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Speed models for DVFS

When can we change speed?

Anytime

Beginning of tasks

[smim smax]

CONTINUOUS

Type of speeds
ype orsp {51,y sm}

VDD-HOPPING

DISCRETE, INCREMENTAL

e CONTINUOUS: great for theory

@ Other "discrete” models more realistic

@ VDD-HOPPING simulates CONTINUOUS

@ INCREMENTAL is a special case of DISCRETE with
equally-spaced speeds: forall 1 < qg<m, sg41 —5q=0

Anne.Benoit@ens-lyon.fr

Energy-aware algorithms




Slack-reclaiming
©00

Complexity results

Minimizing energy with fixed mapping on p processors:
@ CONTINUOUS: Polynomial for some special graphs, geometric
optimization in the general case

@ DISCRETE: NP-complete (reduction from 2-partition);
approximation algorithm

@ INCREMENTAL: NP-complete (reduction from 2-partition);
approximation algorithm

e VDD-HOPPING: Polynomial (linear programming)
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General problem: geometric programming

Reminder
For each task T;,

@ wj; is its size/work

@ s; is the speed of the processor that has task T; assigned to

@ t; is the time when the computation of T; ends

Objective function

Minimize Y7, s? x w;
subject to (i) tj + =2 < t; for each (T;, T;) € E
J
(ii) t; < D for each T; € V
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Results for continuous speeds

e MINENERGY(G,D) can be solved in polynomial time
when G is a tree

e MINENERGY(G,D) can be solved in polynomial time
when G is a series-parallel graph (assuming smax = +00)

TODO: Prove the lemma for forks and joins to prove that
MINENERGY(G,D) can be solved in polynomial time in this case
(we just need to find sp).
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Linear program for VDD-HOPPING

G, n tasks, D deadline;

S1,...,Sm be the set of possible processor speeds;

tj is the finishing time of the execution of task T;;

i jy is the time spent at speed s; for executing task T;
This makes us a total of n(m + 1) variables for the system.
Note that the total execution time of task T; is ijzl B)-

The objective function is:
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Linear program for VDD-HOPPING

The constraints are:
V1 <i<n, t; < D: the deadline is not exceeded by any task;
VI<ii"<nst Ti— Ty, ti+3 7 aqrj) <t a task
cannot start before its predecessor has completed its
execution;
V1 <i<n, Ejmzl Qij) X S = Wi task T; is completely
executed;
Vi<i<n, t;> ZJ’":l a(;j): each task cannot finish until all
work is done.
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NP-completeness for discrete speed models

With the INCREMENTAL model (and hence the DISCRETE
model), finding the speed distribution that minimizes the energy
consumption while enforcing a deadline D is NP-complete.

Proof: Reduction from 2-PARTITION,
@ 1 processor, n independent tasks of weight (a;)
@ 2 speeds : 53 =1, s, =2 (increment of 1)
o D=3T/2 (where T=13"72a)
e E=5T

Energy-aware algorithms
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Approximation results for DISCRETE and INCREMENTAL

Proposition (Polynomial-time approximation algorithms)

o With the DISCRETE model, for any integer K > 0, the
MINENERGY(G,D) problem can be approximated within a
factor |

Q
1+ =) x(1+—=)?
@+ @+
where o = maxi<i<m{Si+1 — Si}, in a time polynomial in the
size of the instance and in K.

o With the INCREMENTAL model, the same result holds where
a =10 (s1 = Smin)-
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Approximation results for DISCRETE and INCREMENTAL

Proposition (Comparaison to the optimal solution)

For any integer § > 0, any instance of MINENERGY(G,D) with
the CONTINUOUS model can be approximated within a factor
(1+ 2>)? in the INCREMENTAL model with speed increment §.
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Summary

@ Results for CONTINUOUS, but not very practical

e In real life, DISCRETE model (DVFS)

e VDD-HOPPING: good alternative, mixing two consecutive
modes, smoothes out the discrete nature of modes

e INCREMENTAL: alternate (and simpler in practice) solution,
with one unique speed during task execution; can be made
arbitrarily efficient
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Conclusion

What we had:

Energy-efficient
scheduling
+
frequency
scaling

What we aim at: E’ ~ 4
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Conclusion
Thanks...

...to my co-authors Guillaume Aupy, Fanny Dufossé, Paul
Renaud-Goud, and Yves Robert.

Bibliography:
@ On the performance of greedy algorithms for energy
minimization (Benoit, Renaud-Goud, Robert, 2011)

@ Reclaiming the energy of a schedule: models and algorithms
(Aupy, Benoit, Dufossé, Robert, 2013)
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Mapping of concurrent pipelined applications on parallel
platform: practical applications, but difficult problem

@ = classification of mappings and platforms

@ Energy saving is becoming a crucial problem

Objective functions: period, latency, power

@ Multi-criteria approach

Complexity study
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1 4 12 16 17 time
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@ Period: T =3
o Latency: L =38
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Motivating example

1 4 12 16 17 time
S S S S S S S S S P S S S J
"ttt

@ Period: =3 T =15
o Latency: L =38
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Motivating example

1 4 12 16 17 time
S S S S S S S S S P S S S J
"ttt

@ Period: =3 T =15
o lLatency: +=8 L =17
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Applications and platform

@ For an application a:
o w!: weight of stage S!
e 0. size of outcoming data of S}

@ Processors with multiple speeds (or modes): {s,1,...,5um,}
Constant speed during the execution
by,v: bandwidth between processors P, and P,

Platform fully interconnected

@ Communications: both overlap or non-overlap model

Three platforms types:

@ Fully homogeneous
@ Communication homogeneous
@ Fully heterogeneous
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Mappings

No processor sharing for both practical and theoretical reasons
(security rules and NP-completeness of the execution scheduling
given a mapping with a period/latency objective).

@ One-to-one mapping

12
2]
12

@ Interval mapping
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given a mapping with a period/latency objective).

@ One-to-one mapping
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(security rules and NP-completeness of the execution scheduling
given a mapping with a period/latency objective).
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Metrics

Interval mapping on a single application ; k intervals /; of stages
from 8% to 89 ; al assignment procedure

@ Period T of an application: the minimum delay between the
processing of two consecutive set of data

di—1 i ;
plovertap) _ <max< 5% , > 4 7 5 ))
Je{l,....k} bagj—1),al(d))  Sal(dy)  bai(d),al(ej+1)

@ Latency L of an application: time, for a data set, to go
through the whole pipeline
Zj w' N 5%
1 \i=d; Sl bai(a;) ,al(ej+1)

P(u) = Pgyn(su) + Pstat(u) »  Payn(su) = s

§0

M=

L= +

bai0),al(1)

@ Power of a processor P,:

Anne.B
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Optimization problems

@ Minimize one criterion:
e Period or latency: minimize max, W, x T, or max, W, x L,
o Power: minimize ) P(u)

@ Fix one criterion:

e Fix the period or latency of each application — fix a period or
latency array

o Fix Eu P(u)

@ Multi-criteria approach: minimizing 1 criterion, fixing the
other ones

@ Power consumption, i.e., energy per time unit
= combination power/period
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Complexity results

Period minimization:

proc-hom proc-het
com-hom | special-app! ‘ com-hom com-het
one-to-one polynomial (binary search) NP-complete
interval polynomial ‘ NP-complete ‘ NP-complete

special-app: com-hom & pipe-hom
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Period minimization - com-hom - one-to-one

Problem: one-to-one mapping - many applications -
communication homogeneous platform - period minimization

Algorithm 1: Greedy-Assignment(T)
begin
Work with fastest N processors, numbered P; to Py, where s; < sp < --- < spy;
Mark all stages as free;
for u=1to N do
. sk Wk sk
Pick up any free stage SX s.t. W, x max( = o, Ta) <T,;
Assign Sﬁ to Py;
Mark S¥ as already assigned;
if no stage found then
‘ return "failure”;
end

end
return "success” ;

end
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Period minimization - interval

@ Polynomial for fully homogeneous platforms, building upon
optimal algorithm for a single application

@ NP-complete even with a homogeneous application with
heterogeneous processors
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Period minimization - heterogeneous

NP-complete! Involved reduction from MINIMUM METRIC
BOTTLENECK WANDERING SALESPERSON PROBLEM:

@ Set of m cities ¢c1,...,¢cm
e Distances d(cj, ¢;) satisfying the triangle inequality

@ Find a simple path from ¢; to ¢, while minimizing the
maximum distance in the path
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Complexity results

Period minimization:

proc-hom proc-het
com-hom | special-app? ‘ com-hom com-het
one-to-one polynomial (binary search) NP-complete
interval polynomial ‘ NP-complete ‘ NP-complete
Latency minimization:
proc-hom proc-het
com-hom | special-app? ‘ com-hom com-het
one-to-one | polynomial NP-complete NP-complete
interval polynomial (binary search) NP-complete

special-app: com-hom & pipe-hom
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Latency minimization

Problem: one-to-one mapping - many applications -
heterogeneous platform - no communication - homogeneous
pipelines - minimize max, L,

Single application: greedy polynomial algorithm

Many applications: reduction from 3-PARTITION

@ 3-PARTITION:

e Input: 3m+ 1 integers aj, as, ..., as, and B such that
Z’- aj = mB
o Does there exist a partition h, ..., I, of {1,...,3m} such that

forall j€{1,....m}, || =3 and } ;. ai = B?
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Latency minimization (2)

@ 3-PARTITION: does there exist a renumbering of a; such that:

a1 + a2 + a3z = B
a1 + a» + a3 = B
am,1 + dm,2 + am3 = B

@ Reduction:

3m heterogencous
. unimodal processors
m
1

1
/s
h()m()goncous . 7 N\
1

.

pipelines
1| [L 1
ai az T A3m
—{ )=
Can we obtain a latency L% < B?

@ Equivalence of problems

Anne.Benoit@ens-lyon.fr

Pipelined applications



Bi-criteria problems

Outline

e Bi-criteria problems

oit@ens-lyon.fr Pipelined applications



Bi-criteria problems
©000000

Complexity results

Period/latency minimization:

proc-hom proc-het
com-hom | special-app | com-hom | com-het
one-to-one
or polynomial NP-complete
interval
Power/period minimization:
proc-hom proc-het
com-hom | special-app \ com-hom com-het
one-to-one polynomial (minimum matching) | NP-complete
interval polynomial ‘ NP-complete
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Complexity results

Period/latency minimization:

proc-hom proc-het
com-hom | special-app | com-hom | com-het
one-to-one
or polynomial NP-complete
interval
Power/period minimization:
proc-hom proc-het
com-hom | special-app \ com-hom com-het
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Power /period minimization

@ Problem: one-to-one mapping - many applications -
communication homogeneous platform - power minimization
for a given array of periods

@ Minimum weighted matching of a bipartite graph

weight: power of the
minimum mode of P,
which runs S;

within the period

p>N
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Complexity results

Period/latency minimization:

proc-hom proc-het
com-hom | special-app | com-hom | com-het

one-to-one

or polynomial NP-complete
interval

Power/period minimization:

proc-hom proc-het
com-hom | special-app \ com-hom com-het
one-to-one polynomial (minimum matching) NP-complete
interval polynomial \ NP-complete

Anne.Benoit@ens-lyon.fr

Pipelined applications



Bi-criteria problems
[e]e]eY Jolele}

Single application

@ Problem: interval mapping - single application - fully
homogeneous platform - power minimization for a given period

o P(i,j, k): minimum power to run stages S’ to &’ using
exactly k processors — looking for mini<x<, P(1, n, k)

@ Recurrence relation:

P(I/./vk):1<r?<m1(P(17€7k_1)+ )

k processors

7\
' N\
A 7

WV
k — 1 processors
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Single application (2)

e P(i,i,q)=+oc0 if g>1

° .7-'{: possible powers of a processor running the stages
S' to &, fulfilling the period constraint

i—1 ) .Wk 6j

.7:{: {den(sl)"‘rPstat;maX((sb 7‘H7b> <T,le {1,,,.7m}}

S¢

minF if F 4o
400 otherwise

° P(i,j,l):{
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Many applications

@ Problem: interval mapping - fully homogeneous platform -
power minimization for given periods by application

@ PJ: minimum power consumed by g processors so that the
period constraint on the application a is met, found by the
previous dynamic programming

@ P(a, k): minimum power consumed by k processors on the
applications 1,...,a, unknown

o Initialization: Yk € {1,...,p} P(1,k) = Pf
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Many applications (2)

o Recurrence: P(a, k) = mini<gek (P(a— 1,k —q) + FJ)

( App _.D_.D _.D_ D_,

: k—q
k ' processors

tper— ) — e (O—
 Appe _D_D _D_ D_

processors <

Appa —D—D —D— D_
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Tri-criteria problems
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proc-hom
com-hom

proc-het
special-app | com-hom

com-het

one-to-one
or
interval

NP-complete

Reduction from 2-PARTITION

n
(Instance of 2-PARTITION: a1, ay,...,a, with 0 = Z aj)
i=1
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Problem instance

One-to-one mapping - fully homogeneous platform

S2n S9i_1 = Kt
S2n—1 i a
S2; = K+ Ki(n—l)X
H H w; = K‘L<Q+1)

56
S5

S4
S3
S92 — e —_ | —

51

S 1 52 83 Sn

PO = P* +aX(0/2+1/2), 1°=L* — X(c/2—-1/2), TO=L°
where P* and L* are power and latency when each &; is run at
speed sy;_1
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Main ideas

o K big enough and X small enough so that the stage S; must
be processed at speed sy;_1 or sy;

@ For a subset Z of {1,...,n}, if (S; is run at speed sp;

siel),
P=P+) (aaiX+0(X)) , L=L=3(aX—o(X))
ieT i€l
@ Recall:

PO =P* +aX(o/2+1/2) , L°=L"—X(c/2—-1/2)
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Conclusion

@ New polynomial algorithms for a single application

@ Polynomial algorithms for a single application extended to
many applications

@ New results of NP-completeness

@ Exhaustive complexity study

o Bibliography: Models and complexity results for performance
and energy optimization of concurrent streaming applications
(Benoit, Renaud-Goud, Robert, 2011)
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