heuristics, and thus to compare
the different access policies. For each A, the cost is computed on the trees for which the linear
program has a solution. Let T be the subset of trees with a LP solution. Then, the relative
performance for the heuristic h is obtained by ﬁ Dot cssth;fD(g)? where costy p(is the optimal
solution cost returned by the linear program on tree ¢, and costy(t) is the cost involved by the
solution proposed by heuristic h. In order to be fair versus heuristics that have a higher success
rate, we set costy(t) = +oo0, if the heuristic did not find any solution.

6.1 Success

Figures 3, 5 and 7 show the percentage of success of each heuristic for small trees, while the
percentage of success for big trees is shown in Figures 4, 6 and 8. A general overview of all
figures shows that, as expected, the Closest policy has the poorest success rate for all its heuristics,
whereas the Multiple heuristics almost always find a solution when the LP finds one. In fact, MB
and MSQoSC always find a solution when the LP does with the exception of the configuration
(small trees, A > 0.5, qos € {1,2}). In this case the success rate is slightly inferior. Examining the
Closest heuristics, CBSF finds in almost all configurations more solutions than CSQoS (exception:
configuration (small trees, A = 0.4, average,,s = height/2)). The Upwards heuristic that finds
the most solutions is UDS, followed by USQoSS. In the case of no QoS constraints (see Figures 7
and 8), the Closest heuristics outperform USQoSM and MSQoSM for small values of \. In general
MSQoSM finds fewer solutions than other Multiple heuristics.

13

6.2 Relative performance

Figures 9 to 14 represent the relative performance of the heuristics, compared to the LP-based
optimal solution, where Figures 9, 11 and 13 deal with small trees, and Figures 10, 12 and 14
consider big ones. As expected, the hierarchy between the policies is respected, i.e. Multiple is
better than Upwards which in turn is better than Closest. There is an exception: on small trees
with no QoS and A € {1,2} the best results are achieved with the Closest heuristics. This is due
to the fact that these heuristics assign servers to process their whole subtrees, whereas in the other
policies there is the risk of choosing servers “too early”. Altogether, the use of the MixedBest
heuristic MB allows to always pick up the best result, thereby providing a very satisfying cost for
the Multiple instances of the problem. The comparison of the results on small trees and those on big
trees shows that QoS constraints are better supported by big trees: on big trees MB always achieves
a relative performance of at least 85% (even 95% when qos € {1,2}) while its relative performance
on small trees has a strong dependence on QoS constraints: the tighter the QoS constraints, the
better the results (70% without QoS up to 90% with qos € {1,2}). The influence of the QoS
constraints is also perceivable on some particular heuristics: MSQoSM performs poorly when QoS
constraints are not tight, but achieves the best relative cost when qos € {1,2}. This is also true
for USQoSM in comparison with USQoSS and UMD.

6.3 Hierarchy of the policies

An another point of interest of this paper is the following question: Have QoS constraints an influ-
ence on the hierarchical behaviour of the three policies that we stated in our precedent studies [1]?
For this purpose we color the different heuristics of a policy x whith one single color (see Figures
15 to 20). This makes it possible to visualize the general behaviour of the different access policies.

We state that the QoS constraints do not have an impact on the hierarchical behaviour of
the policies: we still have Closest < Upwards < Multiple. When QoS constraints are restricting
(qos € {1,2}), there is a big gap between the best Closest heuristic CBS and the others, particularly
when A is small. For small A Upwards and Multiple policies perform nearly the same, but when
A > 0.4, Multiple outperforms Upwards. “Outperform” in this case means, that there exists a
Multiple heuristic that has a better relative performance than the best Upwards heuristic. When
QoS is less restricting, i.e. average,,s = height/2, we can observe similar behaviours. Upwards has
still the poorest relative performance, whereas the gap to the other policies is less. The difference
of Upwards and Multiple once again grows with increasing A. In the configuration (small trees,
A € {0.1,0.2}, no QoS) Closest misbehaves in the hierarchical predictions: it shows the best
performance. This effect can be reasonned with the following: In this work we tried to propose
heuristics that are well adapted to QoS constraints. As in the actual configuration there are not
any QoS restrictions, the “advantages” of Upwards or Multiple heuristics can not be exploited in
the same efficience. For A > 0.3 we once again state the hierarchical behaviour.

6.4 Impact of QoS constraints on the relative performance

As you may have already remarked, one of the Multiple heuristics, MSQoSM, sometimes has a
poor relative performance in comparison to the other heuristics. So we study in Figures 21 to 26
the impact of QoS constraints on the relative performance. MSQoSM has indeed a poor relative
performance, when average,,; = height/2 and also for qos = height + 1. But by restricting QoS
constraints it achieves the best results. We can observe the same dependance on QoS for USQoSS.

14

6.5 Summary

Globally, all the results show that QoS constraints do not modify the relative performance of the
three policies: with or without QoS, Multiple is better than Upwards, which in turn is better than
Closest, and their difference in performance is not sensitive to QoS tightness. This is an enjoyable
result, that could not be predicted a priori. Altogether we conclude, when QoS is very restricting
and A small, that MSQoSM is the best choice. For big A, MSQoSC is to prefer. In the case of less
restricting QoS values, we choose MMR for A up to 0.4 and then MSQoSC. Generally, when A is
high, MSQoSC never performs poorly. Concerning the Upwards policy, USQoSS behaves the best
for tight QoS, in the other cases UMD achieves better results. Finally, CBS always outperforms
CSQoS.

7 Conclusion

In this paper we dealt with the REPLICA PLACEMENT optimization problem with QoS constraints.
We have proved NP-completeness for Multiple /Homogeneous/QoS instances, and we have proposed
a set of efficient heuristics for the Closest, Upwards and Multiple access policies. To evaluate the
absolute performance of our algorithms, we have compared the experimental results to the optimal
solution of an integer linear program, and these results turned out quite satisfactory. In our
experiments we have assessed the impact of QoS constraints on the different policies, and we have
discussed which heuristic performed best depending upon problem instances, platform parameters
and QoS tightness. We have also showed the impact of platform size on the performances.

There remains much work to extend the results of this paper. Bandwidth and communication
costs could be included in the experimental plan. Also the structure of the tree networks has to be
studied more precisely. In this paper we have restricted ourselves to different tree heights, but it
would be interesting to study the impact of the average degree of the nodes onto the performance.
In a longer term, the extension of the REPLICA PLACEMENT optimization problem to various
object types should be considered, which would call for the design and evaluation of new efficient
heuristics.

References

[1] A. Benoit, V. Rehn, and Y. Robert. Strategies for Replica Placement in Tree Networks.
Research Report 2006-30, LIP, ENS Lyon, France, Oct. 2006. Available at graal.ens-1lyon.
fr/~yrobert/.

[2] B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan, and S. M. Watt. Maple Reference
Manual, 1988.

[3] Y. Chen, R. H. Katz, and J. D. Kubiatowicz. Dynamic Replica Placement for Scalable Content
Delivery. In Peer-to-Peer Systems: First International Workshop, IPTPS 2002, pages 306-318,
Cambridge, MA, USA, Mar. 2002.

[4] 1. Cidon, S. Kutten, and R. Soffer. Optimal allocation of electronic content. Computer Net-
works, 40:205-218, 2002.

15

[5]

M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

GLPK: GNU Linear Programming Kit. http://www.gnu.org/software/glpk/.

M. Karlsson, C. Karamanolis, and M. Mahalingam. A framework for evaluating replica place-
ment algorithms. Research Report HPL-2002-219, HP Laboratories, Palo Alto, CA, 2002.

P. Liu, Y.-F. Lin, and J.-J. Wu. Optimal placement of replicas in data grid environments with
locality assurance. In International Conference on Parallel and Distributed Systems (ICPADS).
IEEE Computer Society Press, 2006.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, New York,
1986.

Source Code for the Heuristics. http://graal.ens-1lyon.fr/~vrehn/code/replicaQoS/.

X. Tang and J. Xu. QoS-Aware Replica Placement for Content Distribution. IEEFE Trans.
Parallel Distributed Systems, 16(10):921-932, 2005.

H. Wang, P. Liu, , and J.-J. Wu. A QoS-aware Heuristic Algorithm for Replica Placement. In
Proceedings of the 7th International Conference on Grid Computing, GRID2006, pages 96-103.
IEEE Computer Society, 2006.

16

Closest_BigSubtreeFirst ——
140 Closest_ IIQoSFirst
Upwards_SQoS_Started
Upwards_SQoS_MinReq
pwards_Min_Distance
120 Multiple_SQoS_Close 4
Multiple_SQoS_MinReq
Multiple_Min_Requests
» MixedBest ---
8 100 LP
E T
2
8
8 80
S
3
5
&
g 60
€
8
°
g
40
20
0
0.1 0.2 0.3 0.4 05 0.6

lambda

Success for small trees, qos €

0.9

Closest_BigSubtreeFirst
140 Closest_SmallQoSFirst -
Upwards SQoS_Started
Upwards_SQoS_MinReq
Upwards_Min Distance
120 Multiple_SQoS_Close
Muliiple_SQoS MinReq
Multiple_ Min_Requests
" MixedBest
3 P
£ 100
2
2
2
8 80
g
3
z
s
g 60
£
g
8
g
g
40
20
o
0.1
lambda
Figure 5: Success for small

trees,

average,os = height/2.
T T

Closest_BigSubtreeFirst

140 Closest_SmallQoSFirst
Upwards_SQoS_Started --

Upwards_SQoS_MinReq

Upwards_Min_ Distance

120 Multiple_SQoS Close

Multiple_SQoS_MinRegq
Multiple_ Min_ Requests

MixedBest ---

percentage of successful trees

0.1

Figure

0.2 0.3 0.4

7

Success

0.5 0.6 0.7 0.8
lambda

for small

qos = height + 1 — no QoS.

trees,

percentage of successful trees

percentage of successful trees

" Closest_BigSubtreeFirst ——
140 Closest_SmallQoSFirs 1
Upwards_SQoS_Started ---
UBwards,SQoS,MinReq =
pwards_Min_Distance -
120 Multiple_SQoS_Close J
Multiple_SQoS_MinReq -
Multiple_Min_Requests - ---
MixedBest ---a---
100 P
80
\
\
\
\
N\,
60 3
\
\
\
\
40
\
\
\
N\
20
o \\ [
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
lambda

4: Success for big trees, qos € {1,2}.

140

120

T T T
Closest_BigSubtreeFirst ——
Closest_SmallQoSFirst
Upwards_SQoS_Started -

Upwards_SQoS_MinReq
Upwards_Min Distance

Multiple_SQoS_Close

Multiple_SQoS_MinReq

Multiple_Min_Requests
MixedBest -4~
P —v—

100 e

80

60

40

20

Figure
average ., = height/2.

percentage of successful trees

6: Success

0.9

for big trees,

" Closest_BigSubtreeFirst ——
140 Closest_SmallQoSFirst -
Upwards_SQoS Started -
Upwards_SQoS_MinReq &
Upwards Min Distance —-=-—
120 Muliiple_SQoS_Close --o-- |
Multiple SQoS NinReq --e-
Multiple_ Min_Requests -+
MixedBest -+ -
100 — P
—4
80 X N
0.5 0.6 0.7 0.8 0.9
lambda
8: Success for big trees,

Figure

gos = height + 1 — no QoS.

17

1.4 Closest_SmallQoSFirst 14 X ——
Upwards_SQoS_Started - Upwards_SQoS_Started ¥~
Upwards SQoS_MinRegq Upwards SQoS MinReq —&
Upwards_Min_Distance - Upwards_Min_Distance -

12 Multiple_SQoS_Close 12 Multiple_SQoS_Close 1

Closest_BigSubtreeFirst

Multiple_SQoS_MinReq -
Multiple_Min Requests -4 -
MixedBest -

relative performance

0.2

0.1 0.2 0.3

Figure 9: Relative
qos € {1,2}.

0.4

05
lambda

0.6 0.7 0.8 0.9

performance for small trees,

1.4 Closest_SmallQoSFirst - < 1.4 Closest_SmallQoSFirst ---x---
Upwards_SQoS_Started - Upwards_SQoS_Started --%---
Upwards _SQoS MinReq Upwards SQoS_MinReq &
Upwards_Min_Distance Upwards_Min_Distance --=--

12 Multiple_SQoS_Close 12 Multiple_SQoS_Close --o-- |

Closest_BigSubtreeFirst ——

Multiple_SQoS_MinReq
Multiple_Min Requests
MixedBest

relative performance

Figure 10: Relative performance for big trees,

relative performance

" Closest_BigSubtreeFirst ——
losest_SmallQoSFir:

Multiple_SQoS_MinReq ~-e--
Multiple_Min Requests -
MixedBest ---a---

qos € {1,2}.

relative performance

0.4

0.5 0.6 0.7 0.8
lambda

0.9

" Closest_BigSubtreeFirst ——

Multiple_SQoS_MinReq
Multiple_Min Requests
MixedBest

0.4
02
0 et
0.1 02 03 0.4 05 06 07 0.1 02 03 0.4 05 X 07 08 0.9
lambda lambda

Figure 11: Relative performance for small trees,
average,.s = height/2.

1.4 Closest_SmallQoSFirst - < 1.4 Closest_SmallQoSFirst ---x---
Upwards_SQoS._Started - Upwards_SQoS_Started
Upwards_SQoS_MinReq Upwards_SQoS_MinReq
Upwards_Min_Distance - Upwards_Min_Distance

12 Multiple_SQoS_Close - i 12 Multiple_SQoS_Close 1

Closest_BigSubtreeFirst ——

Multiple_SQoS_MinReq -
Multiple_Min Requests -4 -
MixedBest -

relative performance

Figure 12: Relative performance for big trees,

average ., = height/2.

relative performance

" Closest_BigSubtreeFirst ——

Multiple_SQoS_MinReq
Multiple_Min Requests -
MixedBest ---a---

0.4
0.2
~ o R - i
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
lambda lambda

Figure 14: Relative performance for big trees,
gos = height + 1 — no QoS.

Figure 13: Relative performance for small trees,

qos = height + 1 — no QoS.

18

Closest_BigSubtreeFirst —— " Glosest_BigSubtreeFirst ——
1.4 Closest_¢ IIQoSFirst - 1.4 Closest_SmallQoSFirst -
Upwards_SQoS_Started Upwards_SQoS_Started
Upwards_SQoS_MinReq Upwards_SQoS_MinReq
Upwards_DistServer_Indisp Upwards_DistServer_Indis|
12 Multiple_SQoS_Close 4 12 Multiple_SQoS_Close 4
- Multiple_SQoS_MinReq -+ - Multiple_SQoS_MinReq ---e-
Multiple_MinQoS_Indisp ---4- Multiple_MinQoS_Indisp ---4-
MixedBest ---- MixedBest -+«
8 8
e g
] s
E £
2 2
3 5
g &
° o
2 2
& s
e e
\
\
0 0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
lambda lambda

Hierarchy in small trees, qos € {1,2}. Figure 16: Hierarchy in big trees, qos € {1, 2}.

Closest_BigSubtreeFirst —— " Closest_BigSubtreeFirst ——
14 Closest_SmallQoSFirst —x— | 14 josest_SmallQoSFirst 4
Upwards_SQoS_Started
! Upwards_SQoS_MinReq
Upwards_DistServer_Indisp Upwards_DistServer_Indisy
12 X 12 Multiple_SQoS_Close 1
- Multiple_SQoS_MinReq - Multiple_SQoS_NinReq
Multiple_MinQoS_Indisp Multiple_MinQoS_Indisp
MixedBest ixedBest ---4---
5 s
g g
: :
E £
£ s
g s
8 &
2 2
5 =
[e
lambda lambda
Figure 17: Hierarchy in small trees, Figure 18: Hierarchy in big trees,
average,os = height/2. average ., = height/2.
Closest_BigSubtreeFirst " Closest_BigSubtreeFirst ——
1.4 Closest_SmallQoSFirst 14 losest_Sm: First —»— |
Upwards_SQoS_Started Upwards_SQoS_Started -
Upwards_SQoS_MinReq Upwards_SQoS_MinReq
Upwards_DistServer_Indisp Upwards_DistServer_Indisp
12 Muitiple_SQoS_Close - 12 Multiple_SQoS_Close - J
- Multiple_SQoS_MinReq --- - Multiple_SQoS_MinReq -
Multiple_MinQoS_Indisp --- Multiple_MinQoS_Indisp -
MixedBest --- MixedBest -
s s
g 2
: :
E £
£ s
E s
8 &
2 2
5 =
[e
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
lambda
Figure 19: Hierarchy in small trees, Figure 20: Hierarchy in big trees,

qos = height + 1 — no QoS. gos = height + 1 — no QoS.

19

Closest_BigSubtreeFirst
Closest_SmallQoSFirst

Upwards_SQoS_Started -
Upwards_SQoS_MinReq -
Upwards_DistServer_Indisp -
Muftiple_SQoS_Close -

Multiple_SQoS_MinReq
Multiple_MinQoS_Indisp -4+~
MixedBest -

relative performance

0.1 0.2 0.3

Figure 21: Impact of QoS constraints in small Figure 22:
trees, qos € {1, 2}.

trees, qos € {1, 2}.

05 0.6 0.7 0.8
lambda

0.9

Closest_BigSubtreeFirst ---
Closest_SmallQoSFirst -

Upwards_SQoS_Started
Upwards_SQoS _MinReq -
Upwards_DistServer_Indisp -
Muftiple_SQoS_Close -

Multiple_SQoS_MinReq
Multiple_MinQoS_Indisp -

MixedBest -

relative performance

0.1 0.2 0.3

Figure 23: Impact of QoS constraints in small Figure 24:

lambda

trees, qos = average,,s = height/2.

Closest_BigSubtreeFirst ---
Closest_SmallQoSFirst -

Upwards_SQoS_Started -
Upwards_SQoS_MinReq
Upwards_DistServer_Indisp
Muftiple_SQoS_Close -

Multiple_SQoS_MinReq
Multiple_MinQoS_Indisp -

MixedBest -------

relative performance

Figure 25: Impact of QoS constraints in small Figure 26:

lambda

trees, qos = height + 1 — no QoS.

relative performance

relative performance

T T T
Closest_BigSubtreeFirst
Closest_SmallQoSFirst
Upwards_SQoS_Started
Upwards_SQoS_MinReq
Upwards_DistServer Indisp
Mutiple_SQoS_Close -+
Multiple_SQoS_MinReq —e—
Multiple_MinQoS_Indisp ---4---
MixedBest -----

lambda

0.7 0.8 0.9

Impact of QoS constraints in big

" Closest_BigSubtreeFirst ---
Closest_SmallQoSFirst ---x---

Upwards_SQoS_Started
Upwards SQoS_MinReq
Upwards_DistServer_Indisp
Mutiple_SQoS_Close
Multiple_SQoS_MinReq
Multiple_MinQoS_Indisp
MixedBest

0.5

lambda

0.8 0.9

Impact of QoS constraints in big

trees, qos = average,os = height/2.

relative performance

" Closest_BigSubtreeFirst
mallQoSFirst

Upwards_SQoS_Started
Upwards_SQoS_MinReq
Upwards_DistServer_Indisp
Muitiple_SQoS_Close 1
Multiple_SQoS_MinReq —e—
Multiple_MinQoS_Indisp -+-4---
MixedBest -

0.5

lambda

Impact of QoS

0.8 0.9

constraints in big

trees, qos = height + 1 — no QoS.

20

