
Homework for CR02

Deadline: October 17, 2016

The answer for each question should contain from a few lines up to a
page. The total should have between 2 and 4 pages. Questions can be asked
during class or at Anne.Benoit@ens-lyon.fr.

Course question: Prove that Greedy-offline is a
(

4
3
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3p

)
-approximation

algorithm for Indep(p).

The remaining questions focus on the article“Interference Aware Schedul-
ing”, by B. Kreaseck, L. Carter, H. Casanova, J. Ferrante and S. Nandy,
enclosed.

Question 1: What is the problem mentioned in this article about the clas-
sical model for communications (as the one seen in class) ?

Question 2: Assume that a processor A has to send data to processors B
and C. What is the methodology proposed by the authors to predict the
computation performances during these transfers ?

Question 3: The “bandwidth-centric principle” is similar to some result(s)
seen in class, which one(s) ?

Question 4: What is the meaning of T (n) ? What is the objective pursued
by the authors ?

Question 5: Motivate the choice of the parameters Cn, MRn, Cn
r and

Cn
sr(i).

Question 6: In the solution proposed by the author in the multi-port set-
ting, which processors do not participate to the computation ?

Question 7: Explain and discuss how the scheduling policies proposed in
Section 3 are adapted as priority queues for the experiments of Section 4.
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Abstract

Overlapping communication with computation is a
well-known technique to increase application perfor-
mance. While it is commonly assumed that communi-
cation and computation can be overlapped at no cost,
in reality they interfere with each other. In this pa-
per we empirically evaluate the interference rateof
communication on computation via measurements on
a single processor communicating on a heterogeneous
collection of local and remote processors, in both Java
and C. We then present a model of interference, which
can be used for more effective application scheduling,
as demonstrated by real-world experiments.

1. Introduction

Overlapping communication with computation has
long been recognized as a useful technique to increase
the performance of parallel and distributed applica-
tions. Most published work assumes that this over-
lap can occur “for free” [5, 13, 4, 8, 16, 1, 6, 15, 3].
However, communication and computation at the same
processor do contend for resources. In this paper we
focus on theinterference between these two activities,
i.e., the decrease in computation rate of a host due to
concurrent data transfers.

Consider a scenario where processor A is actively
computing at the same time that it is sending to pro-
cessor B. Due to possibly intermittent communication

∗This work was supported by the National Science Foundation
under Grant No. 0234233.

and bandwidth sharing with other network traffic, the
transfer rate between processors A and B can vary. We
can concurrently measure the computation rate and the
transfer rate. Figure 1 shows a graph of these measure-
ments for one of our configuration testbeds. The y-axis
is the computation rate (normalized to the maximum
achieved) for processor A. The x-axis is the send trans-
fer rate in MB/sec. A data point (x, y) on the graph dis-
plays an instance of concurrent activity: when the send
transfer rate was observed to bex MB/sec, the normal-
ized computation rate was observed to bey. The graph
of these points shows the observed interference: as the
transfer rate increases, the computation rate decreases
in a roughly linear fashion.

We define theInterference Rate of Communication
on Computation (IR) as the negative slope of the linear
least-squares fit of the data points in graphs such as the
one shown in Figure 1. For Figure 1, the linear fit is
y ≈ −0.037x + 0.96, and thus IR= 0.037. While an
IR value of 0 is typically assumed in the literature, our
experiments show that in practice IR can be large.

This paper first presents an empirical study of the
interference of communication on computation for a
group of heterogeneous processors, both with Java and
C. Our findings include:

• the computation rate can be reduced by over 50%
due to concurrent communication,

• the reduction is largely independent of the num-
ber of communicating threads/processes,

• in general, the IR of receiving (IRr) from a pro-
cessor is larger than the IR of sending (IRs) to the
same processor,

• when sending and receiving concurrently, IRs
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Figure 1. Observed Interference Rate of Com-
munication on Computation when processor
A computes and concurrently sends to pro-
cessor B.

and IRr are different from the IR’s of separate
communication, and there is a synergy in that the
combined IR is smaller, and

• the value of IR depends upon the relative location,
operating system, and architecture of the com-
municating processor.We observed that, in most
cases, more remote processors had higher IR’s.

The main objective of this paper is to investigate
whether accounting for the interference rate of com-
munication on computation can lead to more effective
application scheduling on distributed platforms. To
this end, we revisit our previous work on “bandwidth-
centric allocation” [5], which focused on maximizing
the steady-state throughput of an embarrassingly par-
allel application deployed on a tree overlay network
using autonomous scheduling techniques [13]. We
show that accounting for the interference of communi-
cation on computation leads to better schedules, both
in theory and in practice.

In Section 2 we outline our experimental method-
ology and present our interference measurements. In
Section 3 we describe an interference-aware scheduler,
which we evaluate in the real world in Section 4. Sec-
tion 5 discusses related work, and Section 6 concludes
this paper.

2. Measuring the Interference of Communica-
tion on Computations

We implemented a synthetic distributed application
that can be configured to run over an arbitrary collec-
tion of processors, and for which each processor can

perform three activities (compute, send, or receive) in
different threads concurrently. We used different con-
figurations of this application to experiment with dif-
ferent scenarios in which communication may inter-
fere with computation. We implemented this appli-
cation first in Java. (Our results for C are reported
in Section2.5). Most processors were running Java
(j2sdk1.3.1 or later) with natural threads, and proces-
sors sent and received data through Java sockets.

We created a simple benchmark to stress both the
compute rate and the transfer rate at a node. The
atomic compute task repeatedly calculatesk diagonals
of the square of a matrix. Unless otherwise noted,
the matrix was 1024× 1024 integers (i.e., 4MB), and
k = 1. We measure the time it takes to compute each
atomic compute task, and record its inverse, the com-
pute rate in tasks/sec. The send and receive activities
involved repeatedly sending or receiving 1MB of ran-
dom data. The transfer rate is recorded in MB/sec.

2.1. Testbed

The testbed used to run our application spans re-
sources over a wide area. Table 1 describes the nodes
in our testbed. Most nodes are Intel-based desktop
workstations running some flavor of Linux. A few are
Sun workstations running Solaris. The distance be-
tween nodes ranges from a few meters (in the same
lab) to thousands of kilometers (across continents). As
far as possible, we used quiescent systems and aver-
aged results over at least 5 duplicate experiments.

2.2. Experimental Scenario

All experiments in this section measure the Inter-
ference Rate (IR) of communication on computation
for one node in the testbed. For the sake of this de-
scription we assume that measurements are conducted
from the perspective of machine Lab0. For a portion of
each experiment (usually the beginning), Lab0 com-
putes tasks in isolation. The rest of the experiment
introduces activities involving other nodes, including
communication with Lab0. By correlating the com-
pute and transfer rates, we are able to determine the
IR of communication (send and/or receive) on Lab0’s
computation. To obtain a range of data points, we in-
troduce various loads into the system in the form of
additional communications involving Lab0.



Label Arch OS MHz RAM MB Location

Lab0 P4 Linux RH K2.4 1700 512 HPC Lab (SD) oh
Lab1 P2 Linux RH K2.4 300 512 HPC Lab (SD) tandem
Lab2 P4 Linux RH K2.4 1700 512 HPC Lab (SD) ct
Lab3 P4 Linux RH K2.4 2000 1024 HPC Lab (SD) pa
Lab4 U.SPARC SunOS 5.8 440 256 HPC Lab (SD) kalmar
Lab5 U.SPARC SunOS 5.8 333 128 HPC Lab (SD) picard
Lab6 P2 Linux RH K2.4 451 384 HPC Lab (SD) boltzmann

Campus0-8 dual P3 FreeBSD 4.6.2 800x2 1024 AW Cluster (SD) broach, et al.
Campus9 U.SPARC SunOS 5.8 333 128 APE Lab (SD) ursus

SB0-4 P3 Xeon Linux Deb. K2.4 2200 512 UCSB Mayhem (SB) ash, et al.
SB5 P4 Linux Deb. K2.4 1800 512 UCSB Mayhem (SB) charcoal

Tenn P3 Cu.mine Linux Deb. K2.4 700 320 SAU (TN) cpp
Brazil P3 Cu.mine Linux RH K2.4 865 640 UFCG (BR) lula
France quad Xeon Linux RH K2.4 2400x4 1024 ENS-Lyon (FR) graal

Table 1. Processor architecture, operating system, and phy sical location of nodes in our testbed. We
measured computation speed on Lab0 while it communicated wi thin our Lab and across Campus,
California (SB), the U.S. (TN), the equator (BR), and the Atl antic (FR).

Next, we convert the raw observations into related
pairs of rates. To eliminate anomalies caused by
the granularity of our measurements, we average the
compute rates and transfer rates over regular inter-
vals. After normalizing the compute rate to the maxi-
mum achieved compute rate, we perform a linear least-
squares fit and compute IR as the negative slope of this
fit. Thus, the IR is the percentage decrease in the com-
putation rate per every MB/sec of transfer rate. We
also performed and report on experiments in which
Lab0 receives data from other nodes, and in which
Lab0 both sends and receives data.

2.3. Impact of receiving on computing

As seen in Section 1, there is a steady degradation
in the computation rate as the data transfer rate in-
creases. We conducted experiments with a local node
in our lab, Lab0, computing and receiving from one
other node in Table 1. A single experiment generates
an average of 95 data points relating observed transfer
rates to normalized computation rates. For each ex-
periment, we performed a least-squares fit. Over all
117 experiments, alinear fit errs by at most 9.1%; the
average max error is 2.2% and the standard deviation
is around 0.75%. Aquadratic least-squares fit gives
only marginal improvement (max error of 7.4%, aver-
age max error of 1.8%, a standard deviation of 0.52%),
and we use the simpler linear fit hereafter.

The left half of Table 2 shows the Interference Rates
due to receiving (IRr) when Lab0 computes and re-
ceives from one other node. The averageIRr for Lab0
is approximately 0.052. This means that on average
when Lab0 is receiving at 10 MB/sec, it degrades to
1 − 10 × 0.052 = 48% of its maximum compute
rate. Depending upon the processor type, operating
system, network connection and distance to Lab0, the
IRr varies between 0.0452 and 0.0891. The dominant
factor is distance. For the closest nodes (Labn) theIRr

is roughly 0.0463, and theIRr increases with distance
to above 0.074. For the node in France, the receive
transfer rates were so low that the data looked more
like a cluster than a line; nevertheless, the computed
IRr was consistent with other locations.

We also experimented with Lab0 receiving data
from several nodes simultaneously. We observed a
maximum total receiving transfer rate of just over 11
MB/sec on Lab0. When receiving from a single quies-
cent near node, the observed data transfer rate achieves
85%-95% of that maximum. When receiving from
multiple quiescent near nodes, the observed data trans-
fer rate achieves the maximum. In general, once a
node is receiving at its maximum transfer rate, theim-
pact on computation is maximized, regardless of the
number of receiving threads.

It turns out that it is possible to estimate the result-
ing compute rate at Lab0 using the sum of the individ-
ual IRr ’s weighted by their respective transfer rates.



Lab0 Receives from Node Lab0 Sends to Node
avg avg avg avg avg avg avg avg

Node IRr const StDev MaxE IRs const StDev MaxE

Lab1 0.0458 0.9714 0.0125 0.0312 0.0314 0.9909 0.0085 0.0226
Lab2 0.0467 0.9770 0.0146 0.0396 0.0299 0.9740 0.0119 0.0247
Lab3 0.0468 0.9781 0.0136 0.0371 0.0299 0.9752 0.0124 0.0301
Lab4 0.0452 0.9674 0.0150 0.0371 0.0199 0.9922 0.0048 0.0155
Lab5 0.0467 0.9723 0.0212 0.0434 0.0211 0.9704 0.0249 0.0631
Lab6 0.0465 0.9754 0.0140 0.0376 0.0305 0.9738 0.0112 0.0276

Campus0 0.0474 0.9777 0.0053 0.0192 0.0388 1.0296 0.0184 0.0567
Campus1 0.0477 0.9823 0.0052 0.0163 0.0373 1.0223 0.0209 0.0547
Campus2 0.0473 0.9772 0.0048 0.0147 0.0383 1.0245 0.0186 0.0549
Campus3 0.0471 0.9757 0.0056 0.0255 0.0381 1.0219 0.0151 0.0509
Campus4 0.0474 0.9790 0.0054 0.0214 0.0367 1.0122 0.0185 0.0540
Campus5 0.0475 0.9777 0.0046 0.0155 0.0377 1.0218 0.0205 0.0554
Campus6 0.0474 0.9779 0.0050 0.0163 0.0372 1.0136 0.0157 0.0507
Campus7 0.0472 0.9765 0.0052 0.0167 0.0377 1.0177 0.0141 0.0410
Campus8 0.0477 0.9797 0.0048 0.0145 0.0366 1.0073 0.0148 0.0456
Campus9 0.0494 0.9737 0.0233 0.0905 0.0237 0.9745 0.0175 0.0404

SB0 0.0510 0.9844 0.0053 0.0171 0.0310 0.9771 0.0026 0.0098
SB1 0.0515 0.9840 0.0054 0.0150 0.0312 0.9781 0.0026 0.0124
SB2 0.0513 0.9844 0.0053 0.0153 0.0313 0.9762 0.0022 0.0071
SB3 0.0511 0.9841 0.0044 0.0144 0.0310 0.9758 0.0027 0.0127
SB4 0.0511 0.9758 0.0058 0.0147 0.0307 0.9762 0.0034 0.0158
SB5 0.0501 0.9762 0.0053 0.0163 0.0307 0.9784 0.0032 0.0110
Tenn 0.0743 0.9979 0.0019 0.0090 0.0638 0.9911 0.0016 0.0074

France 0.0848 0.9989 0.0024 0.0166 0.0372 0.9966 0.0015 0.0079
Brazil 0.0891 0.9992 0.0013 0.0053 0.0431 0.9955 0.0008 0.0037

Table 2. IRr when Lab0 receives from various nodes. IRs when Lab0 sends to various nodes.

We calculate theexpected normalized compute rate to
be [1 −

∑k
i=1(IRr(i) TR(i))] when receiving fromk

nodes, whereIRr(i) is the interference rate from node
i, andTR(i) is the transfer rate from nodei.

When computing on Lab0 and concurrently receiv-
ing from four nodes with similarIRr values within
the Lab, the expected compute rate varies from the
actual compute rate by 2.58% on average. For dis-
similar IRr values, (e.g., when computing on Lab0
and concurrently receiving from Lab1, Campus4, SB1,
and Tenn), the expected compute rate varied from the
actual compute rate by 1.21% on average. Over all
our experiments with multiple receives on Lab0, us-
ing the aggregate interference rates to predict compute
rates yields astandard deviation as low as 0.22%, and
0.82% on average. This demonstrates the utility of
collecting the individual interference rates (IRr ’s) be-
tween nodes. These rates can be combined arbitrarily
to understand the aggregate impact of receiving multi-
ple communications on computation.

2.4. Impact of sending on computing

When a node is computing and concurrently send-
ing to other nodes, we also see a steady degradation
in the compute rate per MB/sec of sending. We con-
ducted experiments with Lab0 computing and concur-
rently sending to a receiving node chosen from those
listed in Table 1. Over all 118IRs experiments we per-
formed, a linear least-squares fit errs by at most 9.6%
(average max error is 3.1%) with a standard deviation
around 1.05%. A quadratic least-squares fit errs by at
most 10.1% (average max error is 2.6%) with a stan-
dard deviation around 0.74%. Both fits are looser than
those we saw with receiving, and again we use the lin-
ear fit for simplicity.

The right half of Table 2 showsIRs values. The av-
erageIRs for Lab0 is around 0.034: on average when
Lab0 is sending at 10 MB/sec, its computation rate de-
grades to 66% of its maximum compute rate. Thus,
sending has less of an impact on computation than re-
ceiving does. In our experiments,IRs varies between



0.0199 and 0.0638, and generally increases with node
distance, although not as much asIRr.

The observed maximum transfer rate for sending
is slightly less than that for receiving. When si-
multaneously sending to six nodes, Lab0 achieved
a rate of around 10.7 MB/sec. As with receiving,
once a node is sending at its maximum transfer rate,
the impact on computation is constant, regardless of
the number of sending threads. Again, we can es-
timate the resulting compute rate using the formula
[1 −

∑k
i=1(IRs(i) TR(i))], whereIRs(i) is the inter-

ference rate of sending to nodei, and TR(i) is the
transfer rate to nodei. When computing on Lab0 and
concurrently sending to four Linux nodes with similar
IRs values within the Lab, the calculated compute rate
varies from the actual compute rate by 0.88% on av-
erage. For dissimilarIRs values due to distance, (e.g.,
when computing on Lab0 and concurrently sending to
Lab1, Campus4, SB1, and Tenn), the calculated com-
pute rate varied from the actual compute rate by 2.04%
on average. Over all our experiments with multiple
sends on Lab0, using the aggregate interference rates
to predict compute rates yields a standard deviation as
low as 0.43%, and 1.21% on average.

2.5. Further experiments

We summarize results from other experiments
(see [12, 14] for details).

Sending and receiving concurrently. One might
hope that when a processor node is receiving at rate
TR(A) from node A and sending atTR(B) to node
B, the resulting normalized compute rate would be the
weighted sum1 − IRr(A) TR(A) − IRs(B) TR(B).
Interestingly, we found that this was not the case. We
observed a synergistic effect, where the actual com-
pute rates were higher than this formula predicts.

In a typical experiment, measuring the receive and
send interference rates separately gave the formula
1 − .0502 TR(A) − .0327 TR(B). We collected 234
measurements of the compute rate at a variety of re-
ceive and send rates. The error of the measured val-
ues from the predicted value was large, 6.7%, and
the maximum error was 25%. If we made a planar
fit to the 234 data points, the resulting formula was
.9542 − .0427 TR(A) − .0265 TR(B). This formula
had an average error of only 2.2%, and the maximum

error was 12.4% Note in particular that the more ac-
curate predictor uses lower interference rates, showing
that receiving and sending concurrently is more effi-
cient than doing them separately.

We conducted 456 experiments with Lab0 comput-
ing while sending to one node and receiving from an-
other. On average, the best planar fit to all the points
had a maximum error of 19.1% and a mean error of
1.5% with a standard deviation of 1.2%. When us-
ing theIRr andIRs values from receiving or sending
alone, then on average there was a maximum error of
37.3%, and a mean error of 5.3% with a standard de-
viation of 3.1%.

Another interesting observation is that when con-
currently sending and receiving to nearby nodes with-
out contention, the processor node is able to send at al-
most the maximum send transfer rate (90%-95%), but
it is only able to receive at a 45% to 70% of the max-
imum receive transfer rate. When sending at a lower
transfer rate (due to sending contention), the processor
node is able to receive at a higher transfer rate.

Data footprint. As the amount of memory required
by the computation decreases (by using matrix sizes
from 1024 × 1024 down to8 × 8) both IRr andIRs

decrease to about half their original values.
Message size.As the message size decreased from

8 MB to 128 KB, there was no significant difference
observed in interference rates.

Distance. Even though near nodes in general had
lower interference rates than remote nodes, near nodes
achieved much higher transfer rates, and thus had a
much greater total interference on computation.

Software heterogeneity. Both the operating sys-
tem (Linux versus Solaris) and the Java implementa-
tion (native versus green thread) impacted the inter-
ference rates. For example, Solaris had about a third
lower send interference rate than Linux. We also found
that Solaris received a smaller portion of data than a
Linux node, when both were receiving concurrently.

Programming language. We duplicated a subset
of our experiments using C processes instead of Java
threads, in order to determine whether interference
was simply an artifact of Java and threads. We used
four of the nodes previously used (Lab0, Lab1, Cam-
pus0 and Campus2), and also an additional campus
node and several remote PlanetLab nodes. The com-
putation and application setup were almost identical to



Lab0 Receives from Node Lab0 Sends to Node
avg avg avg avg avg avg avg avg

Node IRr const StDev MaxE IRs const StDev MaxE

Lab1 0.0421 0.9792 0.0110 0.0258 0.0228 0.9792 0.0088 0.0208
Lab2 0.0412 0.9890 0.0077 0.0321 0.0229 0.9628 0.0195 0.0372

Campus0 0.0389 0.9528 0.0120 0.0472 0.0272 0.9471 0.0278 0.0611
Campus2 0.0409 0.9908 0.0089 0.0365 0.0290 0.9954 0.0217 0.0501
Campus10 0.0421 0.9952 0.0087 0.0409 0.0299 0.9963 0.0345 0.0749

chicago 0.0499 0.9378 0.0109 0.0622 0.0330 0.9375 0.0125 0.0600
new york 0.0476 0.9513 0.0086 0.0487 0.0335 0.9502 0.0107 0.0425

india 0.1086 0.9438 0.0107 0.0562 0.0687 0.9755 0.0115 0.0601

Table 3. C experiments: IRr when Lab0 receives from and IRs when Lab0 sends to various nodes.

the Java experiments, differing only in message size of
1KB instead of 1MB.

Our results confirm that, just as with Java, the in-
terference on computation is linearly proportional to
the send and receive bandwidths, that the interference
rate of sending is less than that of receiving, and so on.
Table 3 shows the results of the C experiments. The
mean error of the measured data from a linear fit was
2.51%. It is also interesting, but not surprising, that on
the four machines used in both experiments, the inter-
ference rates using C were marginally lower than the
rates when using Java.

3. Interference-Aware Scheduling Model

Our goal in precisely evaluating the interference of
communication on computation is to obtain a more re-
alistic model that can be used as a basis for practical
scheduling. Scheduling algorithms should account for
interference when assigning computation and data to
resources. In what follows, we show how this can be
done for one specific scheduling scenario.

We model a collection of heterogeneous resources
and the communication links between them as the
nodes and edges of a rooted tree. Each node is a com-
puting resource (a processor, or a cluster, or whatever)
capable of computing and/or communicating with its
neighbors at (possibly different) rates. Givenn in-
dependent, identical tasks, we assume that their input
data is initially located on or generated by the root of
the tree. The root processor decides which tasks to ex-
ecute itself, and which to forward to its children. Each
child faces in turn the same decision: for each task, it
decides whether to execute it or delegate it. Since we
assume a heterogeneous system, nodes process tasks at

different rates. To prevent overloading a node, a par-
ent only sends work to a child when the child requests
it. When the parent has requests from multiple chil-
dren, the parent’s scheduling policy determines which
requests to fulfill and in what order.

In our previous work [5], we assigned priorities
based on the communication times between a node and
its children. We considered two types of models: one
in which communication could proceed independently
of computation (i.e., each child has an interference
rate of 0), and one in which computation and commu-
nication were mutually exclusive activities (i.e., each
child has an interference rate of1/Z, whereZ is the
task size). Given these assumptions, we showed that
the scheduling problem is not NP-complete, but is
solved by thebandwidth-centric principle: if enough
bandwidth is available, then keep all children busy; if
bandwidth is limited, then tasks should be allocated
to the children that have sufficiently fast communi-
cation times,1 and priority is given to the children
with the fastest communication time. Perhaps counter-
intuitively, the scheduling priorities are not based on
the processing speed of the children — however, the
processing speed does affect how frequently the child
requests work.

The experiments of the previous section show that
a real system is different from the model used in our
bandwidth-centric work in three important respects:
(1) different children have different interference rates,
and these rates are not necessarily0 (fully overlap-
pable communication) or1/Z (mutually exclusive),
(2) if a parent communicates with sufficiently many

1In the mutually exclusive model, a parent never sends tasks to
a child if doing so would take more time than computing the task
itself.



children concurrently, the total bandwidth available for
delegating tasks is largely independent ofwhich chil-
dren it delegates them to, and (3) there is synergy that
reduces the interference rates when sending and re-
ceiving concurrently.

In this section, we develop a simplified model
of a computer’s computation and computation power
that is appropriate for the independent-task scheduling
problem, and then modify the bandwidth-centric ap-
proach to conform to the new model.

3.1 A Simple Model for a Scheduler

Our experiments established that if noden is receiv-
ing at rateTR(n) from its parent (nodep) and send-
ing to itsk children at ratesTR(1), TR(2), . . . , TR(k),
then its normalized compute rate is approximated by
the linear formula:

1 − IRr(p) TR(n) −
∑k

i=1(IRs(i) TR(i)),
Unfortunately, as described in Section 2.5, getting

a good fit required sampling the compute rate at many
combinations of send and receive rates, which in turn
required an extensive experimental setup. We would
like a simpler methodology.

Modeling interference at the root node is simple,
since the root only sends data to other nodes, and our
experiments show that the interference due to multi-
ple sends is additive. Any other node will receive at
least as much data as it sends, and presumably more
since it consumes some of the data locally.2 Thus, the
most likely activities are (1) it is not communicating
at all, (2) it is receiving but not sending, or (3) it is
both receiving and sending. It may not be important to
correctly model the case that a node is sending but not
receiving. In fact, if the scheduler has enough control,
it should strive to make sends overlap with receives to
take advantage of their synergy.

Thus we propose a simple model based on measur-
ing the computation rates at the three types of points
listed above and interpolate linearly between them.
Making this explicit, for each non-root noden in the
system, we first measureCn, the number of tasks per
unit time that can be executed by the node when it is
not communicating. Next we measure the maximum

2Since the receive bandwidth is reduced when a node is send-
ing, it is even less likely the node will need to be sending butnot
receiving.

receive bandwidthMRn and corresponding compute
rateCn

r when the node is receiving from its parent but
not sending. Finally, for each childi of n, we make
a measurement ofn’s compute rateCn

sr(i) while it is
sending to childi at bandwidthSR(i) and receiving
from its parent at bandwidthRR(i). Now define:

IRr = (Cn
−Cn

r

Cn
)/MRn

and
IRs(i) = (1 − RR(i)

MRn

Cn
−Cn

r

Cn
− Cn

sr
(i)

Cn
)/SR(i)

Our model for the normalized compute rate when
receiving at bandwidthTR(n) and sending to childi
at rateTR(i) is:

1 − IRr TR(n) −
∑k

i=1(IRs(i) TR(i)),
This formula was chosen to exactly match the (k+2)

measured values.
Going back to the example of Section 2.5, recall that

the best linear fit to all 234 data points was the formula
.9542 − .0427 TR(A) − .0265 TR(B), which had an
average error of 2.2%. If we just used the three data
points as suggested above, we would derive the for-
mula.9440− .0438TR(A)− .0235TR(B). Although
this formula has a worse error rate (2.6%) when av-
eraged over all data points, it does substantially bet-
ter for the 86 points that lie within the convex hull of
the three sampled points, which should correspond to
the points that are relevant to our scheduling problem.
The average error on the subset of points was reduced
from 1.2% to 0.67%, and the maximum error went
from 5.5% to 3.9%. Thus, by tailoring the model to
the scheduling application, we both simplify the mea-
surements needed and get a more accurate model.

3.2 Interference-aware scheduling

In this section, we develop a scheduling strategy
that maximizes the throughput of independent tasks
on a tree-overlay network, assuming the model given
above. A summary of notation:

• Let Z be the size of each task, in megabytes.

• Let Bn
r be the maximum bandwidth, in

tasks/second, that noden can receive from its par-
ent. Thus,Bn

r = MRn/Z.

• Given a schedule, we will denote byS(n) the av-
erage or “steady state” number of tasks per sec-
ond that are computed in noden.



• We use the model given above: if noden is re-
ceiving at rateTR(n) megabytes/second from its
parent and sending at a rate ofTR(i) to child
i, then S(n) is at most [1 − IRn

r TR(n) −
∑

i(IR
n
s (i) TR(i))]Cn tasks per second, where

the sum is over all children of noden.

• Let T (n) be the total number of tasks per second
executed in the subtree rooted at noden. Since
these tasks must all be communicated fromn’s
parent ton, T (n) = TR(n)/Z. Also, T (n) =
S(n)+

∑
i T (i). Note that we have the constraint

T (n) ≤ Bn
r .

We consider two different types of schedules. The
first allows multi-port sends, that is a node can send
tasks to multiple children concurrently. This is known
to be advantageous to take best advantage of available
network bandwidth. The second is single-port sends,
where a node can send a task to at most one child at a
time.

3.2.1 Multi-port sends

In the multi-port send case, our experimental data sug-
gest there is a fixed limitBn

s on the total number
of tasks per second going out from noden, that is,
∑

i T (i) ≤ Bn
s . In addition, if n is not the root, we

have the constraint:
T (n) = S(n) +

∑
i T (i)

≤ (1 − IRn
r T (n) Z −

∑
i(IR

n
s (i) T (i) Z))Cn

+
∑

i T (i).
Solving forT (n), we obtain the constraint:
T (n) ≤ (Cn +

∑
i T (i) (1 − IRn

s (i) Z Cn))/(1 +
IRn

r Z Cn).
For the root, there is no interference due to received

tasks, so the corresponding constraint is simply:
T (n) ≤ (Cn +

∑
i T (i) (1 − IRn

s (i) Z Cn)).
We first note that if we are given a feasible sched-

ule that has noden’s processor idle some of the time
but sends some tasks to a childk of n, then reassign-
ing work fromk’s ton’s processor will be “even more”
feasible — the interference atn’s processor will be de-
creased, and reduced data traffic fromn andk might
even increase the available bandwidth inton. Thus,
we can assume without loss of generality that either
there areno tasks computed byn’s children, or that
there is no idle time onn’s processor. In the first case,

we haveT (n) = min(Bn
r , Cn/(1 + IRn

r Z Cn) (or
simplyT (n) = Cn for the root.) In the latter case, the
≤ in the above constraint becomes an equality.

Next note that if1− IRn
s (i) Z Cn is negative,T (n)

becomes smaller whenT (i) is increased. In this case,
the maximum throughput entails settingT (i) = 0.
This corresponds to the intuitive observation that one
should never off-load work to a child if doing so would
cost more processing time (due to increased interfer-
ence) than would be needed to compute the task lo-
cally.

Now suppose for somei and j with IRn
s (i) <

IRn
s (j), it would be consistent with the children’s

bandwidth constraints to reassign a task from child
j to child i. This would not change eitherT (n) or
∑

i T (i). Thus, it would not change the bandwidth
constraint on the edge coming into noden from its par-
ent.3 However, the total interference onn’s processor
would be decreased, possibly allowing more tasks to
be executed.

These observations lead to the following principle.
When a schedule uses multi-port sends, throughput at
each node will be maximized by prioritizing the chil-
dren by their interference rates IRn

s (i) (lower interfer-
ence rate children get higher priority), and never send-
ing tasks to childi if IRn

s (i) Z Cn ≥ 1.
We can now determine the steady-state through-

put for a tree overlay network that uses this principle.
This is done using the same method as developed in
bandwidth-centric scheduling [5]. Starting from the
leaf nodes and working toward the root, we will com-
pute an upper bound̂T (n) on the number of tasks per
second that can be communicated to and computed
in the subtree rooted at rootn. Assume: the upper
boundT̂ (i) for each childi of n; the children of node
n are sorted so that fori < j, IRn

s (i) ≤ IRn
s (j); and

we ignore all children for whichIRn
s (i) Z Cn ≥ 1.

ThenT (n) is maximized by sending the firstp children
(for somep) as much as they can handle (i.e. setting
T (i) = T̂ (i) for 1 ≤ i ≤ p), sending the(p+1)th child
as much “leftover” work as possible, and sending the
remaining children no work. Thus, we first maximize
p then maximizeT (p + 1) subject to three constraints:

3We assume that even though the total amount of data that node
n can receive from its parent might be a (monotone decreasing)
function of the total outgoing data, it is not affected bywhich nodes
the data is being sent to.



1.
∑p+1

i=1 T (i) ≤ Bn
s ,

2. T̂ (n) = (Cn +
∑

i T (i) (1− IRn
s (i)Z Cn))/(1+

IRn
r ZCn) is within the bandwidth limit into node

n when one is sending
∑

i T (i) out fromn. (If n
is the root, there is no constraint; we simply set
T̂ (n) = (Cn +

∑
i T (i) (1 − IRn

s (i) Z Cn)).)

3. The number of tasks computed at noden is non-
negative, i.e.T̂ (n) −

∑
i T (i) ≥ 0.

The above formula for̂T (n) is an upper bound. As
with bandwidth-centric scheduling, this bound can be
achieved after a fixed-length startup period, provided
that the scheduler can precisely control how much of
the total bandwidth is allocated to each child and there
is sufficient buffer space on all nodes to accommodate
the transmission latencies.

3.2.2 Single-port sends

In the second case, a node can only communicate with
one child at a time. Now, in place of the constraint that
∑

i T (i) ≤ Bn
s , we have that

∑
i T (i)/Bi

r ≤ 1

Let us assume that the receive bandwidth limit on
incoming edge is a constant, independent of the cur-
rent send speed.4

Suppose we are given a feasible schedule. Con-
sider the effect of switchingone second of commu-
nication to childj to one second of communication
to child i. In this case, the amount of work of-
floaded from noden to its children will be increased
by Bi

r − Bj
r tasks. However, the number of tasks that

can be computed locally at noden will be changed by
IRn

s (j)Bj
r ZCn−IRn

s (i)Bi
rZCn. Thus, the total num-

ber of tasks that can be computed at the subtree rooted
atn will increase if and only ifBi

r(1−IRn
s (i)ZCn) >

Bj
r(1 − IRn

s (j) Z Cn).
Thus,if a schedule sends to only one child at a time,

throughput is maximized if it prioritizes the children by
Bi

r(1 − IRn
s (i) Z Cn) (larger values get higher prior-

ity). As before, one should never send to childi if
IRn

s (i) Z C ≥ 1.
Once again, we can determine an upper bound on

the steady-state throughput by giving the firstp chil-
dren as much work as they request and then giving

4Linear relationships between send and receive bandwidths
could be handled by linear programming techniques.

the (p+1)th child as much as possible, subject to the
constraint

∑
i T (i)/Bi

r ≤ 1 along with (2.) and (3.)
above.

4. Real-world Scheduling Experiments

4.1 Experimental Distributed Application System

Our experimental distributed application system
contains a Controller process that sets up experiments
on Node processes on the various distributed hetero-
geneous processors available. An experiment consists
of a description of the application, a description of
the tree overlay network upon which the application
should be run, and a choice of scheduling algorithm.
We use a syntheticindependent task application where
the results of computation are not collected.

Each algorithm considered specifies thechild node
priority: all child nodes may have equal priority, or
information is used to prioritize the sending of tasks to
its child nodes. The information might be the compute
rate of the child, the transfer rate to the child, or the
interference rate at the parent of sending to the child.
Algorithms also differ in their ability to overlap send
operations to a child, that is whether sending issingle-
ported or multi-ported.

We now describe six autonomous scheduling algo-
rithms. The first two are interference-aware, and use
the interference rate of sending (IRs) to prioritize the
children. Three other autonomous algorithms were
implemented, and for comparison the non-distributed
RootComputes.

• IA:Single (interference aware: single port).
When a parent finishes sending a task to a child,
it initiates sending a new task to the requesting
child with the lowestIRs value.5

• IA:Multi : a multi-ported algorithm that will send
to multiple children concurrently. When the cu-
mulative bandwidth used by the current tasks be-
ing sent is less than the sending bandwidth limit
of the parent, the parent will initiate sending a
new task to the requesting child with the low-
est IRs value that is not currently receiving a

5This is not necessarily the optimal priorities as derived insec-
tion 3. Unfortunately, we conducted the experiments beforederiv-
ing the optimal algorithms.



task. The advantage here is that when there is
bandwidth available and there are requesting chil-
dren, it is likely that the parent will be sending
at its maximum send bandwidth. This commu-
nication differs from the others in beinginter-
ruptible. We implement interruptible communi-
cation by breaking the send task into chunks of
512 KBytes, and having the sending thread check
for new requests after each chunk (rather than af-
ter the entire task) is sent.

• FCFS(first-come, first-serve): a single-ported al-
gorithm that prioritizes the requests from child
nodes based upon the arrival time of the request.
When the parent node finishes sending a task,
it initiates sending a new task to the requesting
child with the oldest outstanding request. This is
the only strategy tested that is “fair” in the sense
that all children will be given tasks (unless the
parent can compute all tasks sent to it) .

• CompRate: a single-ported algorithm that prior-
itizes requests from child nodes based upon the
computation rate of each child node. When the
parent node finishes sending a task, it initiates
sending a new task to the requesting child with
the highest computation rate.

• BWC (bandwidth centric): a single-ported algo-
rithm that prioritizes requests from child nodes
based upon the maximum transfer rate from the
parent node to the child node. When the parent
node finishes sending a task, it starts sending a
new task to the requesting child with the largest
maximum transfer rate.

• RootComputes. The root node computes all the
tasks. There is no communication to its children.

Note that all of the algorithms considered are
single-ported, except for IA:Multi. With single-ported
scheduling, the percentage of transfer time that is allo-
cated to a child node can be manipulated by the num-
ber of tasks sent to that child node in relation to all
other tasks sent from the parent. With multi-ported
scheduling, using Java threads and concurrent TCP/IP
connections, the exact portions of the root’s total trans-
fer rate consumed by each concurrent task is handled
by the underlying hardware and software. Although

one might be able to dictate the exact level of sharing
of the transfer rate by packetizing and multiplexing by
hand, we did not do so. Thus our multi-ported schedul-
ing algorithm, IA:Multi, may be sub-optimal.

4.2 Synthetic Application and Example Testbed

Rather than use an existing application, we chose to
design an application that would enable us to exercise
a wide range of computation-to-communication ratios.
Our synthetic application is based upon the compu-
tation and communication tasks that we used in Sec-
tion 2. The computation task involves computing the
diagonals of a matrix. In our synthetic application, we
only send tasks from parents to children; the children
do not return results.

An experiment is described by the following:

• the scheduling algorithm choice,
• the description of a task: send size in kilobytes,

and compute size in number of diagonals.
• the size of the experiment in number of tasks

(which was always 1000 tasks for the experi-
ments reported here),

• the number of nodes in the tree overlay network,
• for each node: node name, computation rate,

number of child nodes, and for each child node:
computation rate, maximum transfer rate, and the
interference of communication to the child node
on computation at the parent.

From the nodes that we studied in Section 2 (see Ta-
ble 1), we selected a subset to form the testbed for our
distributed system. The selected nodes are described
in Table 4. The computation rates are measured in di-
agonals/sec (on a1024×1024 matrix) and the transfer
rates are in MB/sec. Lab0 is the root node for all fork
graphs in our experiments. But unlike our past ex-
periments, not only will there be computation on the
root node, but also at the leaf nodes (Pi). For each
(root, leaf) pair, we measured the maximum computa-
tion rate (no sending or receiving) shown in Table 4,
on the first line for the root node and on the second
line for the leaf node. On the third and fourth lines we
record the computation rate for the root node and leaf
node respectively when the root node is concurrently
sending a task to the leaf node. On the fifth and sixth
line we record the transfer rates when sending from
the root node to the leaf node with no computation



Leaf Nodes (Pi)
Lab3 Lab4 Lab5 Lab6 SB0 Tenn

1 Compute Rate Root 9.057 9.055 9.055 8.98 9.18 9.06
2 Compute RatePi 23.86 3.47 3.02 8.27 22.55 13.23
3 Compute Rate Root (w/ sending) 5.8 7.02 7.1 5.8 6.75 8.92
4 Compute RatePi (w/ receiving) 12.45 1.77 1.2 7.12 15.15 12.7
5 Transfer Rate (no Compute) 11.1 11.12 11.05 10.85 7.7 0.3
6 Transfer Rate (both Compute) 10.8 10.81 9.62 10.7 7.73 0.2
7 IRs(i) at Root (Root Computes) 0.0299 0.0199 0.0211 0.0305 0.0310 0.0638
8 IRs(i)) at Root (both Compute) 0.0333 0.0208 0.0226 0.0331 0.0342 0.0331
9 IRr(i)) atPi (both Compute) 0.0443 0.0454 0.0621 0.0130 0.0425 0.1300

Table 4. Various measurements on our example testbed fork gr aph where Lab0 is the Root. We
record various computation rates (in diagonals/sec), tran sfer rates (in MB/sec) and interference rates
(in percent degradation per MB/sec) from a variety of commun ication/computation scenarios on the
fork graph.

and with both nodes computing respectively. The sev-
enth line re-records the Interference Rate of sending
on computation at the root node when only the root is
computing (taken from Table 2). When the root sends
a task to a leaf node and both nodes are computing,
we measure the Interference Rate of sending toPi on
computation at the root (IRs(i)) and the Interference
Rate of receiving from the root node on computation
at Pi (IRr(i)) These measurements are shown in the
eighth and ninth lines respectively.

4.3 Results

To compare the performance of the various au-
tonomous scheduling algorithms, we designed and
executed a number of experiments on the simple
seven-node fork graph of Table 4. We varied the
computation-to-communication ratio by using three
task send sizes (2MB, 5MB, and 10MB), and six task
compute sizes ranging from 1 to 11 diagonals, re-
sulting in 18 application types. On Lab0, a 2MB,
11 diagonal experiment represents a computation-to-
communication ratio of around 5:1, and a 10MB, 1 di-
agonal experiment represents a ratio of around 1:10.

The two Interference Aware scheduling algorithms
use the Interference Rate of sending to a child node
to prioritize the order in which tasks are sent to child
nodes. Figure 2 shows our example testbed with the
leaf nodes arranged in non-decreasing order of this
rate. In contrast, Figure 3 shows our example testbed
with computation rate priority, and Figure 4 shows

maximum transfer rate order used by the Bandwidth-
centric scheduling algorithm.

Figure 5 shows the simulation results, normalized
to the time of RootComputes. In general, the IA:Multi
scheduling algorithm outperforms all of the other algo-
rithms, with one exception. In Figure 5(c) (task send
size 10 MB), notice that for the smallest compute task
size,1 diagonal, the best scheduling algorithm is Root
Computes. This was the only interference-aware ex-
periment in whichIRs(i) Z Cn > 1. Hence, as dis-
cussed in section 3, the children should not have been
sent any tasks.

We also observed that the overhead of sending a
task varies between and across experiment runs. For
instance, when sending a 2 MB send task from Lab0
to Lab3, the send time ranges from 200 ms to over
2000 ms with non-interruptible communication. This
effect is most strongly seen in Figure 5(a) where the
compute task size is9 or 11 diagonals. These are
the only applications where the BWC algorithms per-
form worse than CompRate. For these algorithms, the
second-highest priority child was Lab3. During the
CompRate runs, the send time to Lab3 was almost al-
ways around 200 ms. During the BWC runs, the send
time to Lab3 was almost always around 2000 ms. This
accounted for the apparent disparity in their execution
times on these two applications as opposed to all other
application types.

In summary, our multi-ported Interference Aware
scheduling algorithm outperformed all others for all
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application types. This result is also interesting be-
cause of the possible sub-optimality of our multi-
ported scheduling heuristic, due to the lack of di-
rect control over the subdivision of the sending band-
width when sending to multiple child nodes. Among
the single-ported algorithms, the IA:single was the
best performer, especially when the computation-to-
communication ratio is small. IA:single is followed
closely by bandwidth-centric (BWC), which is not sur-
prising since the two algorithms differ only in the pri-
ority assigned to Lab5. Both algorithms consistently
outperformed the FCFS scheduling algorithm, which
confirms the simulation results in [5].

5. Related Work

Most works in the area of application scheduling
and mapping on distributed computing platforms make
the simplifying assumption that communication and
computation may overlap without cost (see for in-
stance [1, 3, 4, 5, 6, 13, 15, 16, 9, 10, 18, 17]). While
this assumption may seem reasonable, for instance due
to DMA capabilities, this work provides empirical evi-
dence that in fact it may not hold in practice. In our ex-
periments conducted on a computing platform that ag-
gregates individual hosts over various networks, both
in Java and C, we have observed a significant interfer-
ence of communication on computation. This work
provides a model for this interference, and demon-
strates how this model can be used when designing
more practical and effective scheduling strategies.

One possible model is to just assume that some por-
tion of each communication is never overlappable with
computation, as in [11] for instance. Our results pro-
vide a more evolved model of interference that ac-
counts for the specific data transfer and computation
rates. Another possibility is to use more detailed com-
munication models. For instance, low-level models
have been proposed that include notions of overhead of
communication on computation, such as the LogP [7]
model and the family of models derived from it. LogP
abstracts the communication of fixed-size short mes-
sages through the use of a number of parameters. A
follow-on model, LogGP [2] introduces another pa-
rameter (G) to capture the behavior of long messages.
By contrast our work focuses on a higher-level, more
abstract model that can be easily instantiated with sim-

ple experiments, as demonstrated in Section 2, and
was specifically developed to be used when reasoning
about application scheduling.

6. Conclusion

We presented an empirical study of the interfer-
ence of communication on computation for both multi-
threaded Java and C. We define theinterference rate
of communication on computation (IR) to be the neg-
ative slope of the linear least-squares fit representing
the relationship between the rate of computation on a
processor and the rate(s) of communication between
processors. We deployed an experimental measure-
ment system on a select group of both near and distant
heterogeneous processors. Within the framework of
mostly Intel processors and Java with natural threads,
we found that the computation rate is reduced by over
50% when communication reaches its maximum trans-
fer rates. This reduction is roughly linear with the
amount of data transferred per second, and is indepen-
dent of the number of communicating threads. Fur-
thermore, the IR of receiving (IRr) from a processor
is generally larger than the IR of sending (IRs) to the
same processor. Among other results, an intriguing
one was that there is a synergy between sending and
receiving. Our results with C confirm our results in
Java (with marginally lower interference rates).

We further proposed a simple model based on mea-
suring a small number of computation rates at a node:
when a node was not communicating; receiving but
not sending; and both sending and receiving at each
child. The simple model is a linear interpolation of
these points, and arises from our observation of greater
accuracy in these small set of measurements vs. a
more extended set. We then developed an interference-
aware scheduling strategy that extends bandwidth cen-
tric scheduling. In the case that there are multi-port
sends, we show that the throughput at each node is
maximized by prioritizing the children of the node by
interference rates, with lowest interference given the
highest priority. In the single-port send case we deter-
mined a priority order based on the interference rate,
task size, maximum bandwidth of receiving, and the
compute-only rate. For both cases, we also determined
an upper bound on the steady-state throughput.

We also performed real-world experiments of a col-



lection of autonomous scheduling algorithms (includ-
ing bandwidth-centric and interference-aware) on sim-
ple fork trees. In almost all cases, interference-aware
scheduling outperforms the others (the exception be-
ing very small task size, when it was more beneficial to
simply compute all tasks at the root, rather than com-
municate any tasks). Our results suggest that inter-
ference should be considered when developing algo-
rithms that attempt to improve performance by over-
lapping computation and communication.
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