Energy-aware algorithms

Anne Benoit

ENS Lyon

Anne.Benoit@ens-lyon.fr http://graal.ens-lyon.fr/~abenoit

CR02 - 2016/2017

Speed models for DVFS

		When can we change speed?	
		Anytime	Beginning of tasks
Type of speeds	$[s_{\min}, s_{\max}]$	Continuous	-
	$\{s_1,, s_m\}$	VDD-HOPPING	Discrete, Incremental

- CONTINUOUS: great for theory
- Other "discrete" models more realistic
- VDD-HOPPING simulates CONTINUOUS
- Incremental is a special case of Discrete with equally-spaced speeds: for all $1 \leq q < m$, $s_{q+1} s_q = \delta$

Complexity results

Minimizing energy with fixed mapping on p processors:

- CONTINUOUS: Polynomial for some special graphs, geometric optimization in the general case
- DISCRETE: NP-complete (reduction from 2-partition);
 approximation algorithm
- INCREMENTAL: NP-complete (reduction from 2-partition); approximation algorithm
- VDD-HOPPING: Polynomial (linear programming)

General problem: geometric programming

Reminder

For each task T_i ,

- w; is its size/work
- s_i is the speed of the processor that has task T_i assigned to
- t_i is the time when the computation of T_i ends

Objective function

Minimize
$$\sum_{i=1}^{n} s_i^2 \times w_i$$

subject to (i) $t_i + \frac{w_j}{s_j} \le t_j$ for each $(T_i, T_j) \in E$
(ii) $t_i \le D$ for each $T_i \in V$

Results for continuous speeds

- MINENERGY(G,D) can be solved in polynomial time when G is a tree
- MINENERGY(G,D) can be solved in polynomial time when G is a series-parallel graph (assuming $s_{max} = +\infty$)

TODO: Prove the lemma for forks and joins to prove that MINENERGY(G,D) can be solved in polynomial time in this case (we just need to find s_0).

Linear program for VDD-HOPPING

Definition

G, n tasks, D deadline; $s_1, ..., s_m$ be the set of possible processor speeds; t_i is the finishing time of the execution of task T_i ; $\alpha_{(i,j)}$ is the *time* spent at speed s_j for executing task T_i . This makes us a total of n(m+1) variables for the system. Note that the total execution time of task T_i is $\sum_{i=1}^m \alpha_{(i,j)}$.

The objective function is:

$$\min\left(\sum_{i=1}^n \sum_{j=1}^m \alpha_{(i,j)} s_j^3\right)$$

Linear program for VDD-HOPPING

The constraints are:

 $\forall 1 \leq i \leq n, \ t_i \leq D$: the deadline is not exceeded by any task; $\forall 1 \leq i, i' \leq n \text{ s.t. } T_i \rightarrow T_{i'}, \ t_i + \sum_{j=1}^m \alpha_{(i',j)} \leq t_{i'}$: a task cannot start before its predecessor has completed its execution;

 $\forall 1 \leq i \leq n, \ \sum_{j=1}^{m} \alpha_{(i,j)} \times s_j \geq w_i$: task T_i is completely executed;

 $\forall 1 \leq i \leq n, \ t_i \geq \sum_{j=1}^m \alpha_{(i,j)}$: each task cannot finish until all work is done.

NP-completeness for discrete speed models

Theorem

With the Incremental model (and hence the Discrete model), finding the speed distribution that minimizes the energy consumption while enforcing a deadline D is NP-complete.

Proof: Reduction from 2-Partition,

- 1 processor, n independent tasks of weight (a_i)
- 2 speeds : $s_1 = 1$, $s_2 = 2$ (increment of 1)
- D = 3T/2 (where $T = \frac{1}{2} \sum_{i=1}^{n} a_i$)
- E = 5T

Approximation results for DISCRETE and INCREMENTAL

Proposition (Polynomial-time approximation algorithms)

• With the DISCRETE model, for any integer K > 0, the MINENERGY (G,D) problem can be approximated within a factor

$$(1+\frac{\alpha}{s_1})^2\times(1+\frac{1}{K})^2,$$

where $\alpha = \max_{1 \leq i < m} \{s_{i+1} - s_i\}$, in a time polynomial in the size of the instance and in K.

• With the Incremental model, the same result holds where $\alpha = \delta$ ($s_1 = s_{min}$).

Approximation results for DISCRETE and INCREMENTAL

Proposition (Comparaison to the optimal solution)

For any integer $\delta > 0$, any instance of Minenergy (G,D) with the Continuous model can be approximated within a factor $(1 + \frac{\delta}{S_{min}})^2$ in the Incremental model with speed increment δ .

Summary

- Results for CONTINUOUS, but not very practical
- In real life, DISCRETE model (DVFS)
- VDD-HOPPING: good alternative, mixing two consecutive modes, smoothes out the discrete nature of modes
- INCREMENTAL: alternate (and simpler in practice) solution, with one unique speed during task execution; can be made arbitrarily efficient

- 1 Introduction and motivation: energ
- Revisiting the greedy algorithm for independent jobs
- Reclaiming the slack of a schedule
- 4 Conclusion

What we had:

What we aim at:

Thanks...

Energy

...to my co-authors Guillaume Aupy, Fanny Dufossé, Paul Renaud-Goud, and Yves Robert.

Bibliography:

- On the performance of greedy algorithms for energy minimization (Benoit, Renaud-Goud, Robert, 2011)
- Reclaiming the energy of a schedule: models and algorithms (Aupy, Benoit, Dufossé, Robert, 2013)

Anne Benoit

ENS Lyon

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit

CR02 - 2016/2017

- Mapping of concurrent pipelined applications on parallel platform: practical applications, but difficult problem
- ⇒ classification of mappings and platforms
- Energy saving is becoming a crucial problem
- Objective functions: period, latency, power
- Multi-criteria approach
- Complexity study

- **Definitions**
- Mono-criterion problems
- Bi-criteria problems
- Tri-criteria problems
- Conclusion

Outline

Definitions

- 1 Definitions
- Mono-criterion problems
- Bi-criteria problems
- 4 Tri-criteria problems
- 5 Conclusio

- Period: T = 3
- Latency: L=8

- Period: T = 3
- Latency: L=8

Pipelined applications

$$P = 3^3 + 8^3$$
$$= 539$$

- Period: T = 3
- Latency: L=8

$$P = 3^3 + 8^3$$
$$= 539$$

 \mathcal{P}_2

- Period: T = 3
- Latency: L = 8

$$P = 3^3 + 8^3$$
$$= 539$$

$$\mathcal{P}_2$$

- Period: T=3
- Latency: L = 8

Motivating example

$$P = 3^3 + 8^3$$
$$= 539$$

- Period: T = 3
- Latency: L = 8

Motivating example

- Period: T=3
- Latency: L=8

$$P = 3^3 + 8^3$$
$$= 539$$

- Period: T = 3
- Latency: L=8

Motivating example

$$P = 3^3 + 8^3$$
$$= 539$$

- Period: T=3
- Latency: L=8

Pipelined applications

- Period: T = 3
- Latency: L = 8

$$P = 3^3 + 8^3$$
$$= 539$$

- Period: T = 3
- Latency: L = 8

Pipelined applications

$$P = 3^3 + 8^3$$
$$= 539$$

- Period: T = 3
- Latency: L = 8

Pipelined applications

- Period: T = 3
- Latency: L = 8

Motivating example

- Period: T = 3
- Latency: L = 8

$$P = 3^3 + 8^3$$
$$= 539$$

- Period: T=3
- Latency: L=8

$$P = 3^3 + 8^3$$
$$= 539$$

- Period: T=3
- Latency: L=8

$$P = 3^3 + 8^3$$
$$= 539$$

- Period: T=3
- Latency: L=8

 \mathcal{P}_1

Definitions •0000

- Period: T=3
- Latency: L = 8

 \mathcal{P}_1

Definitions •0000

- Period: T=3
- Latency: L = 8

- Period: T = 3 T = 15
- Latency: L=8

 \mathcal{P}_1

Definitions •0000

- Period: T = 3 T = 15
- Latency: L = 8 L = 17

Applications and platform

- For an application a:
 - w_a^i : weight of stage S_a^i
 - δ_a^i : size of outcoming data of \mathcal{S}_a^i
- Processors with multiple speeds (or modes): $\{s_{u,1}, \ldots, s_{u,m_u}\}$ Constant speed during the execution $b_{u,v}$: bandwidth between processors \mathcal{P}_u and \mathcal{P}_v
- Platform fully interconnected
- Communications: both overlap or non-overlap model
- Three platforms types:
 - Fully homogeneous
 - 2 Communication homogeneous
 - Fully heterogeneous

Mappings

No processor sharing for both practical and theoretical reasons (security rules and NP-completeness of the execution scheduling given a mapping with a period/latency objective).

One-to-one mapping

Interval mapping

No processor sharing for both practical and theoretical reasons (security rules and NP-completeness of the execution scheduling given a mapping with a period/latency objective).

One-to-one mapping

Interval mapping

Mappings

No processor sharing for both practical and theoretical reasons (security rules and NP-completeness of the execution scheduling given a mapping with a period/latency objective).

One-to-one mapping

Interval mapping

Metrics

Definitions

Interval mapping on a single application; k intervals l_i of stages from \mathcal{S}^{d_j} to \mathcal{S}^{e_j} ; all assignment procedure

• Period T of an application: the minimum delay between the processing of two consecutive set of data

$$T^{(overlap)} = \max_{j \in \{1, \dots, k\}} \left(\max \left(\frac{\delta^{d_j-1}}{b_{\mathsf{al}(d_j-1), \mathsf{al}(d_j)}}, \frac{\sum_{i=d_j}^{e_j} w^i}{s_{\mathsf{al}(d_j)}}, \frac{\delta^{e_j}}{b_{\mathsf{al}(d_j), \mathsf{al}(e_j+1)}} \right) \right)$$

 Latency L of an application: time, for a data set, to go through the whole pipeline

$$L = \frac{\delta^{0}}{b_{\mathsf{al}(0),\mathsf{al}(1)}} + \sum_{j=1}^{m} \left(\sum_{i=d_{j}}^{e_{j}} \frac{w^{i}}{s_{\mathsf{al}(d_{j})}} + \frac{\delta^{e_{j}}}{b_{\mathsf{al}(d_{j}),\mathsf{al}(e_{j}+1)}} \right)$$

• Power of a processor \mathcal{P}_{u} :

$$P(u) = P_{dyn}(s_u) + P_{stat}(u)$$
 , $P_{dyn}(s_u) = s_u^{\alpha}$

Optimization problems

- Minimize one criterion:
 - Period or latency: minimize $\max_a W_a \times T_a$ or $\max_a W_a \times L_a$
 - Power: minimize $\sum_{u} P(u)$
- Fix one criterion:
 - \bullet Fix the period or latency of each application \to fix a period or latency array
 - Fix $\sum_{u} P(u)$
- Multi-criteria approach: minimizing 1 criterion, fixing the other ones
- Power consumption, i.e., energy per time unit
 - ⇒ combination power/period

- Definition
- 2 Mono-criterion problems
- Bi-criteria problems
- 4 Tri-criteria problems
- 5 Conclusio

10/31

Period minimization:

	proc-hom	proc-het			
	com-hom	special-app ¹	com-hom	com-het	
one-to-one	polyno	omial (binary sea	NP-complete		
interval	polynomial	NP-complete	NP-c	complete	

Pipelined applications

¹special-app: com-hom & pipe-hom

Problem: one-to-one mapping - many applications - communication homogeneous platform - period minimization

Algorithm 1: Greedy-Assignment(T)

```
begin

Work with fastest N processors, numbered \mathcal{P}_1 to \mathcal{P}_N, where s_1 \leq s_2 \leq \cdots \leq s_N;

Mark all stages as free;

for \underline{u=1 \text{ to } N} do

Pick up any free stage \mathcal{S}^k_a s.t. W_a \times \max(\frac{\delta^{k-1}_a}{b}, \frac{w^k_a}{s_u}, \frac{\delta^k_a}{b}) \leq T;

Assign \mathcal{S}^k_a to \mathcal{P}_u;

Mark \mathcal{S}^k_a as already assigned;

if no stage found then

return "failure";

end

end

return "success";
```

Definitions

- Polynomial for fully homogeneous platforms, building upon optimal algorithm for a single application
- NP-complete even with a homogeneous application with heterogeneous processors

Period minimization - heterogeneous

NP-complete! Involved reduction from MINIMUM METRIC BOTTI ENECK WANDERING SALESPERSON PROBLEM:

- Set of m cities c_1, \ldots, c_m
- Distances $d(c_i, c_j)$ satisfying the triangle inequality
- Find a simple path from c_1 to c_m , while minimizing the maximum distance in the path

Complexity results

Period minimization:

	proc-hom	proc-het		
	com-hom	special-app ¹	com-hom	com-het
one-to-one	polynomial (binary search)			NP-complete
interval	polynomial	NP-complete	NP-complete	

Latency minimization:

	proc-hom	proc-het		
	com-hom	special-app ¹ com-hom com-het		
one-to-one	polynomial	NP-complete		NP-complete
interval	polyno	mial (binary se	NP-complete	

Pipelined applications

¹special-app: com-hom & pipe-hom

Latency minimization

Definitions

- Problem: one-to-one mapping many applications heterogeneous platform no communication homogeneous pipelines minimize $\max_a L_a$
- Single application: greedy polynomial algorithm
- Many applications: reduction from 3-PARTITION
- 3-PARTITION:
 - Input: 3m + 1 integers a_1, a_2, \dots, a_{3m} and B such that $\sum_i a_i = mB$
 - Does there exist a partition I_1, \ldots, I_m of $\{1, \ldots, 3m\}$ such that for all $j \in \{1, \ldots, m\}$, $|I_j| = 3$ and $\sum_{i \in I_i} a_i = B$?

16/31

• 3-PARTITION: does there exist a renumbering of a_i such that:

$$\begin{cases}
a_{1,1} + a_{1,2} + a_{1,3} = E \\
a_{2,1} + a_{2,2} + a_{2,3} = E \\
\vdots \\
a_{m,1} + a_{m,2} + a_{m,3} = E
\end{cases}$$

Reduction:

3m heterogeneous unimodal processors

Can we obtain a latency $L^0 \leq B$?

Equivalence of problems

Outline

- 1 Definition
- Mono-criterion problems
- 3 Bi-criteria problems
- 4 Tri-criteria problems
- 5 Conclusio

Complexity results

Definitions

Period/latency minimization:

	proc-hom	proc-het		
	com-hom	special-app	com-hom	com-het
one-to-one				
or	polynomial	NP-complete		
interval				

Power/period minimization:

	proc-hom	proc-het			
	com-hom	special-app com-hom com-het			
one-to-one	polynomia	al (minimum matching) NP-complete			
interval	polynomial	NP-complete			

Complexity results

Period/latency minimization:

	proc-hom	proc-het		
	com-hom	special-app	com-hom	com-het
one-to-one				
or	polynomial	NP-complete		
interval				

Power/period minimization:

	proc-hom	proc-het		
	com-hom	special-app com-hom com-het		
one-to-one	polynomia	al (minimum matching) NP-complete		
interval	polynomial	NP-complete		

Power/period minimization

- Problem: one-to-one mapping many applications communication homogeneous platform - power minimization for a given array of periods
- Minimum weighted matching of a bipartite graph

Anne.Benoit@ens-lyon.fr

Complexity results

Period/latency minimization:

	proc-hom	proc-het		
	com-hom	special-app	com-hom	com-het
one-to-one				
or	polynomial	N	P-complete	
interval				

Power/period minimization:

	proc-hom	proc-het			
	com-hom	special-app com-hom com-het			
one-to-one	polynomial	I (minimum matching) NP-complete			
interval	polynomial	NP-complete			

Single application

Definitions

- Problem: interval mapping single application fully homogeneous platform - power minimization for a given period
- P(i, j, k): minimum power to run stages S^i to S^j using exactly k processors \rightarrow looking for $\min_{1 \le k \le n} P(1, n, k)$
- Recurrence relation:

$$P(i,j,k) = \min_{1 \le \ell \le j-1} (P(i,\ell,k-1) + P(\ell+1,j,1))$$

- $P(i,i,q) = +\infty$ if q > 1
- \mathcal{F}_{i}^{j} : possible powers of a processor running the stages \mathcal{S}^{i} to \mathcal{S}^{j} , fulfilling the period constraint

$$\mathcal{F}_{i}^{j} = \left\{ P_{dyn}(s_{\ell}) + P_{stat}, \max\left(\frac{\delta^{i-1}}{b}, \frac{\sum_{k=i}^{j} w^{k}}{s_{\ell}}, \frac{\delta^{j}}{b}\right) \leq T, \ell \in \{1, \dots, m\} \right\}$$

$$\bullet \ P(i,j,1) = \left\{ \begin{array}{ll} \min \mathcal{F}_i^j & \text{if} \ \mathcal{F}_i^j \neq \varnothing \\ +\infty & \text{otherwise} \end{array} \right.$$

Many applications

- Problem: interval mapping fully homogeneous platform power minimization for given periods by application
- P_a^q : minimum power consumed by q processors so that the period constraint on the application a is met, found by the previous dynamic programming
- P(a, k): minimum power consumed by k processors on the applications $1, \ldots, a$, unknown
- Initialization: $\forall k \in \{1, ..., p\}$ $P(1, k) = P_1^k$

• Recurrence: $P(a, k) = \min_{1 \le q < k} (P(a-1, k-q) + P_a^q)$

$$k \\ \text{processors} \\ \begin{cases} App_1 & \cdots & \\ \vdots & \\ App_{a-1} & \cdots & \\ App_a & \cdots & \cdots & \\ \vdots & \\ App_A & \cdots & \cdots & \cdots & \\ \end{cases} \\ k - q \\ \text{processors} \\ q \\ \text{processors} \\ \vdots \\ App_A & \cdots & \cdots & \cdots & \\ \end{cases}$$

Outline

- 1 Definition
- Mono-criterion problems
- Bi-criteria problems
- 4 Tri-criteria problems
- 5 Conclusio

26/31

	proc-hom	proc-het		
	com-hom	special-app	com-hom	com-het
one-to-one				
or		NP-com	plete	
interval				

Reduction from 2-PARTITION

(Instance of 2-PARTITION:
$$a_1, a_2, \ldots, a_n$$
 with $\sigma = \sum_{i=1}^n a_i$)

Problem instance

Definitions

One-to-one mapping - fully homogeneous platform

$$\begin{cases} s_{2i-1} = K^i \\ s_{2i} = K^i + \frac{a_i}{K^{i(\alpha-1)}} X \end{cases}$$

$$w_i = K^{i(\alpha+1)}$$

$$S_1 \quad S_2 \quad S_3 \qquad S_n$$

 $P^0 = P^* + \alpha X(\sigma/2 + 1/2), L^0 = L^* - X(\sigma/2 - 1/2), T^0 = L^0$ where P^* and L^* are power and latency when each S_i is run at speed s_{2i-1}

• K big enough and X small enough so that the stage S_i must be processed at speed s_{2i-1} or s_{2i}

• For a subset \mathcal{I} of $\{1, \ldots, n\}$, if $(S_i$ is run at speed $s_{2i} \Leftrightarrow i \in \mathcal{I}$),

$$P = P^* + \sum_{i \in \mathcal{I}} (\alpha a_i X + o(X))$$
 , $L = L^* - \sum_{i \in \mathcal{I}} (a_i X - o(X))$

Recall:

$$P^0 = P^* + \alpha X(\sigma/2 + 1/2)$$
 , $L^0 = L^* - X(\sigma/2 - 1/2)$

Outline

- 1 Definition
- Mono-criterion problems
- Bi-criteria problems
- 4 Tri-criteria problems
- 5 Conclusion

- New polynomial algorithms for a single application
- Polynomial algorithms for a single application extended to many applications
- New results of NP-completeness
- Exhaustive complexity study

 Bibliography: Models and complexity results for performance and energy optimization of concurrent streaming applications (Benoit, Renaud-Goud, Robert, 2011)