Energy-aware algorithms

Anne Benoit

ENS Lyon

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit

CR02 - 2016/2017

Exascale platforms

- Hierarchical
 - \bullet 10⁵ or 10⁶ nodes
 - Each node equipped with 10^4 or 10^3 cores

Failure-prone

MTBF – one node	1 year	10 years	120 years
MTBF – platform	30sec	5mn	1h
of 10 ⁶ nodes			

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

Energy efficiency

Thermal power close to the one of a nuclear reactor! A critical issue to address if we want to achieve Exascale.

Exascale platforms

- Hierarchical
 - 10⁵ or 10⁶ nodes
 - sh node equipped with 10⁴ or 10³ cores
- Failure-prone

MTBF – one node	اك حا	10 years	120 years
MTBF – platform	30 5	5mn	1h
of 10 ⁶ n	_e s		

More nodes ⇒ She er MTBF (Mean Tink Between Failures)

Therm of Exascale

A crucial is

Petascale ×1000

e Execale.

Outline

- Introduction and motivation: energy
- Revisiting the greedy algorithm for independent job
- Reclaiming the slack of a schedule

- Data centers
 - 330, 000, 000, 000 Watts hour in 2007: more than France
 - 533,000,000 tons of CO_2 : in the top ten countries
- Exascale computers (10¹⁸ floating operations per second)
 - Need effort for feasibility
 - ullet 1% of power saved \sim 1 million dollar per year
- Lambda user
 - 1 billion personal computers
 - 500, 000, 000, 000, 000 Watts hour per year
- ~ crucial for both environmental and economical reasons

Energy: a crucial issue

- Data centers
 - 330,000,00
 - 533,000,00
- Exascale compu
 - Need effort
 - 1% of powe
- Lambda user
 - 1 billion per
 - 500,000,00

nore than France n countries

bns per second)

r year

ear

ullet \sim crucial for both environmental and economical reasons

4/47

Power dissipation of a processor

- $P = P_{\text{leak}} + P_{\text{dyn}}$
 - P_{leak} : constant

- Standard approximation: $P = P_{leak} + f^{\alpha}$ $(2 \le \alpha \le 3)$
- Energy $E = P \times time$
- Dynamic Voltage and Frequency Scaling (DVFS) to reduce dynamic power
 - Real life: discrete speeds
 - Continuous speeds can be emulated
- Processor shutdown to reduce static power

Speed models for DVFS

		When can we change speed?		
		Anytime	Beginning of tasks	
Type of speeds	$[s_{\min}, s_{\max}]$	Continuous	-	
	$\{s_1,, s_m\}$	VDD-HOPPING	Discrete, Incremental	

- CONTINUOUS: great for theory
- Other "discrete" models more realistic
- VDD-HOPPING simulates CONTINUOUS
- Incremental is a special case of Discrete with equally-spaced speeds: for all $1 \leq q < m$, $s_{q+1} s_q = \delta$

Outline

- 1 Introduction and motivation: energ
- Revisiting the greedy algorithm for independent jobs
 - Framework
 - Related work
 - Approximation results
- Reclaiming the slack of a schedul

Framework

Energy

Scheduling independent jobs

- GREEDY algorithm: assign next job to least-loaded processor
- Two variants:

OnLine-Greedy: assign jobs on the fly OffLine-Greedy: sort jobs before execution

Classical problem

- *n* independent jobs $\{J_i\}_{1 \le i \le n}$, $a_i = \text{size of } J_i$
- p processors $\{\mathcal{P}_q\}_{1 \leq q \leq p}$
- allocation function $alloc: \{J_i\} \rightarrow \{\mathcal{P}_q\}$
- load of $\mathcal{P}_q = load(q) = \sum_{\{i \mid alloc(J_i) = \mathcal{P}_q\}} a_i$

Execution time:

$$\max_{1 \leq q \leq p} load(q)$$

OnLine-Greedy

Theorem

OnLine-Greedy is a $2 - \frac{1}{p}$ approximation (tight bound)

ONLINE-GREEDY

\mathcal{P}_1	5				
\mathcal{P}_2	1	1	1	1	1
\mathcal{P}_3	1	1	1	1	1
\mathcal{P}_4	1	1	1	1	1
\mathcal{P}_5	1	1	1	1	1

Optimal solution

OffLine-Greedy

Theorem

OffLine-Greedy is a $\frac{4}{3} - \frac{1}{3p}$ approximation (tight bound)

\mathcal{P}_1	9	5	5
\mathcal{P}_2	9	5	
\mathcal{P}_3	8	6	
\mathcal{P}_4	8	6	
\mathcal{P}_5	7	7	

 $egin{array}{c|ccccc} \mathcal{P}_1 & 5 & 5 & 5 \\ \mathcal{P}_2 & 9 & 6 \\ \mathcal{P}_3 & 9 & 6 \\ \hline \end{array}$

 \mathcal{P}_4 8 7

 \mathcal{P}_5 8 7

OffLine-Greedy

Optimal solution

Power consumption

"The internet begins with coal"

- DVFS: Dynamic Voltage and Frequency Scaling
- Power at speed s (continuous model):

$$P(s) = P_{static} + \lambda \times s^3$$

Power consumption

"The internet begins with coal"

- DVFS: Dynamic Voltage and Frequency Scaling
- Power at speed s (continuous model): $P(s) = P_{static} + \lambda \times s^3$

$$P(s) = P_{static} + \lambda \times s^3$$

Outline

- Introduction and motivation: energ
- Revisiting the greedy algorithm for independent jobs
 - Related work
 - Approximation results
- Reclaiming the slack of a schedule

Bi-criteria problem

- Minimizing (dynamic) power consumption:
 - \Rightarrow use slowest possible speed

$$P_{dyn} = f^{\alpha} = f^3$$

- Bi-criteria problem:
 - Given bound M = 1 on execution time, minimize power consumption while meeting the bound

Bi-criteria problem statement

- *n* independent jobs $\{J_i\}_{1 \le i \le n}$, $a_i = \text{size of } J_i$
- p processors $\{\mathcal{P}_q\}_{1 \leq q \leq p}$
- allocation function alloc : $\{J_i\} \to \{\mathcal{P}_q\}$
- load of $\mathcal{P}_q = load(q) = \sum_{\{i \mid alloc(J_i) = \mathcal{P}_q\}} a_i$

 $(load(q))^3$ power dissipated by \mathcal{P}_q

$$\sum_{q=1}^{p} (load(q))^3$$
Power

 $\max_{1 \leq q \leq p} load(q)$ **Execution time** • Strategy: assign next job to least-loaded processor

- Natural for execution-time
 - smallest increment of maximum load
 - minimize objective value for currently processed jobs

- Natural for power too
 - smallest increment of total power (convexity)
 - minimize objective value for currently processed jobs

... but different optimal solution!

- Makespan 10, power 2531.441
- Makespan 10.1, power 2488.301

17/47

Outline

- 1 Introduction and motivation: energ
- Revisiting the greedy algorithm for independent jobs
 - Related work
 - Approximation results
- Reclaiming the slack of a schedule

GREEDY and L_r norms

$$N_r = \left(\sum_{q=1}^p (load(q))^r\right)^{\frac{1}{r}}$$

- Execution time $N_{\infty} = \lim_{r \to \infty} N_r = \max_{1 \le q \le p} load(q)$
- Power $(N_3)^3$

N₂, OffLine-Greedy

- Chandra and Wong 1975: upper and lower bounds
- Leung and Wei 1995: tight approximation factor

N₃, OffLine-Greedy

Chandra and Wong 1975: upper and lower bounds

N_r

- Alon et al. 1997: PTAS for offline problem
- Avidor et al. 1998: upper bound $2 \Theta(\frac{\ln r}{r})$ for ONLINE-GREEDY

Contribution

N_3

- Tight approximation factor for OnLine-Greedy
- Tight approximation factor for OffLine-Greedy

Greedy for power fully solved!

Outline

- 1 Introduction and motivation: energ
- Revisiting the greedy algorithm for independent jobs
 - Framework
 - Related work
 - Approximation results
- Reclaiming the slack of a schedule

Best-case for optimal solution

$$\begin{array}{c|c} \mathcal{P}_1 & O \\ \\ \mathcal{P}_2 & \frac{S-0}{p-1} \\ \\ \mathcal{P}_3 & \frac{S-0}{p-1} \\ \\ \vdots \\ \\ \mathcal{P}_p & \frac{S-0}{p-1} \end{array}$$

O largest processor load in optimal solution,
$$S = \sum_{i=1}^{n} a_i$$

$$Popt \ge O^3 + (p-1)\left(\frac{S-O}{p-1}\right)^3$$

Best-case for optimal solution

$$\begin{array}{c|c} \mathcal{P}_1 & O \\ \\ \mathcal{P}_2 & \frac{S-0}{p-1} \\ \\ \mathcal{P}_3 & \frac{S-0}{p-1} \\ \\ \vdots \\ \\ \mathcal{P}_p & \frac{S-0}{p-1} \end{array}$$

O largest processor load in optimal solution, $S = \sum_{i=1}^{n} a_i$

$$Popt \ge O^3 + (p-1)\left(\frac{S-O}{p-1}\right)^3$$

Worst-case for GREEDY

$$\begin{array}{c|c}
\mathcal{P}_1 & \frac{S-a_j}{p} & a_j \\
\mathcal{P}_2 & \frac{S-a_j}{p} \\
\mathcal{P}_3 & \frac{S-a_j}{p} \\
\vdots & \vdots & \vdots \\
\mathcal{P}_p & \frac{S-a_j}{p} & \vdots
\end{array}$$

 J_j last job assigned to most loaded processor in GREEDY

$$P_{\mathrm{greedy}} \leq \left(\frac{S + (p-1)a_j}{p}\right)^3 + (p-1)\left(\frac{S - a_j}{p}\right)^3$$

Worst-case for GREEDY

$$\begin{array}{c|c}
\mathcal{P}_1 & \frac{S-a_j}{p} \\
\mathcal{P}_2 & \frac{S-a_j}{p} \\
\mathcal{P}_3 & \frac{S-a_j}{p} \\
\vdots \\
\mathcal{P}_p & \frac{S-a_j}{p} \\
\end{array}$$

 J_j last job assigned to most loaded processor in GREEDY

$$P_{\text{greedy}} \leq \left(\frac{S + (p-1)a_j}{p}\right)^3 + (p-1)\left(\frac{S - a_j}{p}\right)^3$$

Notations

- ullet \mathcal{P}_1 maximum loaded processor in GREEDY
- Load of of \mathcal{P}_q : M_q before job J_j , $M_q + u_q$ final
- $P_{\text{greedy}} = (M_1 + a_j)^3 + \sum_{q=2}^{p} (M_q + u_q)^3$

Notations

• For
$$q \ge 2$$
, rewrite $M_q + u_q = \frac{S - M_1 - a_j}{p-1} + v_q$

•
$$P_{\text{greedy}} = \underbrace{(M_1 + a_j)^3 + \sum_{q=2}^{p} \left(\frac{S - M_1 - a_j}{p - 1} + v_q \right)^3}_{f(M_1)}$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - から(で

- Show: $f(M_1)$ strictly increasing
- Observe: $M_1 \le M_q \le M_q + u_q = \frac{S M_1 a_j}{p 1} + v_q$
- Derive: $M_1 \leq M_1^+ = \frac{S-a_j}{p}$ and $P_{\text{greedy}} = f(M_1) \leq f(M_1^+)$
- Check: if $M_1 = M_1^+$, then $v_q = 0$ for all q
- Conclude ©

- Show: $f(M_1)$ strictly increasing
- Observe: $M_1 \leq M_q \leq M_q + u_q = \frac{S M_1 a_j}{p-1} + v_q$
- Derive: $M_1 \leq M_1^+ = \frac{S a_j}{p}$ and $P_{\text{greedy}} = f(M_1) \leq f(M_1^+)$
- Check: if $M_1 = M_1^+$, then $v_q = 0$ for all q
- Conclude ©

- Show: $f(M_1)$ strictly increasing
- Observe: $M_1 \leq M_q \leq M_q + u_q = \frac{S M_1 a_j}{p-1} + v_q$
- ullet Derive: $M_1 \leq M_1^+ = rac{S-a_j}{p}$ and $P_{
 m greedy} = f(M_1) \leq f(M_1^+)$
- Check: if $M_1 = M_1^+$, then $v_q = 0$ for all q
- Conclude ©

- Show: $f(M_1)$ strictly increasing
- Observe: $M_1 \leq M_q \leq M_q + u_q = \frac{S M_1 a_j}{p-1} + v_q$
- ullet Derive: $M_1 \leq M_1^+ = rac{S-a_j}{p}$ and $P_{
 m greedy} = f(M_1) \leq f(M_1^+)$
- ullet Check: if $M_1=M_1^+$, then $v_q=0$ for all q
- Conclude ©

- Show: $f(M_1)$ strictly increasing
- Observe: $M_1 \leq M_q \leq M_q + u_q = \frac{S M_1 a_j}{p-1} + v_q$
- ullet Derive: $M_1 \leq M_1^+ = rac{S-a_j}{p}$ and $P_{
 m greedy} = f(M_1) \leq f(M_1^+)$
- ullet Check: if $M_1=M_1^+$, then $v_q=0$ for all q
- Conclude ©

27/47

Approximation bound

$$\frac{P_{\text{greedy}}}{P_{\text{opt}}} \leq \frac{\left(\frac{S + (p-1)a_j}{p}\right)^3 + (p-1)\left(\frac{S - a_j}{p}\right)^3}{O^3 + (p-1)\left(\frac{S - O}{p-1}\right)^3}$$

Agenda

- Right-hand-side is increasing with a_j
- Rewrite with $\beta = \frac{O}{S} \in [\frac{1}{p}, 1]$ and bound a_j :

$$a_j \le O$$
 for OnLine-Greedy $a_j \le O/3$ for OffLine-Greedy

Approximation for OnLine-Greedy

$$\frac{P_{\text{online}}}{P_{\text{opt}}} \leq \underbrace{\frac{\frac{1}{p^3} \left(\left(1 + (p-1)\beta\right)^3 + (p-1)\left(1-\beta\right)^3 \right)}{\beta^3 + \frac{\left(1-\beta\right)^3}{(p-1)^2}}}_{f_p^{(\text{on})}(\beta)}$$

$\mathsf{Theorem}$

- $f_p^{(\text{on})}$ has a single maximum in $\beta_p^{(\text{on})} \in [\frac{1}{p}, 1]$
- OnLine-Greedy is a $f_p^{({
 m on})}(eta_p^{({
 m on})})$ approximation
- This approximation factor is tight

Approximation for OffLine-Greedy

$$\frac{P_{\text{offline}}}{P_{\text{opt}}} \leq \underbrace{\frac{\frac{1}{p^3} \left(\left(1 + \frac{(p-1)\beta}{3}\right)^3 + \left(p-1\right) \left(1 - \frac{\beta}{3}\right)^3 \right)}{\beta^3 + \frac{(1-\beta)^3}{(p-1)^2}}}_{f_p^{(\text{off})}(\beta)}$$

$\mathsf{Theorem}$

- $f_p^{(\text{off})}$ has a single maximum in $\beta_p^{(\text{off})} \in [\frac{1}{p}, 1]$
- ullet OffLine-Greedy is a $f_p^{
 m (off)}(eta_p^{
 m (off)})$ approximation
- This approximation factor is tight

Numerical values of approximation ratios

р	OnLine-Greedy	OffLine-Greedy
2	1.866	1.086
3	2.008	1.081
4	2.021	1.070
5	2.001	1.061
6	1.973	1.054
7	1.943	1.048
8	1.915	1.043
64	1.461	1.006
512	1.217	1.00083
2048	1.104	1.00010
2 ²⁴	1.006	1.000000025

Large values of p

Asymptotic approximation factors

```
OnLine-Greedy \frac{4}{3} 1
OffLine-Greedy 2 1

\uparrow
optimal
```

Contribution

- OnLine-Greedy and OffLine-Greedy for power
- Tight approximation factor for any p
- Extend long series of papers
- Completely solve N₃ minimization problem ☺

Extending to DAG workflows

- Reclaim the energy of existing list schedules
- Design (and assess) power-aware algorithms

Conclusion

Contribution

- OnLine-Greedy and OffLine-Greedy for power
- Tight approximation factor for any p
- Extend long series of papers
- Completely solve N₃ minimization problem ☺

Extending to DAG workflows

- Reclaim the energy of existing list schedules
- Design (and assess) power-aware algorithms

Outline

- Reclaiming the slack of a schedule Models
 - Example

 - Complexity results

Motivation

- Mapping of tasks is given (ordered list for each processor and dependencies between tasks)
- If deadline not tight, why not take our time?
- Slack: unused time slots

Goal: efficiently use speed scaling (DVFS)

Outline

- 1 Introduction and motivation: energ
 - Revisiting the greedy algorithm for independent jobs
- Reclaiming the slack of a schedule

 Models
 - Example
 - Complexity results

Speed models

		Change speed	
		Anytime	Beginning of tasks
Type of speeds	$[s_{\min}, s_{\max}]$	Continuous	-
	$\{s_1,, s_m\}$	VDD-HOPPING	Discrete, Incremental

- CONTINUOUS: great for theory (what we used for independent tasks!)
- Other "discrete" models more realistic
- VDD-HOPPING simulates CONTINUOUS
- Incremental is a special case of Discrete with equally-spaced speeds: for all $1 \leq q < m$, $s_{q+1} s_q = \delta$

Tasks

- DAG: $\mathcal{G} = (V, E)$
- n = |V| tasks T_i of weight $w_i = \int_{t_i d_i}^{t_i} s_i(t) dt$
- d_i : task duration; t_i : time of end of execution of T_i

Parameters for T_i scheduled on processor p_i

Makespan

Assume T_i is executed at constant speed s_i

$$d_i = \mathcal{E} xe(w_i, s_i) = \frac{w_i}{s_i}$$

$$t_j + d_i \le t_i$$
 for each $(T_j, T_i) \in E$

Constraint on makespan:

$$t_i \leq D$$
 for each $T_i \in V$

Energy

Energy to execute task T_i at speed s_i :

$$E_i(s_i) = d_i s_i^3 = w_i s_i^2$$

→ Dynamic part of classical energy models

Bi-criteria problem

- Constraint on deadline: $t_i \leq D$ for each $T_i \in V$
- Minimize energy consumption: $\sum_{i=1}^{n} w_i \times s_i^2$

Outline

- 1 Introduction and motivation: energy
- 2 Revisiting the greedy algorithm for independent jobs
- Reclaiming the slack of a schedule

 Models
 - Example
 - Complexity results

Consider this DAG, with $s_{max} = 6$. Suppose deadline is D = 1.5.

Execution graph for the example.

• CONTINUOUS: $(s_{max} = 6)$ $E_{opt}^{(c)} \simeq 109.6$. With the CONTINUOUS model, the optimal speeds are non rational values, and we obtain

$$s_1 = \frac{2}{3}(3+35^{1/3}) \simeq 4.18;$$
 $s_2 = s_1 \times \frac{2}{35^{1/3}} \simeq 2.56;$ $s_3 = s_4 = s_1 \times \frac{3}{35^{1/3}} \simeq 3.83.$

• DISCRETE:
$$(s_1 = 2, s_2 = 5, s_3 = 6) E_{out}^{(d)} = 170.$$

- Incremental: $(\delta = 2, s_{min} = 2, s_{max} = 6) E_{opt}^{(i)} = 128.$
- VDD-HOPPING: $(s_1 = 2, s_2 = 5, s_3 = 6)$ $E_{opt}^{(v)} = 144.$

- CONTINUOUS: $(s_{max} = 6) E_{opt}^{(c)} \simeq 109.6$.
- DISCRETE: $(s_1 = 2, s_2 = 5, s_3 = 6)$ $E_{opt}^{(d)} = 170$. For the DISCRETE model, if we execute all tasks at speed $s_2^{(d)} = 5$, we obtain an energy $E = 8 \times 5^2 = 200$. A better solution is obtained with $s_1 = s_3^{(d)} = 6$, $s_2 = s_3 = s_1^{(d)} = 2$ and $s_4 = s_2^{(d)} = 5$, which turns out to be optimal.
- Incremental: $(\delta = 2, s_{min} = 2, s_{max} = 6) E_{opt}^{(i)} = 128.$
- VDD-HOPPING: $(s_1 = 2, s_2 = 5, s_3 = 6)$ $E_{opt}^{(v)} = 144$.

- CONTINUOUS: $(s_{max} = 6) E_{opt}^{(c)} \simeq 109.6.$
- DISCRETE: $(s_1 = 2, s_2 = 5, s_3 = 6) E_{opt}^{(d)} = 170.$
- Incremental: $(\delta=2, s_{\min}=2, s_{\max}=6)$ $E_{opt}^{(i)}=128$. For the Incremental model, the reasoning is similar to the Discrete case, and the optimal solution is obtained by an exhaustive search: all tasks should be executed at speed $s_2^{(i)}=4$.
- VDD-HOPPING: $(s_1 = 2, s_2 = 5, s_3 = 6)$ $E_{opt}^{(v)} = 144.$

- CONTINUOUS: $(s_{max} = 6) E_{opt}^{(c)} \simeq 109.6.$
- DISCRETE: $(s_1 = 2, s_2 = 5, s_3 = 6) E_{opt}^{(d)} = 170.$
- INCREMENTAL: $(\delta = 2, s_{min} = 2, s_{max} = 6) E_{opt}^{(i)} = 128.$
- VDD-HOPPING: $(s_1 = 2, s_2 = 5, s_3 = 6)$ $E_{opt}^{(v)} = 144$. With the VDD-HOPPING model, we set $s_1 = s_2^{(d)} = 5$; for the other tasks, we run part of the time at speed $s_2^{(d)} = 5$, and part of the time at speed $s_1^{(d)} = 2$ in order to use the idle time and lower the energy consumption.

- CONTINUOUS: $(s_{max} = 6) E_{opt}^{(c)} \simeq 109.6$.
- DISCRETE: $(s_1 = 2, s_2 = 5, s_3 = 6) E_{opt}^{(d)} = 170.$
- INCREMENTAL: $(\delta = 2, s_{min} = 2, s_{max} = 6) E_{opt}^{(i)} = 128.$
- VDD-HOPPING: $(s_1 = 2, s_2 = 5, s_3 = 6)$ $E_{opt}^{(v)} = 144.$

Outline

- 1 Introduction and motivation: energ
- Revisiting the greedy algorithm for independent jobs
- Reclaiming the slack of a schedule

 Models
 - Example
 - Complexity results

Energy

Complexity results

Minimizing energy with fixed mapping on p processors:

- CONTINUOUS: Polynomial for some special graphs, geometric optimization in the general case
- DISCRETE: NP-complete (reduction from 2-partition); approximation algorithm
- INCREMENTAL: NP-complete (reduction from 2-partition); approximation algorithm
- VDD-HOPPING: Polynomial (linear programming)

General problem: geometric programming

Reminder

For each task T_i ,

- w; is its size/work
- s_i is the speed of the processor that has task T_i assigned to
- t_i is the time when the computation of T_i ends

Objective function

Minimize
$$\sum_{i=1}^{n} s_i^2 \times w_i$$

subject to (i) $t_i + \frac{w_j}{s_j} \le t_j$ for each $(T_i, T_j) \in E$
(ii) $t_i \le D$ for each $T_i \in V$

Results for continuous speeds

- MINENERGY(G,D) can be solved in polynomial time when G is a tree
- MINENERGY(G,D) can be solved in polynomial time when G is a series-parallel graph (assuming $s_{max} = +\infty$)

TODO: Prove the lemma for forks and joins to prove that MINENERGY(G,D) can be solved in polynomial time in this case (we just need to find s_0).