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Exascale platforms

@ Hierarchical
e 10° or 10° nodes
e Each node equipped with 10% or 103 cores

@ Failure-prone

MTBF — one node | 1 year | 10 years | 120 years
MTBF — platform 30sec 5mn 1h
of 10° nodes

More nodes = Shorter MTBF (Mean Time Between Failures)

@ Energy efficiency
Thermal power close to the one of a nuclear reactor!
A critical issue to address if we want to achieve Exascale.
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Outline

o Introduction and motivation: energy
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Energy: a crucial issue

@ Data centers

e 330,000, 000,000 Watts hour in 2007: more than France
e 533,000,000 tons of CO: in the top ten countries

e Exascale computers (10! floating operations per second)

o Need effort for feasibility
o 1% of power saved ~» 1 million dollar per year

@ Lambda user

o 1 billion personal computers
e 500,000, 000,000,000 Watts hour per year

@ ~ crucial for both environmental and economical reasons
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Power dissipation of a processor

° P:Pleak+den

® P, constant

oden:BXVQXf\
I
constant /A \ Supply frequency

voltage

@ Standard approximation: P = Pl + ¢ 2<a<3)
@ Energy E = P x time

@ Dynamic Voltage and Frequency Scaling (DVFS) to reduce
dynamic power
o Real life: discrete speeds
o Continuous speeds can be emulated

@ Processor shutdown to reduce static power
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Speed models for DVFS

When can we change speed?

Anytime

Beginning of tasks

[smim smax]

CONTINUOUS

Type of speeds
ypeorsp {51, sm}

VDD-HOPPING

DISCRETE, INCREMENTAL

e CONTINUOUS: great for theory

@ Other "discrete” models more realistic

@ VDD-HOPPING simulates CONTINUOUS

@ INCREMENTAL is a special case of DISCRETE with
equally-spaced speeds: forall 1 < qg<m, sg41 —54=0
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Greedy

Outline

e Revisiting the greedy algorithm for independent jobs
Framework
@ Related work
@ Approximation results

oit@ens-lyon.fr Energy-aware algorithms



Greedy
Framework

@ Scheduling independent jobs
@ GREEDY algorithm: assign next job to least-loaded processor

@ Two variants:
ONLINE-GREEDY: assign jobs on the fly
OrrLINE-GREEDY: sort jobs before execution
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Greedy
Classical problem

e n independent jobs {J;}1<i<p, ai = size of J;
@ p processors {Pqt1<q<p

@ allocation function alloc : {Ji} — {Pq}

o load of Pg = load(q) = > _(; | aioc(s)=P,} i

Joad(1)

P ar [awo] & [ a3 | l =
T ——
 E——
| g 1
Psl az | arl | as ]

‘

Execution time:

maxi<q<p load(q) |
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ONLINE-GREEDY

ONLINE-GREEDY is a 2 — 5 approximation (tight bound)
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OFFLINE-GREEDY

OFFLINE-GREEDY is a % — % approximation (tight bound)

m | | | 5 | »nl 5 | 5 | 5 |
” | | | ” | | 6 |
» | | | ™ | | 6 |
m | | | ml 8 | 7 ]
G I G I
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Greedy
Power consumption

“The internet begins // R
with coal”

e DVFS: Dynamic Voltage and Frequency Scaling

@ Power at speed s (continuous model):

P(s) = Pstatic + A x s°
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Greedy

Power consumption

“The internet b TS
with coal” /
S :
e DVFS: %@a/oltage an @
eed s

° wg (contjnuo odel):
K@‘ Pstatic + A X 53

ency Scaling
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Outline

e Revisiting the greedy algorithm for independent jobs
@ Framework
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Greedy
o

Bi-criteria problem

e Minimizing (dynamic) power consumption:
= use slowest possible speed Payn = f® = 3

@ Bi-criteria problem:
Given bound M = 1 on execution time,
minimize power consumption while meeting the bound
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Greedy
Bi-criteria problem statement

n independent jobs {J;}1<i<n, aj = size of J;
p processors {Pg}1<q<p
allocation function alloc : {Ji} — {Pq}

load of Py = load(q) = Z{: | alloc(J;)=Pq} 9

(load(q))* power dissipated by 7,

b_1 (load(q))’ max1<q<p load(q)

Power Execution time
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Greedy

Same GREEDY algorithm . ..

@ Strategy: assign next job to least-loaded processor

@ Natural for execution-time

e smallest increment of maximum load
e minimize objective value for currently processed jobs

@ Natural for power too

o smallest increment of total power (convexity)
e minimize objective value for currently processed jobs
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Greedy
... but different optimal solution!

= % Py 81
g 2
gg P 5 5
S'=
E P 4 4 2
— Py 2 8.1
'g q%) P2 5) 4
8 &,
Ps 5) 4

@ Makespan 10, power 2531.441
@ Makespan 10.1, power 2488.301
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Outline

e Revisiting the greedy algorithm for independent jobs

@ Related work
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GREEDY and L, norms

p r
Ny = | (load(q))"
q=1
@ Execution time Ny = lim,_o Ny = maxi<q<p load(q)

e Power (N3)3
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Known results

N>, OFFLINE-GREEDY
@ Chandra and Wong 1975: upper and lower bounds
o Leung and Wei 1995: tight approximation factor

N3, OFFLINE-GREEDY
@ Chandra and Wong 1975: upper and lower bounds

N,
@ Alon et al. 1997: PTAS for offline problem

o Avidor et al. 1998: upper bound 2 — ©('2*) for
ONLINE-GREEDY
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Contribution

N3
@ Tight approximation factor for ONLINE-GREEDY
@ Tight approximation factor for OFFLINE-GREEDY

@ Greedy for power fully solved!
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Outline

e Revisiting the greedy algorithm for independent jobs

@ Approximation results
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Best-case for optimal solution

P1
P
Ps3

Pp

O largest processor load in optimal solution, § = Za;

0
o

0o
of ~

o
—
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o

o
—
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5-0
S5-0
7)3 p*l
S5-0
PP p—1
n
O largest processor load in optimal solution, § = Za;
i=1

3
Popt > 0%+ (p — 1) (i_?)
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Greedy
€000

Worst-case for GREEDY

S—a; .
P1 — dj
S—a;
P> 5
S—a;
Ps 5
S—a;

J; last job assigned to most loaded processor in GREEDY
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Greedy
€000

Worst-case for GREEDY

S—a; .
P1 — dj
S——aj
P> 5
S——aj
Ps 5
S—a;

J; last job assigned to most loaded processor in GREEDY

S+(p—1)a\°> S—a\°
Pgreedy§<(pp)J> +(P_]-)< p J)
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Proof sketch (1/3)

P ‘ 1\,] l w=a; ‘
Py ‘ M, qu‘
5 1

Ps3 ‘ M; ‘

oy
Pa ‘ My I uy ‘

—

vy

Notations
@ P1; maximum loaded processor in GREEDY
@ Load of of Py: My before job J;, My + ug final
° Pgreedy = (M + aj)3 + Zszz(Mq + Uq)3
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Proof sketch (2/3)

" ]
n[w W

n | y ]
" T

Notations
: _ S5—Mi—a;
@ For g > 2, rewrite I\/lq+uq_ o1 + Vg
5 Ml —da 3
o P = (M + 2+ <_11 + Vq)
q=2
f(‘/\;’l)
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Proof sketch (3/3)

o TR BT
Py y |L
| . ’ ]
" T

@ Show: f(M;) strictly increasing
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Greedy
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Proof sketch (3/3)

o
P y |L
P | y J
o —
@ Show: f(M;) strictly increasing
@ Observe: My < My < Mg + ug = S_,yjl_aj + vq

Anne.Benoit@ens-lyon.fr Energy-aware algorithms



Greedy
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Proof sketch (3/3)

P1 ’ M, I u = a; ‘

Po ’ M, Iu z‘

Ps ’ M; ‘
o3

Pa ’ M,y I uy ‘
Mor

@ Show: f(M;) strictly increasing

e Observe: My < My < Mg+ uq = S—Mi—3;

p—1
o Derive: My < Mjf = % and Pgreedy = (M) < f(M;")

+vg
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Greedy
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Proof sketch (3/3)

P1 ’ M, I u = a; ‘
Po ’ M, Iu z‘
Ps ’ M; ‘
o3
Pa ’ M,y I uy ‘
Mor

Show: f(M;) strictly increasing

e Observe: My < My < Mg+ uq = S—Mi—3;

p—1
Derive: My < Mjf = % and Pgreedy = f(My) < f(M;)
Check: if My = M;", then vq =0 for all ¢

+vg
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Proof sketch (3/3)

P1 ’ M, I u = a; ‘

S BT

) B

n[w T

Show: f(M;) strictly increasing

e Observe: My < My < Mg+ uq = S—Mi—3;

p—1
Derive: My < Mjf = % and Pgreedy = (M) < f(M;")
o Check: if My = M;", then vy =0 for all g

o Conclude ©®

+vg
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Approximation bound

S+(p—-1)a;\3 B (Sfa->3
Pgreedy < ( P J) +(P 1) PJ

Popt O3+(p—1) (570)3

Agenda
@ Right-hand-side is increasing with a;
@ Rewrite with § = % € [%, 1] and bound a;:

;<0 for ONLINE-GREEDY
aj < 0/3 for OFFLINE-GREEDY
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Approximation for ONLINE-GREEDY

Pontine _ % <(1 +(P=1)B)1+(p—-1)(1— /3)3>

> 3
Popt 53 + E;_fgz

AR

° f(o

") has a single maximum in B € SIE

o ONLINE-GREEDY is a fp(on)( ,(,OH)) approximation

e This approximation factor is tight
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Approximation for OFFLINE-GREEDY

— _nA)3
Popt 53 + 8-)_[32

g

£°0(8)

(off)

° fp(Off) has a single maximum in 5y’ € [%, 1]

o OFFLINE-GREEDY Js a fp(OH)( E,Oﬁ)) approximation

@ This approximation factor is tight
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Numerical values of approximation ratios

p | ONLINE-GREEDY | OFFLINE-GREEDY
2 | 1.866 1.086
3 |2.008 1.081
4 12021 1.070
5 ]2.001 1.061
6 |1.973 1.054
7 11.943 1.048
8 |1.915 1.043
64 |1.461 1.006
512 | 1.217 1.00083
2048 | 1.104 1.00010
22% 11.006 1.000000025
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Large values of p

Asymptotic approximation factors

ONLINE-GREEDY % 1
OFFLINE-GREEDY 2 1
T

optimal
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Conclusion

Contribution
@ ONLINE-GREEDY and OFFLINE-GREEDY for power
@ Tight approximation factor for any p
@ Extend long series of papers

o Completely solve N3 minimization problem ©
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Conclusion

Contribution
@ ONLINE-GREEDY and OFFLINE-GREEDY for power
@ Tight approximation factor for any p
@ Extend long series of papers
o Completely solve N3 minimization problem ©

Extending to DAG workflows
@ Reclaim the energy of existing list schedules

@ Design (and assess) power-aware algorithms
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Slack-reclaiming

Outline

Reclaiming the slack of a schedule

@ Models
@ Example
@ Complexity results

aware algorithms
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Slack-reclaiming
Motivation

@ Mapping of tasks is given (ordered list for each processor and
dependencies between tasks)

o If deadline not tight, why not take our time?

@ Slack: unused time slots

Goal: efficiently use speed scaling (DVFS) )
—/1 e
O C—/1 EE
—1n O —_— (55555554 ,
AN Y I
I'D D
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Outline

Reclaiming the slack of a schedule
@ Models
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Slack-reclaiming
00

Speed models

Change speed
Anytime Beginning of tasks
[Smin, Smax] CONTINUOUS -
{s1,...,5m} | VDD-HOPPING | DISCRETE, INCREMENTAL

Type of speeds

o CONTINUOUS: great for theory (what we used for
independent tasks!)

@ Other "discrete” models more realistic
@ VDD-HOPPING simulates CONTINUOUS

@ INCREMENTAL is a special case of DISCRETE with
equally-spaced speeds: forall 1 < qg<m, sq41 —54=10
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Slack-reclaiming
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e DAG: G =(V,E)
e n=|V]| tasks T; of weight w; = ftti—d,- si(t)dt

@ d;: task duration; t;: time of end of execution of T;

d;
.

Isi(t)'“

W

|
|
|
ti time

Parameters for T; scheduled on processor p;
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Makespan

Assume T; is executed at constant speed s;

d,' = 5X€(W;,S;) = ﬁ

Si

t; + d; < t; for each (TJ, T:) € E

Constraint on makespan:
t; < D foreach T; € V J
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Slack-reclaiming
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Energy to execute task T; at speed s;:

E,'(S,') = d,-s-3 = W,'S2

i i

— Dynamic part of classical energy models

Bi-criteria problem

@ Constraint on deadline: t; < D for each T; € V

e Minimize energy consumption: Y7 w; x s?
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Outline

e Reclaiming the slack of a schedule

@ Example
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Slack-reclaiming
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Example

Consider this DAG, with s;,,x = 6. Suppose deadline is D = 1.5.

W1:3—>W2:2

AN

w3 =1 wy =2

Execution graph for the example.
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Example

O
() b
@ CONTINUOUS: (Smax = 6) Eopr =~ 109.6. O i
With the CONTINUOUS model, the optimal speeds are non

rational values, and we obtain

2
51 = §(3 + 351/3) ~4.18; s =15 % ~ 2.56;

351/3

3
53:54:sl><m ~ 3.83.
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Example

Oy
0 b

@ DISCRETE: (51 =2, s =5, 53 =6) Eégz = 170.
For the DISCRETE model, if we execute all tasks at speed
séd) =5, we obtain an energy E = 8 x 52 = 200. A better
solution is obtained with s; = séd) =6, 5 =53 = sfd) =2

and s; = séd) = 5, which turns out to be optimal.
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Example

@ INCREMENTAL: (§ =2, Smin = 2, Smax = 0) Eép)t 128.
For the INCREMENTAL model, the reasoning is similar to the
DISCRETE case, and the optimal solution is obtained by an
exhaustive search: all tasks should be executed at

speed s\ = 4.
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Example

Oy
0 b

e VDD-HOPPING: (51 =2, s, =5, s3 =6) E((,;t = 144.
With the VDD-HOPPING model, we set s; = séd) = b; for the
other tasks, we run part of the time at speed séd) =5, and
part of the time at speed s{d) = 2 in order to use the idle time
and lower the energy consumption.
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Example

Oy
0 b

CONTINUOUS: (Smax = 6) Es) = 109.6.

DISCRETE: (51 =2, s =5, s3 = 6) Eégz = 170.

INCREMENTAL: (0 =2, Smin = 2, Smax = 0) Eg,)t = 128.

e VDD-HOPPING: (51 =2, s =5, s3 = 6) Eégz = 144.
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Outline

e Reclaiming the slack of a schedule

@ Complexity results
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Complexity results

Minimizing energy with fixed mapping on p processors:
@ CONTINUOUS: Polynomial for some special graphs, geometric
optimization in the general case

@ DISCRETE: NP-complete (reduction from 2-partition);
approximation algorithm

@ INCREMENTAL: NP-complete (reduction from 2-partition);
approximation algorithm

e VDD-HOPPING: Polynomial (linear programming)
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General problem: geometric programming

Reminder
For each task T;,
@ wj; is its size/work
@ s; is the speed of the processor that has task T; assigned to

@ t; is the time when the computation of T; ends

Objective function

Minimize i 1s X Wi
subject to (i) t; + < < t; for each (T;, T;) € E
J
(ii) t; < D for each T; € V
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Results for continuous speeds

e MINENERGY(G,D) can be solved in polynomial time
when G is a tree

e MINENERGY(G,D) can be solved in polynomial time
when G is a series-parallel graph (assuming smax = +00)

TODO: Prove the lemma for forks and joins to prove that
MINENERGY(G,D) can be solved in polynomial time in this case
(we just need to find sp).
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