
J. Parallel Distrib. Comput. 74 (2014) 2411–2422
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Fault-tolerant scheduling on parallel systems with non-memoryless
failure distributions
Mohamed Slim Bouguerra a, Derrick Kondo a, Fernando Mendonca a,b, Denis Trystram b,c,∗

a INRIA, 655 Avenue de l’Europe, 38334 Saint Ismier cedex, France
b Grenoble Institute of Technology, France
c Institut Universitaire de France, France

h i g h l i g h t s

• If failure rates are decreasing, we prove that makespan and reliability are antagonistic.
• As there is no single optimal solution, we design an algorithm for computing the approximation set of the Pareto front.
• If failure rates are increasing, both makespan and reliability can be optimized at the same time.
• We prove that the scheduling problem can be solved optimally for several common failure distributions, such as Weibull.

a r t i c l e i n f o

Article history:
Received 29 July 2012
Received in revised form
20 November 2013
Accepted 17 January 2014
Available online 10 February 2014

Keywords:
Fault tolerance
Reliability
Scheduling
Multi-objective optimization

a b s t r a c t

As large parallel systems increase in size and complexity, failures are inevitable and exhibit complex
space and time dynamics. Most often, in real systems, failure rates are increasing or decreasing over time.
Considering non-memoryless failure distributions, we study a bi-objective scheduling problem of opti-
mizing application makespan and reliability. In particular, we determine whether one can optimize both
makespan and reliability simultaneously, orwhether onemetricmust be degraded in order to improve the
other. We also devise scheduling algorithms for achieving (approximately) optimal makespan or reliabil-
ity.When failure rates decrease, we prove thatmakespan and reliability are opposingmetrics. In contrast,
when failure rates increase, we prove that one can optimize both makespan and reliability simultane-
ously. Moreover, we show that the largest processing time (LPT) list scheduling algorithm achieves good
performance when processors are of uniform speed. The implications of our findings are the accelerated
completion and improved reliability of parallel jobs executed across large distributed systems. Finally,
we conduct simulations to investigate the impact of failures on the performance, which is done using an
actual application of biological sequence comparison.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Failures are inevitable in emerging large-scale parallel systems,
due to their immense size and complexity. As next-generation par-
allel systems use an increasing number of components, and the re-
liability of the individual components will not improve [5], higher
failure rates are expected. For instance, new ExaFLOP systemswith
hundreds of thousands of nodes could have a single failure every
30 min [5]. In real systems, the arrival times of failures have com-
plex space and time dynamics. Recent studies of real large-scale

∗ Corresponding author at: Grenoble Institute of Technology, France.
E-mail addresses: slim.bouguerra@imag.fr (M.S. Bouguerra),

derrick.kondo@inria.fr (D. Kondo), fernando.machado-mendonca@inria.fr
(F. Mendonca), denis.trystram@imag.fr, trystram@imag.fr (D. Trystram).

http://dx.doi.org/10.1016/j.jpdc.2014.01.005
0743-7315/© 2014 Elsevier Inc. All rights reserved.
parallel systems show that failure rates are not constant, but in fact
can increase or decrease over time [33,30,17,21]. Equivalently, the
distribution of failure inter-arrival times is not memoryless.

Failure rates can decrease (Decreasing Failure Rate DFR), as
defective hardware or software components are repaired or de-
bugged, for instance. In [33], the authors study failure rates in 22
high-performance computing systems at Los Alamos National Lab-
oratory over a 9-year time period. The best-fitting failure distribu-
tion is a Weibull with decreasing failure rate. In [21], the authors
study the failure distribution of over 100,000 hosts over the Inter-
net. They also find that failure rates are decreasing over time. Fail-
ure rates can also increase (Increasing Failure Rate IFR), as system
components wear out, for instance. In [32], the authors study the
failure rate of a system at IBMwith about 400 nodes executing pri-
marily scientific (MPI) applications. They find that the node failure
rates increase over time.

http://dx.doi.org/10.1016/j.jpdc.2014.01.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.01.005&domain=pdf
mailto:slim.bouguerra@imag.fr
mailto:derrick.kondo@inria.fr
mailto:fernando.machado-mendonca@inria.fr
mailto:denis.trystram@imag.fr
mailto:trystram@imag.fr
http://dx.doi.org/10.1016/j.jpdc.2014.01.005

2412 M.S. Bouguerra et al. / J. Parallel Distrib. Comput. 74 (2014) 2411–2422
In contrast, the majority of scheduling studies focusing on
reliability assume a memoryless exponential distribution for
failure inter-arrival times. The complex properties of general
non-memoryless distributions can make analytical solutions in-
tractable.

Considering non-constant failure rates, the goal of this work is
to design scheduling strategies that optimize both the completion
time and the reliability of parallel applications. These strategies
must determine first on which hosts to place the tasks, and
then, when to execute the tasks. In particular, we investigate the
following questions:
• Are application reliability andmakespan opposingmetrics? Can

one improve reliability without degrading makespan, and vice
versa?
• What scheduling algorithms or strategies can achieve optimal

reliability or makespan, or approximations thereof?
• How do the answers depend on whether failure rates are in-

creasing or decreasing?
Strategies for tolerating failures incur significant overheads.

Checkpointing the state of an application incurs significant IO over-
heads that can strain the network or memory-to-disk bus. Repli-
cation of an application incurs significant overhead as duplicated
tasks consume resources across multiple nodes. Thus, minimizing
the probability of application failure when it is initially scheduled
can help alleviate these overheads.

In general, our contribution is the following. We extend bi-
objective scheduling considering reliability and makespan for
arbitrary failure distributions, including the uniform and Weibull
distributions. This is important in practice because actual systems
behave according to such laws, andmost existingworks are limited
to exponential failure distributions.

In particular, whether the reliability and makespan are oppos-
ing depends on the form of the law. For the case of DFR distri-
butions, we prove that it is impossible to improve one criterion
without degrading the other. This relationship between both ob-
jectives implies that the problem cannot be approximated by a
single schedule. In this configuration, we provide an algorithm to
compute an approximation set for the Pareto-optimal solutions.
For IFR distributions, we show that when processors are identical,
the relationship between the objectives changes. They are congru-
ent, leading to optimal policies with respect to both objectives for
identical processors. We show that the problem can be efficiently
solved by classical list scheduling algorithms for many commonly
used failure distributions, such as the Weibull distribution. Simu-
lations and experimentations under different configurations show
that LPT is a good list scheduling that optimizes the completion
time and reliability as well.

The organization of this paper is as follows. We review in Sec-
tion 2 the main existing results related to our work. Sections 3 and
4 describe respectively the problem statement and the mathemat-
ical tools and theorems. We develop in Sections 5 and 6 the the-
oretical contributions for the DFR case and IFR case as well. We
present in Section 7 the simulations and experiments conducted
in this study. Finally, we conclude this paper in Section 8 with a
brief summary and look at future work.

2. Related work

We recall first some classical results in scheduling. Then, we
present and discuss fault-tolerance issues related to our problem.

2.1. Classical results in scheduling

In what follows, we will use the classical three-field nota-
tion [15] α|β|γ for denoting a scheduling problem. P∥Cmax is the
basic scheduling problemwhere the parallel platform is composed
ofm identical processors and the application is a set of n indepen-
dent and arbitrary tasks. The objective is to determine the optimal
schedule that minimizes themaximum completion time of the ap-
plication, i.e., the makespan denoted by Cmax. As shown in [11],
P∥Cmax is an N P -complete (N P -hard) problem. Hochbaum et al.
[18] provided a polynomial time approximation scheme (PT AS)
to solve the problem. However, the computational complexity of
such a solution is very expensive; hence this result has only a
theoretical interest. For the general case of scheduling a prece-
dence task graph, Graham [14] introduced a greedy list algorithm
with low linear computational complexity that provides a schedule
within a factor of 2 from the optimal schedule.Moreover, he proved
that the schedule obtained using the largest processing time (LPT)
priority rule is within a factor 4

3 −
1
3m from the optimal.

The second related scheduling problem is Q |prec|Cmax, which
generalizes from the previous case (withm uniform processors) to
processors with different speeds. si denotes the compute rate of
processor i. Liu et al. showed in [24] that the approximation ratio
of any greedy list scheduling is in O


1+maxi si/mini si−maxi si/m

i=1 si

. Thus, the performance ratio of list scheduling is not

bounded. Jaffe showed that if the ratio between the fastest and
the lowest processor is bounded by O


1/
√
m


, the approximation

ratio can be bounded by O
√

m

[20]. Finally, Chekuri et al. pro-

vided an algorithm to transform the input instance that produces
a schedule within a factor O (logm) [8].

The third scheduling problem related to our study is less pop-
ular: P∥

m
j=i g(Ci) where Ci is the maximum completion time on

processor i and g : R→ R is a positive increasing function. Consid-
ering the particular function g(x) = x2, Chandra et al. showed that
LPT is within a factor 25/24 from the optimal schedule [7]. Then,
they extended their analysis to prove that for any function g(x) of
the form xc (such that c is a fixed positive constant) LPT provides a
schedule within a bounded approximation ratio that depends on c.

Finally, Alon et al. provided a PT AS for P∥
m

j=i g(Ci) [1] for
any function g satisfying the two following conditions:
1. g(x) is an increasing and convex function over R∗

+
.

2. ∀ϵ > 0, ∃ δ > 0 whose value depends only on ϵ such that g(x)
satisfies:

∀x, y ≥ 0, (1− δ)x ≤ y ≤ (1+ δ)x
⇒ (1− ϵ)g(x) ≤ g(y) ≤ (1+ ϵ)g(x). (1)

The second condition claimed by this theorem stands that for any
constant ratio between the image (here the ratio is 1 + ϵ) the
ratio between the points x and y should be bounded by a constant
(the constant is 1 + δ) and this constant should be independent
from x and y values. For instance the functions g(x) = x, g(x) =
xc, and g(x) = max{1, x} fulfill both conditions. They also proved
that LPT has a bounded approximation ratio for any arbitrary
function g that satisfies those conditions.

2.2. Fault-tolerant scheduling

Themain approach for fault tolerance is to duplicate tasks in or-
der to increase the reliability of the schedule. In thisway,Malewicz
considered an application composed of a chain ofn sequential tasks
executed on m processors [27]. In the failure model of that work,
task j has a probability of failure qij if it is executed on proces-
sor i. The author showed that minimizing the expected makespan
is N P -complete even if the tasks are independent. Moreover the
general problem is inapproximable within a factor lower than 5/4
unless P = NP . Considering the same model, Rajaraman et al. de-
signed several approximation algorithms [23]. First,when the tasks
are independent, they provided an O (log n) approximation. Then,
when the application is composed of disjoint chain tasks, they
proposed an O (log n logm log(n+m)/ log log(n+m)) approxi-
mation and finally an O


log2 n logm log(n+m)/ log log(n+m)


approximation when the precedence task graph is an oriented
forest.

M.S. Bouguerra et al. / J. Parallel Distrib. Comput. 74 (2014) 2411–2422 2413
Jeannot et al. considered another way for tackling the fault-
tolerance problem in [22]. They studied the problem Q∥(Cmax, R)
where the objectives are the minimization of the makespan and
at the same time the maximization of the reliability without du-
plication. Failures occur according to an exponential distribution
where each processor has its own failure rate. In that work, the
authors considered several application models. First, for a set of
independent tasks, they showed that both objectives (makespan
and reliability) are antagonistic, i.e., one cannot improve one met-
ricwithoutworsening the other. Thus, it is impossible to determine
a schedule that optimizes both themakespan and the reliability si-
multaneously. To overcome this problem, they proposed two ap-
proximation algorithms for computing an approximate set of the
solutions on the Pareto-front1 since the cardinality of this set is
exponential (the approximation here is on the polynomial num-
ber of solutions). Finally, they proposed a list scheduling algorithm
to schedule tasks with precedence constraints. This greedy algo-
rithm prioritizes the processors that maximize the ratio between
the failure rate and the execution speeds. As no theoretical guaran-
tee could be established in this case, they assessed this algorithm
with extensive experiments.

In the context of embedded systemGirault et al. [13] considered
a novel multi-objective problem. In the latter work instead of opti-
mizing the classical reliability criteria they target the global failure
rate of the application. Here the application is modeled by a DAG
of tasks with precedence constraints. This application is executed
on a set ofm heterogeneous processors. Each processor has it own
failure rate and computing rate. Again the failure rate is supposed
to be constant. The authors proposed a scheduling algorithm that
runs in an O


nm2


where n is the number of tasks in the DAG. This

algorithm computes a schedule with an optimal completion time
and that verifies a threshold relative to the global failure rate. This
work provides a good solution but for small platformswith limited
processors number.

Recently Assayad et al. [3] proposed a tricriteria heuristic to
tackle a multi-objective problem where the target is to minimize
the maximum completion time, the power consumption andmax-
imize the reliability. The proposed heuristic uses the active replica-
tion of the operations and the data dependencies between tasks to
increase the reliability of the schedule. Also it uses dynamic volt-
age and frequency scaling to lower the power consumption. This
heuristic takes as inputs servers constraint on the three criteria
and it produces a set of non-dominated Pareto solutions allowing
the user to choose the solution that best meets his/her application
needs.

3. Problem statement and notations

In this paper, we analyze the problem of scheduling of parallel
applications on a set Q of m uniform processors. The twofold
objective is to minimize the application makespan and maximize
the application reliability. Formally, we consider that the parallel
application is represented by a set T of n independent tasks. Each
task j is composed of pj units of work. As introduced in [15], the
uniform processors are described by their execution rates per time
unit denoted by si. The completion time of task j on processor i is
given by pij = pj/si.

Typically, a scheduleS is composed of two applications, namely,
the space allocation function π and the temporal allocation func-
tion σ . π is a mapping from the set of tasks T to the processors Q
defining for each taskwhere itwill be processed.σ is an application
from the set of tasks T to R+ that determines for each task when

1 The notion of the Pareto-frontwill be explained later. Intuitively, it corresponds
to the set of the best solutions that compromise among different opposing metrics.
it will start its execution. In this paper, we denote by V the set of
valid scheduleswhere no processor executesmore than one task at
the same time, and each task is executed by at least one processor.
Moreover, we assume that a task cannot be preempted by other
tasks (this means that as soon as a task starts its execution, it can-
not be preempted by another task until the end of its completion).

Regarding the failure model, we consider that all processors
have the same failure distribution denoted by F , such that F(t)
is the probability a failure occurs in the interval [0, t] on a given
processor.

We note that those assumptions concerning the failure distri-
bution and the uniformity of the processors fit perfectly with the
context of the volunteer computing. In recent work [21] authors
designed a methodology to discover individual hosts’ distribution.
The authors go on fit probability distributions to the availability
durations of these hosts. They find out that they can classify 20%
(about 35686 workers) of BOINC platform [2] workers into 6 clus-
ters of workers with the same failure distribution and uniform
speed.

Concerning the applicationmodel where tasks are independent
and CPU-bound jobs, reflects the tasks found in the context of
volunteer computing systems, such as those in the Grid Workload
Archive [19] or BOINC [10]. The objective is to determine a schedule
S that minimizes the application makespan CS

max with a maximal
reliability denoted by R(S). In the remainder of this paper, we
denote by CS

i = maxj∈T|i=π(j){σ(j) + pij} the completion time of
the last task on the processor iwith respect to schedule S. The first
objective is given formally by CS

max = maxi∈Q{CS
i }.

Any failure occurring during the execution of the application
leads to an infeasible schedule. Thus, the reliability of a schedule
is given by the probability that no failure occurs on any processor
during the entire execution. More formally, consider a schedule S
with the probability that no failure occurs on processor i during the
interval [0, CS

i] (F(CS
i)), the reliability R of S is given by

R(S) =

m
i=1

F(CS
i). (2)

Alternatively, we define the unreliabilityR of S byR(S) = 1−m
i=1 F(CS

i).
Given that the logarithm function is a strictly increasing func-

tion, themaximization (or theminimization) of any arbitrary func-
tion is equivalent to the maximization (or minimization) of the
logarithm of this function. Thus, in the remainder of this work
rather than maximizing the classical objective function of the re-
liability given in Expression (2), we consider the maximization
(respectively the minimization) of the logarithm of the reliability
denoted by Rl (respectively Rl):

max
S∈V

R(S) = max
S∈V

m
i=1

F(CS
i) ≡ max

S∈V
Rl(S)

= max
S∈V

m
i=1

log F(CS
i). (3)

As will be shown in the next section, this new objective func-
tion has many useful mathematical properties that simplify signif-
icantly the problem.

4. Mathematical preliminaries

As a starting point before analyzing the multi-objective
problem, we examine each single-objective problem separately.
As indicated in Section 2, optimizing the application makespan is
a well-known problem that has been extensively studied. On the
contrary, there exist only a few results concerning the optimization
of reliability. Several questions are still open, such as how to
determine the computational complexity of the problem or how

2414 M.S. Bouguerra et al. / J. Parallel Distrib. Comput. 74 (2014) 2411–2422
to design an optimal (or at least efficient) scheduling strategy for
arbitrary failure distributions.

In what follows, we present several mathematical properties
of the reliability objective function that allow us to determine the
complexity of the problem and also to design optimal or approxi-
mation scheduling algorithms. As shown in Expression (3), the re-
liability objective function is based on a function that describes
failure arrivals. Typically, several functions may be suitable for de-
scribing the failure arrivals. Barlow et al. [4] provided a survey
about the properties and the usability of the different mathemat-
ical functions used for modeling failure arrivals. In this paper, we
use the failure distribution function denoted by F(t) and the fail-
ure rate function denoted by λ(t). These two functions are linked
by the following expression:

F(t) = e−
 t
0 λ(u)du. (4)

The distributions forwhichλ(t) is increasing in t are denoted by IFR
(Increasing Failure Rate), or by DFR (Decreasing Failure Rate) when
λ(t) is decreasing [4]. The elementary property used throughout
this work is the log-convexity (respectively log-concavity) of DFR
distributions (respectively IFR distributions).

Additionally, we will use several Schur-convexity (Schur-
concavity) theorems from the theory of majorization [28].

Majorization is a partial order relation between vectors of real
numbers, which applies only to vectors having the same sum.
A Schur-convex function preserves the order of majorization be-
tween the vectors.

Considering two vectors x, y ∈ Rn. In this work, we use the
notation x(1) to indicate the largest element in x and x(2) to indi-
cate the second-largest element, and so on. Also we use x[k] to de-
note the kth smallest element in x. By definition, the vector x is
majorized by y and denoted by x ≺ y if and only if
k

i=1

x(i) ≤

k
i=1

y(i), k = 1, 2, . . . , n and
n

i=1

xi =
n

i=1

yi.

Similarly to majorization, weak majorization is a partial order
between vectors without the second condition about the equality.
We have x is weakly super-majorized by y and denoted by x≺w y
if and only if
k

i=1

x(i) ≥

k
i=1

y(i), k = 1, 2, . . . , n.

Intuitively, if x majorizes y, then y is more mixed than x. This can
be used on the scheduling theory as follows. Suppose that x and
y are the completion time vectors of the different processors. A
given scheduling where all the processors have the same comple-
tion time like Fig. 1(a) is majorized by all the other schedules’ con-
figurations. Equivalently to that a scheduling with an unbalanced
or mixed completion time like Fig. 1(b) weakly super-majorizes
any other schedule.

The main theorem used in this work is Theorem (3.A.8) in [28].
It states that if f is a Schur-convex and decreasing function then
∀x, y ∈ Rn and x≺w y (x is weakly super-majorized by y) we have
f (x) ≤ f (y). Under either assumption, it is possible to obtain sev-
eral dominating strategies that optimize the reliability objective.

Let cS
= (CS

1 , . . . , CS
m) denote the vector of processor comple-

tion time of schedule S. Recall that C(k) denotes the kth largest
completion time and C[k] the kth smallest one. Therefore, C[m] ≤
C[m−1] ≤ · · · ≤ C[1] similarly C(1) ≤ C(2) ≤ · · · ≤ C(m).

Theorem 1. The objective function Rl(S) =
m

i=1 log F(CS
i) is

Schur-convex (resp. Schur-concave) if F is DFR (resp. IFR).

Proof. Based on Theorem (4.1) in [4] the function log F(x) is con-
vex (resp. concave) and decreasing (resp. increasing) if F is a DFR
(resp. IFR) distribution.
As a corollary of Theorem (3.A.8) [28], the function Rl(S) =
m

i=1
log F(CS

i), is Schur-convex (resp. Schur-concave). �

Theorem 1 reveals a dominating scheduling strategy depending
on the nature of the failure rate. When F is a DFR distribution, the
objective function is Schur-convex. Thus, the optimal scheduling
strategy is to allocate all the tasks to the fastest processor. This
results in the most skewed distribution of tasks across processors
in terms of completion time (as all tasks are assigned to a single
processor) as depicted in Fig. 1(b). If F is IFR, the optimal scheduling
strategy leads to a well-balanced distribution of tasks across
processors in terms of completion time since the objective function
is Schur-concave as shown in Fig. 1(a). The formal proofs of these
two properties are detailed in the next sections.

5. DFR distributions

We consider in this section the case where the failure distribu-
tion of processors has a decreasing failure rate. First we focus on
the single-objective problem and we show that optimizing the re-
liability is a polynomial problem when the failure rate is decreas-
ing. Thenwe study the bi-objective problem andwe prove that the
makespan and the reliability are antagonistic objectives. Finally,
we present an approximation methodology that provides a set of
approximated Pareto-optimal solutions.

5.1. Optimizing the reliability

Theorem 2. The schedule S1 that allocates all the tasks to the fastest
processor is optimal for the problem Q∥Rl for arbitrary DFR distribu-
tions.

Proof. Consider an application that containsW units ofwork
n

j=1
pj = W .

The completion time vector of S1 is given by cS1 = (0, . . . ,
0, W

s1
).

Let c be an arbitrary valid completion time vector.
By construction, the partial sum of C(i) and CS1

(i) verifies

∀k < m,

k
i=1

C(i) ≥

k
i=1

CS1
(i) = 0,

where C(i) is the ith element in c considering an increasing order.
For k = m, let Wi = Cisi denote the amount of work allocated

to processor i.
Thus, we have:

m
i=1 C(i) ≥

m
i=1

Wi
s1
=

W
s1
. This implies that:

c≺w cS1 .
We recall thatwhen F isDFR,Rl(c) is a Schur-convexdecreasing

function. Thus applying Theorem (3.A.8) [28], we obtain

c≺w cS1 ⇒ Rl(c) ≤ Rl(cS1). �

According to our knowledge, this is the first result showing
that optimizing the reliability without taking into account the
makespan is polynomial for any arbitrary DFR failure distribution.

5.2. Bi-objective optimization

Consider now the bi-objective problem. Theorem 2 states
that optimizing the makespan and the reliability are antagonistic
objectives, since the makespan of a schedule with an optimal
reliability could be arbitrarily far from the optimal makespan.

To illustrate this point, let us consider the following instance:
m identical processors, n identical tasks withm = n and aWeibull
distribution of the form F(x) = e−x

β
with β < 1 (which is DFR).

For this instance, the best makespan that can be achieved is 1. The
corresponding reliability of this schedule is e−m. On the other hand,
the optimal schedule for the reliability has a makespan of m and a

M.S. Bouguerra et al. / J. Parallel Distrib. Comput. 74 (2014) 2411–2422 2415
(a) Balanced completion time configuration. (b) Unbalanced completion time configuration.

Fig. 1. Gantt chart of scheduling configurations.
reliability e−m
β
. Therefore it is clear that the performance ratio is

m for the makespan and em
β
−m for the reliability.

This implies that optimizing one objective will lead to the de-
terioration of the other by an unbounded factor. There is no con-
cept of an absolute optimal solution here. Moreover, since we aim
at optimizing simultaneously more than one objective, we cannot
establish an absolute order between the solutions. This brings us to
another question: is it possible to design scheduleswith a guaranty
on both objectives? One possible answer is to use multi-objective
optimization techniques that are recalled below.

Since there is no absolute order between the different solutions,
a partial order called the Pareto-dominance is used to distinguish
the best solutions. More precisely, if a solution is better than
another one in both objectives, it is said that this solution Pareto-
dominates the latter. In the remainder of this paper, we call the
Pareto-optimal set (also called the Pareto-front) the set of all
Pareto-dominating solutions. It is denoted by P∗. However, most of
the time it is inconceivable to compute all the Pareto-dominating
solutions mainly for two reasons. Typically the single-objective
optimization problem is oftenN P -complete. (It is for instance the
case forminimizing themakespan.) Furthermore, the cardinality of
such a set is often exponential. As it will be shown later in our case
study, both reasons stand. Given those difficulties, the alternative
is to design approximation algorithms that compute in polynomial
time an approximation set denoted by P∗a . This set approximates
all the valid solutions in P∗ and verifies that for any Pareto-optimal
schedule S∗ ∈ P∗ it corresponds necessarily to an approximation
solution S ∈ P∗a within a constant factor from S∗.

Definition 1. Let ρ1 and ρ2 be two real numbers such that 1 ≤
ρ1, 1 ≤ ρ2. The approximation Pareto-optimal set P∗a is called a
⟨ρ1, ρ2⟩-approximation if and only if for any valid Pareto-optimal
schedule S∗ ∈ P∗ it corresponds to an approximation solution
S ∈ P∗a that verifies the following approximation bounds CS

max ≤

ρ1CS∗

max and Rl(S
∗) ≤ ρ2Rl(S).

In other words, this notation represents the approximation ra-
tios related to each objective separately. An efficientmethod to ap-
proximate the Pareto-optimal set was proposed by Papadimitriou
and Yannakakis [31]. This method is composed of two following
steps.

In the first step we have to construct a ρ2-approximation of the
second objective (in our case the reliability) constrained by a fixed
threshold τ on the first objective (themakespan in our case). Before
presenting the second step, we point out the following definition.

Definition 2. Given a threshold τ , we call a ⟨ρ1, ρ2⟩-APPROX an
algorithm that computes a solution S satisfying the following con-
ditions:

1. The maximum completion time verifies ρ1CS
max ≤ τ .

2. For any Pareto-optimal solution S∗ ∈ P∗with amaximum com-
pletion time verifying CS∗

max ≤ τ the algorithm returns a solution
S verifying Rl(S

∗) ≤ ρ2Rl(S).

This means in our case that the ⟨ρ1, ρ2⟩-APPROX provides a
solution within a factor ρ2 from the reliability and a factor ρ1 from
themakespan of any Pareto-optimal solutionwith amakespan less
than the threshold τ .

Then, in the second step, we use this ⟨ρ1, ρ2⟩-APPROX with
successive values of thresholds τ1 · · · τk between lower and upper
bounds (Lb and Ub, respectively) as indicated in Algorithm 1. Then
we obtain a ⟨ρ1 + ϵ, ρ2⟩-approximation of the Pareto-optimal set.
As a result, the cardinality of the approximated Pareto-optimal set
depends essentially on thenumber of iterations kwhich is bounded
by O


log1+ϵ/ρ1

(Ub/Lb)

. Let us notice that the quantity log1+ϵ/ρ1

(Ub/Lb) which represents the cardinality of P∗a is polynomial, since
in our contextUb/Lb is the ratio between the optimal and theworst
makespan. Thus, the computational complexity of Algorithm 1 is
polynomial if the complexity of ⟨ρ1, ρ2⟩-APPROX is polynomial as
well.

Algorithm 1 Approximation Algorithm of the Pareto-optimal set
[31]

function <ρ1 + ϵ, ρ2>-APPROX(ϵ, ρ1, ρ2,Ub, Lb)
k← 0
P∗a ← ∅
while k ≤ ⌈log1+ϵ/ρ1

(Ub/Lb)⌉ do
τk ← (1+ ϵ/ρ1)

kLb
Sk ←< ρ1, ρ2 >-APPROX(τk)
P∗a ← P∗a ∪ Sk
k← k+ 1

end while
return P∗a

end function

5.3. Case of unitary tasks

We consider here the specific case where the application is
composed of independent and unitary tasks. The input instance
is given by the number of tasks n, the processor speed vector
(s1, . . . , sm), and the failure distribution F . The first question ad-
dressed here concerns the cardinality of the Pareto-optimal solu-
tions.

Theorem 3. The cardinality of the Pareto-optimal set is exponential
in the size the instance for the problem 2|pi = 1|(Cmax, Rl) when F is
DFR.
Proof. Let us consider the following instance: 2n unitary tasks,
2 identical processors and a failure distribution with a strictly
decreasing failure rate (for instance, a Weibull distribution with a
shape parameter strictly less than 1). Notice that in this case the
function g(x) = log F(x) is a strictly convex function.

Since the tasks are unitary, scheduling strategies are simply
characterized by the number of tasks assigned to the first or to the
second processor.

Let Sj denote the scheduling strategy that schedules 2n− j+ 1
tasks on processor 1 and j− 1 on processor 2.

For each j and δ verifying 1 ≤ j ≤ n+1 and1 ≤ δ ≤ n−j+1, it is
clear that themakespan of Sj+δ is strictly better that themakespan
of Sj:

C
Sj+δ
max < C

Sj
max. (5)

2416 M.S. Bouguerra et al. / J. Parallel Distrib. Comput. 74 (2014) 2411–2422
Based on the strict convexity inequality, the reliability of Sj+δ is
strictly less than the reliability of Sj:

Rl(Sj) = g(2n− j+ 1)+ g(i− 1) > g(2n− j− δ + 1)

+ g(j− 1+ δ) = Rl(Sj+δ). (6)

Inequalities (5) and (6) imply that each Sj is a Pareto-optimal
solution.

Thus we have an O (n) Pareto-optimal solution while the en-
coding of the input instance is in O (log n).

Therefore, the cardinality of the Pareto-optimal front is expo-
nential in the function of this encoding. �

Despite this somehow negative result, it is possible to enumer-
ate all the Pareto-optimal solutions for reasonable values of n. But
such an operation could become costly for a large value of n, for in-
stancewhen the number of tasks is exponential with respect to the
number of processors n = O (2m). In what follows, we propose an
algorithm to enumerate all the Pareto-optimal solutions or to com-
pute an approximation set of the Pareto-optimal set for very large
values of n.

The proposed algorithm is based on the approximationmethod-
ology proposed by Papadimitriou and Yannakakis [31]. First we
design the ⟨ρ1, ρ2⟩-APPROX algorithm. Then using this algorithm
with different values of threshold a ⟨ρ1+ϵ, ρ2⟩-approximation set
is provided.

For the unitary job case we provide a ⟨1, 1⟩-APPROX. Recall
that when the distribution is DFR the objective function is Schur-
convex. Then the main idea is to schedule tasks in such a way
that the completion time vector is mixed enough to weakly super-
majorize any other scheduling. To obtain such a schedule the idea
is to allocate as many jobs as possible to the fastest processors. Of
coursewe recall that themaximum completion time should be less
than the threshold τ . We propose Algorithm 2 to achieve this using
a greedy scheduling approach. Let wi denote the amount of work
allocated to processor i. The first step is to sort the processors in
decreasing order according to the speed si. Then, each processor
will receiveMin (n− A, ⌊τ si⌋).We note that A denotes the number
of the already scheduled tasks. Algorithm 2 is a ⟨1, 1⟩-APPROX
that returns a schedule within a factor 1 from the threshold τ and
with a reliability better than any other schedule with a maximum
completion time less than τ .

Algorithm 2 Scheduling unitary tasks for DFR distributions

function <1̄, 1>-APPROX(τ , n, Q)
A← 0 ◃ Number of scheduled tasks
for i← 1 tom do ◃ Processors are sorted according to

decreasing order of their si
wi ← 0
if A < n then

wi ← Min (n− A, ⌊τ si⌋) ◃ Amount of work allocated
to i

end if
A← A+ wi

end for
if A==n then

return w ◃ Vector of workload allocated to each
processor

end if
return Error ◃ No feasible solution for the constraint τ

end function

The correctness proof of this algorithm is given in two separated
theorems. First in Theorem 4 we propose a workload transfer rule
and we show that this rule improves the reliability of the input
schedule. Then in Theorem 5 we show that the output schedule
of Algorithm 2 could be obtained by successive iterations of the
workload transfer rule.
Workload transfer rule. Consider two processors i and i′ such that
processor i is faster than processor i′. Let us consider any arbi-
trary schedule S in which we transfer δ units of workload from
the slower to the fastest processor. This transfer should verify that
the new makespan of processor i is greater or equal to the new
makespan of processor i′. Transferring workload according to this
rule leads to a new completion time scheduling vector that weakly
super-majorizes the initial schedule vector. Thus this leads to a
new schedule with a better reliability when F is DFR since the ob-
jective function is Schur-convex.

Theorem 4. Consider a completion time vector c of an arbitrary
schedule and two arbitrary processors i and i′ satisfying si′ < si. Let δ
represent the amount of workload to transfer from processor i′ to pro-
cessor i. This will produce the completion time vector ĉ = (Ĉ1, . . . ,
Ci + δ/si, . . . , Ci′ − δ/si′ , . . . , Cm) such that Ci′ − δ/si′ ≤ Ci + δ/si.
Then c and ĉ satisfy c≺w ĉ.

The proof of this theorem is based on a case by case analysis.
Details appear in the Appendix at the end of the paper. This
theorem states that the proposed workload transfer operation
leads to a newcompletion time vector thatweakly super-majorizes
the initial vector. Since the reliability objective function is Schur-
convex when F is DFR, the reliability of the new schedule is better
than the initial one. Based on this result, we are able to extend
the scheduling algorithm proposed by Jeannot et al. [22] to more
general cases, taking into account any failure distributions with a
decreasing failure rate.

In the following theorem we show that Algorithm 2 verifies
Definition 2 where ρ1 = ρ2 = 1.

Theorem 5. If there exists a valid schedule with a makespan Cmax ≤

τ , then Algorithm 2 produces a valid schedule Ŝ such that Ĉmax ≤ τ

and ∀S ∈ V | CS
max ≤ τ , Rl(S) ≤ Rl(Ŝ).

Proof. First, note that if the algorithm does not return a solution
there is no valid schedule satisfying Cmax ≤ τ .

Second, if the algorithm returns a solution Ŝ, this solution
verifies the following:
1. By construction the completion time of this algorithm verifies

Ĉmax ≤ τ . Recall that each processor receives at most ⌊τ si⌋.
2. The reliability of Ŝ is greater or equal to the reliability of any

schedule S that satisfies Cmax ≤ τ .
To prove item 2 we show that it is possible to transform any
arbitrary schedule to Ŝ using the workload transfer rule according
to Theorem 4.

Consider an arbitrary schedule S ∈ V that verifies Cmax ≤ τ .
By construction the makespan of processor i in S and Ŝ verifies

the following relation Ci ≤ Ĉi, since each processor in schedule Ŝ
is loaded to the maximum if there is enough workload.

In this case processor i received less work in schedule S than in
schedule Ŝ.

This amount ofwork is assigned to a processor i′which is slower
than i since by construction all the processors faster than i are fully
loaded.

Based on Theorem 4, transferring some load from processor i′

to processor i such that Ĉi = Ci + δ/si = ⌊τ si⌋ will necessarily
increase the reliability.

Finally, let us notice that this algorithm is deterministic. There-
fore after a set of transfers of workload starting from the fastest
processor, it produces necessarily the schedule Ŝ. �

Using this ⟨1̄, 1⟩-APPROX with Algorithm 1, we are able to
provide a ⟨1+ ϵ, 1⟩-approximation of the optimal Pareto-optimal
set. This is obtained by increasing the constraint τ from Lb = C∗max
to Ub = n/s1. C∗max is computed in polynomial time since the tasks
are unitary [6]. The computational complexity of this algorithm is
O


m logm+m log1+ϵ(n/ν1)


which is linear with respect to the

encoding of the input instance. It is worth noting that when ϵ = 0
this algorithm enumerates all of the Pareto-optimal solutions.

M.S. Bouguerra et al. / J. Parallel Distrib. Comput. 74 (2014) 2411–2422 2417
5.4. Arbitrary tasks

We analyze in this section the general case where the tasks are
of arbitrary size. The input instance of the problemare the tasks’ set
T and their sizes in terms of amount of work (p1, p2, . . . , pn), the
processors’ set Q and their speeds (s1, s2, . . . , sm) and the failure
distribution function F .

Theorem 6. The cardinality of the Pareto-optimal set of the problem
Q∥(Cmax, Rl) is exponential in the size of the input.

Proof. Let us consider the following instance:
• n tasks defined by pj = 2j−1 for 1 ≤ j ≤ n.
• 2 identical processors.
• Failure distribution with a strictly decreasing failure rate

(Weibull distribution with a shape parameter equal to 1
2).

We note that, for this instance there are 2n−1 schedules with a
different makespan ranging in 2n−1

≤ Cmax ≤ 2n.
LetSj be the family of schedules that allocate 2n

−j units ofwork
on processor 1 and j units of work on processor 2 for 0 ≤ j ≤ 2n−1.

Using the same exchange argument as in Theorem 3, we verify
easily that each Sj is a Pareto-optimal solution.

Thus, the cardinality of the Pareto-optimal set is in O (2n). �

Unlike the proof presented by Jeannot et al. [22] for the
particular case of exponential distribution, this theorem indicates
that the cardinality of the Pareto-optimal set is exponential even
for 2 identical processors. Therefore, enumerating all the Pareto-
optimal solutions is too costly for reasonable instances. As for
the case of unitary tasks, we design an approximation algorithm
to approximate the Pareto-optimal set using the methodology as
before. The proposed algorithm is based on the classical greedy
list scheduling strategy. The principle is to schedule first as many
of the largest tasks on the fastest processors as possible such that
the maximum completion time meets a given threshold. Note that
there is nopolynomial algorithm for scheduling optimally arbitrary
tasks unless P = NP [12]; thus unlike the first case the target
threshold considered is 2τ . Contrary to the case where tasks are
unitary we provide a ⟨2 + ϵ, 1⟩-approximation of the Pareto-
optimal set. The proposed approximation algorithm is based on the
classical list scheduling that achieves a 2-approximation.

Algorithm 3 Scheduling arbitrary tasks for DFR distribution

function <2̄, 1>-APPROX(τ , T, Q)
j← 1
i← 1
Sort pj and si in decreasing order
∀i ∈ Q, Ci ← 0
while j ≤ n do

if Ci ≤ τ then
π [j] ← i
σ [j] ← Ci
Ci ← Ci +

pj
si

j← j+ 1
else i← i+ 1
end if
if i > m then

return Error ◃ No feasible solution for the threshold τ
end if

end while
return π, σ

end function

As indicated in Algorithm 3 the principle is to schedule first the
largest jobs on the fastest processors such that the makespan of
the schedule is less than 2τ . Algorithm 3 is a ⟨2, 1⟩-APPROX that
produces a schedule with a makespan less than 2τ and a reliability
better than any other schedule with a makespan less than the
threshold τ .

Theorem 7. If there exists a valid schedule verifying Cmax ≤ τ , then
Algorithm 3 produces a valid schedule Ŝ verifying Ĉmax ≤ 2τ and
∀S ∈ V | CS

max ≤ τ , Rl(S) ≤ Rl(Ŝ).

Proof. Firstly we show by contradiction that Algorithm 3 returns
at least one valid solution or there is no valid schedule with a
makespan less than τ .

Suppose by contradiction that there exists a valid schedulewith
a Cmax ≤ τ and Algorithm 3 does not return a valid solution.

This implies that there exists a task j′ scheduled on processor i′

at a time less or equal to τ such that Ĉi′ > 2τ .
Therefore, the amount of work of this task verifies pj′/si′ > τ .
We recall that the proposed algorithm schedules first the

biggest tasks on the fastest processor.
Therefore, in a valid schedule whose makespan verifies Cmax ≤

τ , the job j′ could not be scheduled on any processor slower than
processor i′ since the amount of work of job j′ satisfies pj′/si′ > τ .

We recall also that all the processors fastest than processor i′
have a makespan greater than τ .

Hence in any valid schedule verifying Cmax ≤ τ , j′ should be
scheduled on i′.

Thus, there is no valid schedule that verifies Cmax ≤ τ .
Secondly, we show that the reliability of the provided sched-

ule Ŝ is better than the reliability of any valid schedule S with a
Cmax ≤ τ .

In what follows we show that it is possible to transform S to Ŝ
according to the workload transfer rule as in Theorem 4.

Recall that by construction, Algorithm 3 returns a schedule Ŝ
such that there exists an index k ≤ m where
• The makespan of the k fastest processors satisfies 1 ≤ i ≤ k,

Ĉ[i] > τ .
• The makespan of processor k+ 1 satisfies Ĉ[k+1] ≤ τ .
• The makespan of all the remaining processors satisfies k+ 1 <

i ≤ m, Ĉ[i] = 0.

The transformation of S to Ŝ is done as follows:
• The k fastest processors of Ŝ are filled by transferring works

from them− k slowest processors in S.
• For the (k + 1)th fastest processor there are two cases to con-

sider.
1. The makespan satisfies Ck+1 < Ĉk+1; thus we transfer all the

remaining work of them− k slowest processors in S to pro-
cessor k+ 1.

2. The makespan satisfies Ck+1 > Ĉk+1; the extra amount of
work of processor k + 1 has been allocated to a faster pro-
cessor since by construction Ĉi = 0 for all i > k.

Based on Theorem 4 all those operations increase necessarily the
reliability. �

Using this algorithm with the methodology proposed by Pa-
padimitriou and Yannakakis [31], we provide a ⟨2+ ϵ, 1⟩-APPROX
algorithm for solutions in the Pareto-optimal set. In this case, the
lower bound is given by max{

n
j=1 pj/

m
i=1 si, pmax/s1} and the

upper bound remains the same
n

j=1 pj/s1.
Hence, the cardinality of the approximation set is bounded by

O

log1+ϵ(

n
j=1 pj/s1)


, and the computational complexity of the

algorithm that computes the ⟨2+ ϵ, 1⟩-approximation is bounded
by O


m logm+ n(log n+ log1+ϵ(

n
j=1 pj/s1))


.

6. IFR distributions

We consider in this section the second configuration where the
distribution F is IFR. This class containsmany important probability
distributions including the Weibull law with a shape parameter

2418 M.S. Bouguerra et al. / J. Parallel Distrib. Comput. 74 (2014) 2411–2422
greater than 1. The first question addressed in this section concerns
the complexity of each single-optimization problem.

6.1. Complexity analysis

Theorem 8. The problem P∥Rl is N P -complete for some IFR distri-
butions.
Proof. We recall that when the failure rate is increasing g(x) =
− log F(x) is a convex increasing function.

In this case the same problem is similar to the problem intro-
duced in [1] if we consider for instance aWeibull distribution with
a shape parameter equal to 2 (g(x) = x2). �

Theorem 8 points out that unlike the case for DFR distributions,
for IFR distributions, optimizing the reliability is an N P -complete
problem even when the processors are homogeneous in terms of
computing speeds. However, this is not discouraging, because the
objective function

m
j=1− log F(Ci) is Schur-convex. In fact, based

on Theorem (3.A.8) [28] the objective function is optimized when
all Ci arewell-balanced if processors are identical. This implies that
the makespan and the reliability are congruent objectives, i.e., one
can improve the makespan while at the same improve reliability.

6.2. Unitary tasks

We consider in this subsection the case where the tasks are
unitary. We recall that according to the finding in Theorem 8, the
optimal schedule is the most well balanced one. Thus intuitively
one can have such a schedule using the classical list scheduling.
Consider that the application is composed of n tasks such that
n = αm + r . Using the list scheduling we will have r processors
loaded with α+ 1 tasks andm− r processors loaded with α tasks.

In the next theorem we show that this algorithm produces a
schedule Ŝ with the best balanced completion time vector denoted
by ĉ that maximizes the reliability. Recall that Rl = 1−R repre-
sents the unreliability of the schedule.

Theorem 9. The problem P|pj = 1|(Rl, Cmax) is polynomial.
Proof. We show that the vector ĉ satisfies: ĉ ≺ c, where c is any
valid arbitrary completion time vector of a valid schedule S ∈ V.

Suppose by contradiction that the relation ĉ ≺ c does not hold.
• First case:

∃k ≤ r |
k

i=1

C[i] <
k

i=1

Ĉ[i]. (7)

Then
k

i=1 C[i] < k(α + 1) ⇒ C[k] ≤ α (since there exists a
processor loaded more than α + 1).
Therefore, ∀i | k < i ≤ m, C[k] ≤ α ⇒ C[i] ≤ α.
In this case the sum of workload on the remaining processors is
given by

m
i=k+1

C[i] ≤ (m− k)α. (8)

Thus inequalities (7) and (8) imply
m
i=1

C(i) < r − k+ αm.

This leads to the desired contradiction since r − k− 1 tasks are
none scheduled in S.
• Second case:

∃k, |r < k ≤ m,

k
i=1

C[i] <
k

i=1

Ĉ[i]. (9)

Therefore using the same argument C[k] < α (since there exists
at least one processor loaded more than α otherwise we have
the equality).
Thus the sum of the workload on the remaining processors is
given by

m
i=k+1

C[i] ≤ (m− k)(α − 1). (10)

This leads to a contradiction since inequalities (9) and (10)
imply thatm− k− 1 are not scheduled in S. �

A direct corollary of this theorem is that the produced solution
is a global optimum for both objectives.

6.3. Arbitrary tasks

We consider in this subsection the general problem where the
length of the tasks are arbitrary. We recall that in this case both
single-objective problems are N P -complete. To solve the multi-
objective problem, two methodologies are possible.

The first methodology is to design a polynomial time approx-
imation scheme (PT AS) to solve optimally the problem. There-
fore one can use the PT AS designed by Alon et al. [1] to solve the
problems P∥

m
i=1 g(Ci) and P∥Cmax at the same time. However,

this approximation scheme is usable if and only if the function g(x)
satisfies the following conditions:

1. g(x) is an increasing and convex function over R∗
+
.

2. ∀ϵ > 0, ∃ δ > 0 whose value depends only on ϵ such that g(x)
verify

∀x, y ≥ 0, (1− δ)x ≤ y ≤ (1+ δ)x
⇒ (1− ϵ)g(x) ≤ g(y) ≤ (1+ ϵ)g(x).

Wenote that in our case, any IFR distribution satisfies the first con-
dition. But we do not have any formal proof that any IFR distribu-
tion satisfies the second condition. However, many popular failure
distributions such as the Weibull distribution satisfy this condi-
tion since g(x) is of the form αxβ with α ∈ R∗

+
and β ≥ 1. We

notice that the computational complexity is too costly. The al-
ternative methodology is to use heuristics with a low computa-
tional complexity cost and a constant approximation ratio to solve
the problem (for example, the LPT (largest processing time) list
scheduling algorithm). The principle is to allocate iteratively the
longest remaining task of the list to an idle processor. It provides
a 2-approximation of the makespan [15]. However, for the sec-
ond objective, this heuristic can be achieve a constant factor only
for particular a failure distribution such as Weibull. For instance,
based on the analysis given in [7], for a Weibull distribution with a
shape parameter equal to 2, the LPT scheduling algorithmproduces
a schedule where the reliability is within a factor 25/24 from the
optimal.

7. Simulations and evaluations

We investigate in this section the impact of failures on the per-
formance. The first set of simulations is to study the performance
ratio of various list scheduling strategies when the failure rate is
increasing (IFR). In the second set of simulations we consider the
class of DFR distributions. We consider the case where the appli-
cation is executed over a set of identical processors in terms of ex-
ecution and failure rate. We also consider an actual application of
comparison of protein sequence databases as the source of tasks
for the simulations. Two commonly used protein databases [34,25,
16,26] were used in the simulations: RefSeqMouse and UniProtKB.
They are briefly described below.

RefSeq The Reference Sequence (RefSeq) collection [29] provides
a comprehensive and non-redundant set of sequences, in-
cluding genomic DNA and proteins. RefSeq sequences are
used for medical, functional, and diversity studies. They

M.S. Bouguerra et al. / J. Parallel Distrib. Comput. 74 (2014) 2411–2422 2419
(a) RefSeq Mouse database. (b) UniProtKB database.

Fig. 2. Histogram of tasks’ execution time in seconds.
(a) RefSeq Mouse protein with 1 failure/day per
processor.

(b) UniProtKB with 6 failures/day per processor.

Fig. 3. Execution with 80 processors. Each bar represents the Cmax and reliability ratio to the optimal.
provide a stable reference for genome annotation, gene
identification and characterization, mutation and poly-
morphism analysis, expression studies, and comparative
analyses. The May 2011 RefSeq collection (Release 47)
includes sequences from more than 12,000 distinct tax-
onomic identifiers, ranging from viruses to bacteria to
eukaryotes.
We used the RefSeq Mouse database. The current version
contains 29,437 sequences ranging from a few residues to
a few billions in size.

UniProt The Universal Protein Resource (UniProt) [9] is a com-
prehensive resource for protein sequence and annotation
data. The UniProt databases are the UniProt Knowledge-
base (UniProtKB), the UniProt Reference Clusters (UniRef)
and the UniProt Archive (UniParc). It is also the central
hub for the collection of functional information on pro-
teins, with accurate, consistent and rich annotation.
We used the UniProtKB database. Themost recent version
contains 537,505 sequences ranging in size from a few
hundred thousands to 6 trillion residues.

In order to obtain execution times for the tasks chosen for the
simulations,we considered the computing capabilities of the Idgraf
machine located in Inria in Grenoble. It contains two Intel Xeon
X5650 processors (Westmere, 6 cores each, total 12 cores) and
64GBof RAM.As shown in Fig. 2 both databases have similar length
distributions but with different overall task sizes. Tasks taken from
the RefSeq Mouse database have execution times as high as 18 s
while tasks taken from the UniProtKB are executed in up to 350 s.

7.1. IFR distributions

In this simulation we use the popular Weibull failure distri-
bution [17,21,30]. We consider different scale and shape param-
eters of Weibull varying from 1 to 6 failures per day per processor
and a shape parameter ranging between 1.1 and 2. We investigate
the performance ratio of various list scheduling strategies. To this
end, we consider a set of candidate scheduling algorithms, namely
LPT (largest processing time), SPT (short processing time) and Ran-
dom. We recall that in LPT (respectively SPT) the largest tasks (re-
spectively smallest tasks) are assigned first. In Random, tasks are
assigned randomly as soon as a processor is available. To study
and compare these scheduling algorithms we compute the perfor-
mance ratio of each strategy (ratio of the actual makespan over the
optimal). The lower bound for the completion time Lb is given by
Lb = max{

n
j=1

pj
m ,maxj pj}. Recall based on Theorem (3.A.8) [28]

when the distribution is IFR the objective function is optimized
when all Ci arewell-balanced and identical processors. To compute
the reliability lower bound we apply the Formula (2) using the op-
timal vector ĉ = (

n
j=1

pj
m , . . . ,

n
j=1

pj
m).

We consider first a configurationwhere all the three algorithms
provide very good results and LPT achieves a nearly optimal
schedule. It is well known that LPT is almost optimal when the
number of jobs is much larger than the number of processors.
Hence in this first study case the number of processors was set to
80. Fig. 3(a) and (b) depict the outcomeof this first configuration for
two failure rates. Fig. 3(a) represents an optimistic case where the
failure rates and tasks’ length are relatively small with one failure
per day and tasks’ length ranging between 4 and 18 s with the
RefSeq Mouse database. Fig. 3(b) shows a pessimistic case where
the failure rate of each processor is 6 failures per day using the
UniProtKB database. Bars show the ratio of the Cmax and reliability
to the lower bound. Aswe can observe in both figures the reliability
ratio is close to the optimal when Cmax is close to the optimal.
This suggests that a good list scheduling for Cmax minimization is
good for reliability too. We notice also that when the failure rate
increases we observe a bigger difference between LPT, SPT and
Random. In fact,we can clearly observe in Fig. 3(b) that LPT is better
than Randomand SPT.We also point out that this figure shows that
SPT is the worst in this scenario.

2420 M.S. Bouguerra et al. / J. Parallel Distrib. Comput. 74 (2014) 2411–2422
(a) 1 failure/day per processor. (b) 4 failures/day per processor. (c) 6 failures/day per processor.

Fig. 4. Ratio to the optimal Cmax and reliability for increasing number of failures per day.
0
LPT RAND SPT 2^0 2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7

0.5

1

1.5

2

2.5

3a b

0

0.5

1

1.5

2

2.5

3
Log Ratio Cmax Log Ratio CmaxLog Ratio Reliability Log Ratio Reliability

Fig. 5. Log of the ratio to the optimal Cmax and reliability for 1 failure per day using 80 processors.
In order to better explore the impact of the scheduling poli-
cies on the reliability, we study the case where the LPT ratio is
close to the worst case bound 4/3. To reach such a configura-
tion, we consider a simulation where the number of tasks is not
much larger than the number of processors.We also consider tasks
with high execution times using only the UniProtKB database. Bars
in Fig. 4(a)–(c) represent the outcome of this second simulation
where the failure rate increases from 1 to 6 failures per day per
processor.

This simulation is quite revealing in several ways that all
strategies provide almost a very similar performance for the Cmax,
however the difference in reliability can be dramatic (in Fig. 4(c),
reliability factor is equal to 1.7 for LPT versus 17 for SPT).

The results, as shown in Fig. 4(a)–(c), clearly indicate the dom-
inance of LPT especially when the failure rate is high (6 failures
per day). Bars in Fig. 4 confirm that the Random schedule outper-
forms SPT in termsof reliability, evenwith aCmax SPT slightly better
(Cmax ratio between SPT and Random is less than 1.03). This strik-
ing result is due to the fact that SPT leads to the most unbalanced
completion time vector. This finding was unexpected and suggests
that a solution with a good Cmax does not lead necessarily to a bet-
ter reliability. One of the more significant findings emerging from
this study is that balanced scheduling strategies like LPT are more
appropriate to optimize both the reliability and Cmax.

7.2. DFR distributions

We conduct now a simulation to assess the tradeoff between
the Cmax and reliability when the failure distribution is DFR. We
consider the values of failure shape and scale reported in [21] for
the Weibull distribution. For this simulation, the shape parame-
ter is fixed as 0.7 and the failure rate is one failure per day per
processor. We investigate the performance ratio of the same list
scheduling strategies as before: LPT, SPT and Random. In addition,
we study the performance of the proposed strategy in Algorithm 3.
Recall that the inputs of this algorithm are job set, processor set
and the threshold τ .

In order to compare these scheduling algorithms, the perfor-
mance ratio of each strategy is computed in regard to the optimal
schedule for the DFR case where all jobs are affected to one proces-
sor.

In this simulation, we consider tasks from the RefSeq Mouse
database using 80 processors. Bars in Fig. 5(a) represent the log of
the ratio for both Cmax and reliability for the list scheduling algo-
rithms and Algorithm3 using a threshold τ = 20Lb. Bars in Fig. 5(b)
represent the performance of Algorithm 3 while using different
values of threshold given by 2xLb.

We observe from Fig. 5(a) that the scheduling algorithms
achieve good makespan but unsatisfactory reliability, which is al-
most the same for all heuristics. In contrast, we observe from
Fig. 5(b) that better reliability can be obtained but by means of a
considerably higher Cmax ratio (reliability is decreasing when Cmax
is increasing). We also observe that it is possible to obtain a config-
uration for which degradation for Cmax and reliability are the same
like when τ = 23Lb. Finally, we note that the reliability metric is
muchmore sensitive than the Cmax, which is due to the exponential
nature of the Weibull distribution.

8. Conclusion

Real-world large parallel systems often exhibit non-memory-
less failure distributions. In this work, we study scheduling strate-
gies that consider both application completion time and the
application’s probability of failure. In the context of decreasing or
increasing failure rates, we examine twomain questions. First, can
one optimize both reliability and makespan, or do we have to de-
grade one metric to improve the other? Second, what scheduling
strategy can obtain an optimal or an approximate solution optimiz-
ing reliability and makespan?

M.S. Bouguerra et al. / J. Parallel Distrib. Comput. 74 (2014) 2411–2422 2421
Our main results are summarized as follows:

• If the failure rate is decreasing, then we prove that makespan
and reliability are antagonistic. Hence, one must worsen one
metric in order to improve the other. As there is no single op-
timal solution, we design an algorithm for computing the ap-
proximation set for the Pareto-optimal solutions.
• If the failure rate is increasing, then we show that one can opti-

mize bothmakespan and reliability at the same timewhen pro-
cessors are of identical speed.We prove also that the scheduling
problem can be solved optimally for several common failure
distributions, like the Weibull, by using a largest processing
time (LPT) list scheduling algorithm.
• This is the first study showing that LPT is a very good strategy

providing good performance for Cmax and reliability as well.

The implications of these results are effective scheduling
strategies that can accelerate parallel applications and/or improve
their reliability over large distributed systems.

We conduct simulations that assess the impact that failures im-
pose on the performance. First, we study the performance ratio of
the list scheduling strategies when the failure rate is increasing
(IFR). This simulation reveals that all strategies provide similar re-
sults in terms of Cmax, although they differ drastically in reliability.
It is also shown that LPT dominates specially when the failure rate
is high (6 failures per day).

Secondly, we consider the case when the failure rate is decreas-
ing (DFR). In this simulation, we analyze Algorithm 3 and use dif-
ferent values of threshold. We observe that completion time and
reliability are antagonistic objectives as expected in the theoreti-
cal analysis.We also notice that the reliabilitymetric is muchmore
sensitive than the Cmax.

As future direction, we would like to consider more general
application models where there exist dependencies between tasks
for both DFR and IFR distributions.

Appendix. Proof of Theorem 4

Theorem 4. Consider a completion time vector c of an arbitrary
schedule and two arbitrary processors i and i′ satisfying si′ < si.
Let δ represent the amount of workload to transfer from processor
i′ to processor i. This will produce the completion time vector ĉ =
(Ĉ1, . . . , Ci + δ/si, . . . , Ci′ − δ/si′ , . . . , Cm) such that Ci′ − δ/si′ ≤
Ci + δ/si. Then c and ĉ satisfy c≺w ĉ.

Proof. Let l (or respectively h) be the rank of processor i (or respec-
tively i′) in the vector cwith respect to an increasing order.

Suppose that after the transfer operation the new rank of pro-
cessors i and i′ become respectively l+ and h−.

The difference between the partial sum of vector c and ĉ in the
first case where h < l is given by

1. ∀k |1 ≤ k < h−,
k

i=1 C(i) −
k

i=1 Ĉ(i) = 0.
2. ∀k |h− ≤ k < h,

k
i=1 C(i) −

k
i=1 Ĉ(i) = C(k) − Ĉ(h−) ≥ 0

(since Ĉ(k+1) = C(k)).
3. ∀k |h ≤ k < l,

k
i=1 C(i) −

k
i=1 Ĉ(i) = δ/si′ .

4. ∀k |l ≤ k ≤ l+,
k

i=1 C(i) −
k

i=1 Ĉ(i) = C(l) + δ/si′ − Ĉ(k) ≥ 0
(since C(l) + δ/si′ ≥ C(l+) ≥ Ĉ(k)).

5. ∀k |+ l ≤ k ≤ m,
k

i=1 C(i) −
k

i=1 Ĉ(i) = δ(1/si′ − 1/si) ≥ 0.

In the second case where l < h and h < l+.

1. ∀k | 1 ≤ k < h−,
k

i=1 C(i) −
k

i=1 Ĉ(i) = 0.
2. ∀k | h− ≤ k < l,

k
i=1 C(i) −

k
i=1 Ĉ(i) = C(k) − Ĉ(h−) ≥ 0

(since C(k) = Ĉ(k+1)).
3. ∀k | l ≤ k < h,
k

i=1 C(i) −
k

i=1 Ĉ(i) = C(l) − Ĉ(h−) ≥ 0.
4. ∀k | h ≤ k < l+,

k
i=1 C(i)−

k
i=1 Ĉ(i) = C(l)+δ/si′− Ĉ(k) ≥ 0.

5. ∀k | l+ ≤ k ≤ m,
k

i=1 C(i) −
k

i=1 Ĉ(i) = δ(1/si′ − 1/si) ≥ 0.

In the last case where l < h and l+ < hwe have the same analysis
except for the sub cases 3 and 4.

1. ∀k | 1 ≤ k < h−,
k

i=1 C(i) −
k

i=1 Ĉ(i) = 0.
2. ∀k | h− ≤ k < l,

k
i=1 C(i) −

k
i=1 Ĉ(i) = C(k) − Ĉ(h−) ≥ 0

(since C(k) = Ĉ(k+1)).
3. ∀k | l ≤ k < l+,

k
i=1 C(i) −

k
i=1 Ĉ(i) = C(l) − Ĉ(h−) ≥ 0.

4. ∀k | l+ ≤ k < h,
k

i=1 C(i) −
k

i=1 Ĉ(i) = C(k) + C(l) − (Ĉ(l+) +

Ĉ(h−)) ≥ 0 (since C(k) = Ĉ(k+1)).
5. ∀k | h ≤ k ≤ m,

k
i=1 C(i) −

k
i=1 Ĉ(i) = δ(1/si′ − 1/si) ≥ 0.

Thus, for all cases we obtain
m
i=1

C(i) −

m
i=1

Ĉ(i) ≥ 0.

Therefore we obtain

c≺w ĉ. �

References

[1] N. Alon, Y. Azar, G.J. Woeginger, T. Yadid, Approximation schemes for
scheduling on parallel machines, J. Sched. 1 (1) (1998) 55–66.

[2] D. Anderson, BOINC: a system for public-resource computing and storage, in:
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
Pittsburgh, USA, 2004.

[3] I. Assayad, A. Girault, H. Kalla, Tradeoff exploration between reliability, power
consumption, and execution time for embedded systems, Int. J. Softw. Tools
Technol. Trans. (STTT) (2012) 1–17.

[4] R.E. Barlow, F. Proschan, L.C. Hunter, Mathematical Theory of Reliability, SIAM,
1996.

[5] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, M. Snir, Toward exascale
resilience, Int. J. High Perform. Comput. Appl. 23 (4) (2009) 374.

[6] H. Casanova, A. Legrand, Y. Robert, Parallel Algorithms, Chapman & Hall, 2008.
[7] A.K. Chandra, C.K.Wong,Worst-case analysis of a placement algorithm related

to storage allocation, SIAM J. Comput. 4 (1975) 249.
[8] C. Chekuri, M. Bender, An efficient approximation algorithm for minimizing

makespan on uniformly related machines, J. Algorithms 41 (2) (2001)
212–224.

[9] EBI. Uniprotkb/swiss-prot homepage.
[10] T. Estrada, K. Reed, M. Taufer, Modeling job lifespan delays in volunteer com-

puting projects, in: Proceedings of the IEEE/ACM International Symposium on
Cluster Computing and Grid, 2009, pp. 331–338.

[11] M.R. Garey, D.S. Johnson, Strongnp-completeness results: motivation, exam-
ples, and implications, J. ACM (JACM) 25 (3) (1978) 499–508.

[12] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, WH Freeman & Co., New York, USA, 1979.

[13] A. Girault, H. Kalla, A novel bicriteria scheduling heuristics providing a
guaranteed global system failure rate, IEEE Trans. Dependable Secure Comput.
6 (4) (2009) 241–254.

[14] R.L. Graham, Bounds for certain multiprocessing anomalies, Bell Syst. Tech. J.
45 (9) (1966) 1563–1581.

[15] R.L. Graham, E.L. Lawler, J.K. Lenstra, R. Kan, Optimization and approximation
in deterministic sequencing and scheduling: a survey, Ann. Discrete Math. 5
(2) (1979) 287–326.

[16] Doug Hains, Zach Cashero, Mark Ottenberg, Wim Bohm, Sanjay Rajopadhye,
Improving CUDASW++, a parallelization of Smith–Waterman for cuda enabled
devices, in: 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Ph.D. Forum, IPDPSW, IEEE, 2011, pp. 490–501.

[17] E. Heien, D. Kondo, D. Anderson, Correlated resource models of Internet end
hosts, in: 31st International Conference on Distributed Computing Systems,
ICDCS, 2011.

[18] D.S. Hochbaum, D.B. Shmoys, Using dual approximation algorithms for
scheduling problems theoretical and practical results, J. ACM (JACM) 34 (1)
(1987) 144–162.

[19] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, D.H.J. Epema, The
grid workloads archive, Future Gener. Comput. Syst. 24 (7) (2008) 672–686.

[20] J.M. Jaffe, Efficient scheduling of tasks without full use of processor resources,
Theoret. Comput. Sci. 12 (1) (1980) 1–17.

[21] B. Javadi, D. Kondo, J.M. Vincent, D.P. Anderson, Discovering statistical models
of availability in large distributed systems: an empirical study of SETI@home,
IEEE Trans. Parallel Distrib. Syst. 22 (11) (2010) 1896–1903.

http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref1
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref3
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref4
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref5
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref6
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref7
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref8
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref11
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref12
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref13
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref14
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref15
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref16
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref18
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref19
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref20
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref21

2422 M.S. Bouguerra et al. / J. Parallel Distrib. Comput. 74 (2014) 2411–2422
[22] E. Jeannot, E. Saule, D. Trystram, Optimizing performance and reliability on
heterogeneous parallel systems: approximation algorithms and heuristics,
J. Parallel Distrib. Comput. (2012).

[23] G. Lin, R. Rajaraman, Approximation algorithms formultiprocessor scheduling
under uncertainty, in: Proceedings of the Nineteenth Annual ACM Symposium
on Parallel Algorithms and Architectures, ACM, 2007, pp. 25–34.

[24] J.W.S. Liu, C.L. Liu, Bounds on Scheduling Algorithms for Heterogeneous
Computing Systems, Dept. of Computer Science, University of Illinois at
Urbana-Champaign, 1974.

[25] Yongchao Liu, Douglas L. Maskell, Bertil Schmidt, CUDASW++: optimizing
Smith–Waterman sequence database searches for CUDA-enabled graphics
processing units, BMC Res. Notes 2 (1) (2009) 73.

[26] Yongchao Liu, AdriantoWirawan, Bertil Schmidt, CUDASW++ 3.0: accelerating
Smith–Waterman protein database search by coupling CPU and GPU SIMD
instructions, BMC Bioinformatics 14 (1) (2013) 117.

[27] G. Malewicz, Parallel scheduling of complex dags under uncertainty,
in: Proceedings of the Seventeenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, ACM, 2005, pp. 66–75.

[28] A.W. Marshall, I. Olkin, Theory of Majorization and its Applications, Academic
Press, New York, 1979.

[29] NCBI. RefSeq homepage.
[30] D. Nurmi, J. Brevik, R. Wolski, Modeling machine availability in enterprise and

wide-area distributed computing environments, 3648 (2005) 612.
[31] C.H. Papadimitriou, M. Yannakakis, On the approximability of trade-offs and

optimal access of web sources, in: IEEE Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, 2000, pp. 86–92.

[32] R.K. Sahoo, M.S. Sivasubramaniam, M. Squillante, Y. Zhang, Failure data
analysis of a large-scale heterogeneous server environment, in: Proceedings
of DSN’04, 2004.

[33] B. Schroeder, G.A. Gibson, A large-scale study of failures in high-performance
computing systems, IEEE Trans. Dependable Secure Comput. 7 (4) (2010)
337–351.

[34] Jaideeep Singh, Ipseeta Aruni, Accelerating Smith–Waterman on heteroge-
neous CPU–GPU systems, in: 2011 5th International Conference on Bioinfor-
matics and Biomedical Engineering, iCBBE, IEEE, 2011, pp. 1–4.

Mohamed Slim Bouguerra was born in 1983 in Tunis,
Tunisia.

He obtained the Master degree in computer science
from Ecole Supérieur des Sciences et Techniques de Tunis
in 2008.

Slim holds a Ph.D. degree in computer science ob-
tained at Grenoble University in 2012 and he is currently
working as a postdoc at Argonne National Laboratory.

His research interests include fault-tolerance, relia-
bility optimization and scheduling for large-scale parallel
processing.
Derrick Kondo is a tenured research scientist at INRIA,
France. He received his Bachelor’s at Stanford University
in 1999, and his Master’s and Ph.D. at the University of
California at San Diego in 2005, all in computer science.
His general research interests are in the areas of reliability,
fault-tolerance, statistical analysis, job and resource man-
agement.

His research projects are supported by national, Euro-
pean, and industrial grants. In 2009, he received a Young
Researcher Award (similar to NSF’s CAREER Award). He re-
ceived an Amazon Research Award in 2010, and Google

Research Award in 2011. He is the co-founder of the Failure Trace Archive, which
serves as a public repository of failure traces and algorithms for distributed sys-
tems. He has won numerous best paper awards at IEEE/ACM conferences for work
in these projects.

Fernando Mendonca graduated from the University of
Brasilia in 2010.

During his Master Degree, he worked with Alba
Cristina de Melo. His work was in the area of High Per-
formance Computing using Heterogeneous Platforms. It
involved the design of algorithms to parallelize DNA se-
quence comparisons on parallel platforms composed of
CPUs and GPUs.

Currently, he is enrolled as a Ph.D. student in the Uni-
versity of Grenoble, France with Denis Trystram. His study
subject is the design of efficient scheduling algorithms tar-
geting the future exascale platforms.

Denis Trystram is a professor at Grenoble Institute of
Technology since 1991 and is now a distinguished profes-
sor in this Institute.

Since 2010, he is a senior member of the Institut Uni-
versitaire de France. He is the vice-director of the LIG lab-
oratory in Grenoble where he is leading a research group
on resource optimization on parallel and distributed plat-
forms.

Denis’ current research activities concern the design
and analysis of efficient approximation algorithms for
multi-objective scheduling problems and Game Theory

applied to parallel and distributed processing. He is interested in problems con-
cerning reliability and energy optimization.

Denis is involved in the editorial board of Parallel Computing, Journal of Parallel
and Distributed Computing and other journals. He also served 4 years in IEEE TPDS
and in the program committees of the major international conferences in the field.
He has published several books, more than 80 papers in international journals and
twice more contributions in international conferences.

http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref22
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref23
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref24
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref25
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref26
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref27
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref28
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref33
http://refhub.elsevier.com/S0743-7315(14)00015-X/sbref34

	Fault-tolerant scheduling on parallel systems with non-memoryless failure distributions
	Introduction
	Related work
	Classical results in scheduling
	Fault-tolerant scheduling

	Problem statement and notations
	Mathematical preliminaries
	DFR distributions
	Optimizing the reliability
	Bi-objective optimization
	Case of unitary tasks
	Arbitrary tasks

	IFR distributions
	Complexity analysis
	Unitary tasks
	Arbitrary tasks

	Simulations and evaluations
	IFR distributions
	DFR distributions

	Conclusion
	Proof of Theorem 4
	References

