
Approximation Algorithms for Scheduling Unrelated Parallel Machines

Jan Karel Lenstra
Centre for Mathematics and Computer Science, Amsterdam

David B. Shmoys
Massachusetts Institute of Technology, Cambridge

Eva Tardos
E(Jtv(Js University, Budapest

ABSTRACT

We consider the following scheduling problem. There
are m parallel machines and n ipdependent jobs. Each
job is to be assigned to one of the machines. The pro
cessing of job j on machine i requires time Pi}. The
objective is to find a schedule that minimizes the mak
espan.

Our main result is a polynomial algorithm which con
structs a schedule that is guaranteed to be no longer
than twice the optimum. We also present a polynomial
approximation scheme for the case that the number of
machines is fixed. Both approxima~on results are corol
laries of a theorem about the relationship of a. class of
integer programming problems and their linear pro
gramming relaxati~ns. In particular, we give a polyno
mial method to round the fractional extreme points of
the linear program to integral points that nearly satisfy
the constraints.

In contrast to our main result, we prove that no poly
nomial algorithm can achieve a worst-case ratio less
than 3/2 unless P =NP. We finally obtain a complexity
classification for all special cases with a fixed number of
processing times.

1. INTRODUCTION

Although the performance of approximation algorithms
has been studied for over twenty years, very little is
understood about the structural properties of a problem
that permit good performance guarantees. In fact, there
are practically no tools to distinguish those problems for
which there does exist a polynomial algorithm for any
performance bound, and those for which this is not the
case. One problem area in which these questions have
received much attention is that. of scheduling and bin
packing. We examine a scheduling.problem'for which
all previously analyzed polynomial algorithms have par
ticularly poor performance guarantees. We present a
polynomial algorithm that delivers a solution
guaranteed to be within a factor of 2 of the optimum,

0272-5428/87/0000/0217$01.00 © 1987 IEEE 217

and prove that this. is nearly best possible, in the sense
that no polynomial algorithm can guarantee a factor
less than 3/2 unless P =NP. Our algorithm·is based on
a result concerning the. relationship of certain ·integer
programming problems and their linear relaxations that
is of interest in its own right.

One of the most natural strategies to obtain good
solutions to an integer linear program is to drop the
integrality constraints, solve the resulting linear pro
gramming problem, and· then round the solution to an
integral solution. There are many difficulties with this
approach. The rounded solution may be suboptimal,
and it may even be impossible to round the solution to a
feasible solution. For restricted classes of integer pro
grams, however, the behavior might not be quite as bad.
Certainly, if the extreme points of the linear program
ming relaxation are all integral, then the optimal solu
tion is obtained without even rounding, as is the case,
for example, for the bipartite matching, maximum flow,
and minimum cost flow problems.

It is an interesting·question to study those classes of
integer programs for which the linear relaxations pro
vide a good approximation, in that rounded solutions
can be found that are nearly feasible or nearly optimal.
Much work along these lines has been done for integer
programs where the coefficients of the constraints are
restricted to {O, I} [Lovasz 1975; Chvatal 1979;
Bartholdi, Orliri, and Ratliff 1980; Bartholdi 1981 ;
Baum and Trotter 1981; Marcotte 1983; Aharoni,
Erdos, and Linial 1985; Raghavan and Thompson
1985; Raghavan 1986). We present a rounding theorem
of this sort for a natural class of integer programs with
arbitrary coefficients.

The scheduling. problem to be considered is as fol
lows. There are n independent jobs that must be
scheduled without preemption. on a collection of m
parallel machines. If job j is scheduled on machine i, the
processing time required isPi}' which we assume to be a
positive integer. The total time used by machine i is the

sum of thePij for the jobs that are assigned to machine i,
and the makespan of a schedule is the maximum total
time used by any machine. The objective is to find a
schedule that minimizes the makespan. Graham,
Lawler, Lenstra, and Rinnooy Kan [1979] denote this
problem by R II Cmax • Davis and Jaffe [1981] presented
a list scheduling algorithm and proved that it delivers a
schedule with makespan no more than 2~ times the
optimum. So far, this was the best performance bound
known for any polynomial algorithm for the problem.
We present a polynomial algorithm that guarantees a
factor of 2.

Approximation algorithms for this problem and
several of its special cases have been studied for over
two decades. Much of this work has focused on the case
where the machines are identical; that is, Phi = Plj for
any job j and any two machines h,i. The area of worst
case analysis of approximation algorithms for NP-hard
optimization problems can be traced to Graham [1966],
who showed that for this special case with. identical
machines, a list scheduling algorithm always delivers a
schedule with makespan no more than (2 - 11m) times
the optimum. We shall refer to an algorithm that is
guaranteed to produce a solution of length no more
than p times the optimum as a p-approximation algo
rithm. Note that we do not require such an algorithm to
be polynomial, although our primary focus will be on
this subclass.

An important family of further restricted cases is
obtained by considering a fIXed number of identical
machines. Graham [1969] showed that for any specified
number m of machines, it is possible to obtain a polyno
mial (1 +t:)-approximation algorithm for any fixed
t: > 0, but the running time depends exponentially on
lIt: (and on m). Such a family of algorithms is called a
polynomial approximation scheme. This result was
improved by Sahni [1976], who reduced the dependence
of the running time on 1/t: to a polynomial. Such a fam
ily of algorithms is called a fully polynomial approxima
tion scheme.

If the number of machines is specified· as part of the
problem instance, results by Garey and Johnson [1975,
1978] imply that no fully polynomial approximation
scheme can exist, even if the machines are identical,
unless P =NP. However, Hochbaum and Shmoys
[1987] presented a polynomial approximation scheme
for the problem with identical machines.

A natural generalization of identi~ machines is the
case of machines that run at different speeds but do so
uniformly. Thus, for each machine i there is a speed fac
tor Sj, andPii =Pi l Sj wherePi is the inherent processing
requirement of job j. Results analogous to the case of
identical machines have been obtained for uniform
machines. Gonzalez, Ibarra, and Sahni [1977] gave a

218

polynomial 2-approximation algorithm. For any fixed
number of machines, Horowitz and Sahni [1976]
presented a fully polynomial approximation scheme,
whereas Hochbaum and Shmoys [1988] gave a polyno
mial approximation scheme for the case that the
number of machines is a part of the problem instance.

Given these strong results for special cases, there was
no apparent reason to suspect that analogous results did
not hold for the general setting of unrelated machines.
In fact, Horowitz and Sahni [1976] also presented a fully
polynomial approximation scheme for any fIXed
number of unrelated machines. However, for the case
that the number of machines is specified as part of the
problem instance, a polynomial approximation scheme
is unlikely to exist. We prove that the existence of a
polynomial (1 +t:)-approximation algorithm for any
« 1/2 wouldimplythatP = NP.

An interesting algorithm for this problem was
presented by Potts [1985]. It is a 2-approximation algo
rithm with running time bounded by mm -1 times a
polynomial in the input size. At first glance, his result
does not appear to be particularly interesting, since for
fixed m, a fully polynomial approximation scheme was
already known. However, that scheme not only requires
time O(nm(nm/t:yn-l) but also space O«nm/t:yn-l),
while Potts' algorithm· requires only polynomial space.
Thus, from both a practical and a theoretical viewpoint,
Potts' algorithm is a valuable contribution. It is based
on extending the integral part of a linear programming
solution by an enumerative process. We extend his work
by proving that the fractional solution to the linear pro
gram can be rounded to a good integral approximation
in polynomial time, thereby obviating the need for
enumeration and removing the exponential dependence
on m. We also consider the problem with any fixed
number of machines and present a polynomial approxi
mation scheme for this case, where the space required is
bounded by a polynomial in the input, m, and log(l/t:).

Another natural way to restrict the problem is to con
sider instances where the number of different processing
times is bounded. For example, if all processing times
are equal, then the optimum schedule is computable in
polynomial time. As a byproduct of our investigation,
we obtain a complete characterization of the polynomi
ally solvable special cases with a fixed number of pro
cessing times under the assumption that P =1= NP.

2. A ROUNDING THEOREM

We first present the key tool for our approximation
algorithms. Let I;(t) denote the set of jobs that require
no more than t time units on machine i, and let Mj(t)
denote the set of machines that can process job j in no
more than t time units. Consider a decision version of
our scheduling problem, where for each machine i there

is a deadline di and where we are further constrained to
schedule jobs so that each uses processing time at most
t; we wish to decide if there is a feasible schedule.

THEOREM I (ROUNDING THEOREM). Let P =(p··)E
Z'!tXn, (d), ... ,d".) EZ'!t, andtEZ+. Ifthelinear~ro
gram

~jEMf.t)Xjj = 1 for j = 1, ,n,
~jEJ,(tfjjXij :EO; dj for i =1, ,m, (LP)
xij ~o for jEJi(t), i = 1, ... ,m,

has afeasible solution, then any vertex xofthis polytope
can be rounded to afeasible solution xofthe integer pro
gram

~jEMJ(t)Xjj =1 for j =1, ,n,
~jEJ,(tfjjXjj :EO;dj+t fori = 1, ,m, (IP)

Xij E {O, I} for j EJ;(t), i = 1,. · . ,m,

and this rounding can be done inpolynomial time.

Proof. Let v denote the number of variables in the linear
program (LP). This polyhedron is defined by v +m +n
constraints and is contained in the unit hypercube. Each
~ertex o! such a pointed polyhedron is determined by v
linearly mdependent rows of the constraint matrix such
that each of these constraints is satisfied with equality
[Schrijver 1986]. As a result, for any vertex x all but
m +n of the variables must have value 0, and a straight
forward counting argument shows that all but 2m must
have integral values. In the remainder of the proof, we
first show a somewhat stronger structural property, and
then use it to round the solution.

It will be convenient to associate the rows and
columns of P with machines and jobs, as is true in our
application. Suppose that (LP) is feasible and let xbe a
vertex of (LP). Form a bipartite graph G = (M,J,E),
where M={1, ... ,m} and J={l, ... ,n} correspond
to the sets of machines and jobs, respectively, and
E = {(i,j) IXij > o}. We have already indicated that G
has no more edges than nodes. We now show that each
connected component of G has this property; that is, G
is a pseudoforest. (This result was already stated in a
slightly different form by Dantzig [1963].)

Suppose that G has cconnected components. We par
tition the constraints and the variables Xij that are
assigned positive values according to connected com
ponents. Let Xk denote the set of variables correspond
ing to edges in the kth component (k = 1, ... ,c), and let
Z be the set of variables with xij = O. Aside from the
nonnegativity. constraints, each constraint in (LP) can
be associated with a machine or a job. Let A be the
matrix formed with rows corresponding to the

219

coefficients of the left-hand sides of precisely those con
straints satisfied by xwith equality. Let Rk denote the
set of rows in A that correspond to constraints associ
ated with job and machine nodes contained in the kth
component (k = 1, ... ,c). We use the Rk and Xk to
reorder the rows and columns of A to obtain the per
muted matrix A' depicted in Figure 1.

z
C} 0 0 B}

0 C2 0 B2

0 0 Ce Be

0 0 0 I

FIGURE 1. ThepermutedmatrixA'.

Since A has full column rank, the permuted matrix A'
must be of full column rank, and if we perform. elemen
tary row operations to replace each Bk by 0, we see that
the resulting matrix A " must also have full column rank.
However, the rank of such a block matrix must be equal
to the sum of the column ranks of the Ck and I. We con
clude that each Ck must be a matrix of full column'rank.
In other words, the number of tight constraints
corresponding to job and machine nodes in the kth
component is at least equal to the number of edges in it,
and thus the number of nodes in each component is at
least equal to the number of edges. Each component of
G is therefore either a tree or a tree plus one additional
edge, so that Gis a pseudoforest.

We now use the fact that Gis a pseudoforest to round
the corresponding vertex x. Consider each edge (i,j)
with Xij =1. For each such edge, we adopt this integral
schedule for job j and set xij = 1. These jobs correspond
to the job nodes of degree 1, so that by deleting all of
these nodes we get a pseudoforest G' with the additional
property that eachjob node has degree at least 2.

We show that G' has a matching that covers all of the
job nodes. For each component that is a tree, root the
tree at any node, and match each job node with anyone
of its children. (Note that each job, node must have at

least one child and that, since each machine node·has at
most one parent, no machine is matched with more than
one job.) For each component that contains a cycle,
take alternate edges of the cycle in the matching. (Note
that the cycle must be of even length.) If the edges of the
cycle are deleted, we get a collection of trees which we
think of as rooted at the node that had been contained
in the cycle. For each job node that is not already
matched, pair it with one of its children. This gives us
the desired matching. If (i,j) is in the matching, set
xij =1. Each remaining xij that has not been assigned is
set toO.

It is straightforward to verify that xis a feasible solu
tion to (IP). Each job has been scheduled on exactly one
machine, so that

I;EMj(t)x;j = 1

for j = 1, ... , n. For each machine i, there is at most one
job j such that Xij < Xij =1; sincePij E:; t for each Xij in
(IP), we have

IjEJ,(tfijXij OS;;;; IjEJ,(tfijxij + t oe;;; d; + t

for i = 1, ... , m. D

3. APPROXIMATION ALGORITHMS

We are now ready to present approximation algorithms
for the minimum makespan problem on unrelated
parallel machines. A notion that will playa central role
in these algorithms is that of a p--relaxed decision pro
cedure. Consider the following decision version of the
problem: given a matrix P of processing times and a
deadline d, does there exist a schedule with makespan at
most til On input (P,d), an ordinary decision procedure
would output 'yes' or 'no', depending on, whether there
was in fact such a schedule. A p-relaxed decision pro
cedure outputs 'no' or 'almost'; more precisely, on input
(P,d),
(1) it either outputs 'no' or produces a schedule with
makespan at most pd, and
(2) if the output is 'no', then there is no schedule with
makespan at most d.

Variations of the following lemma have been used in
several recent results on approximation algorithms for
scheduling problemsIHochbaum and Shmoys 1987].

LEMMA 1. If there is apolynomial p-relaxed decision pro
cedure for the minimum makespan problem on unrelated
parallel machines, then there is a polynomial p
approximation algorithmfor thisproblem.

Proof On input P, construct a greedy schedule, where
each job is assigned to the machine on which it runs
fastest. H the makespan of this schedule is t, then t is· an

220

upper bound on the optimum makespan, whereas tIm is
a lower bound. Using these initial bounds, we run a
binary search pr~ure. If u and I are the current upper
and lower bounds, set d = L(u +/)/2J and apply the p
relaxed decision procedure to (P,d). If the answer is yes,
then reset u to d, and otherwise reset I to d + 1, while
storing the best solution obtained so far. When the
upper and lower bounds are equal, output the best solu
tionfound.

It is easy to see that this procedure has the appropri
ate performance guarantee. A trivial inductive argument
shows that 1is always a lower bound on the optimum
makespan and that the best solution encountered has
makespan at most pu. Since u = I at termination, we get
the desired bound. Furthermore, the algorithm. runs
clearly in polynomial time. The difference between the
upper and lower bounds after k + logm iterations is
bounded by 2-k times the optimum. Thus after a poly
nomial number of iterations, the difference is less than 1
and the algorithm. terminates. D

To obtain a polynomial2-approximation algorithm. is
quite simple, given the rounding theorem and Lemma 1.
We construct a 2-relaxed decision procedure for the
decision version of the problem. Let (P,d) be a problem
instance. Consider the linear program (LP) of the
rounding theorem, with d1 = ... =dm =t=d. H the
instance is a 'yes' instance, then the schedule that com
pletes by time d gives a feasible solution to the linear
program: simply set Xij to 1 if job·j is assigned to
machine i and 0 otherwise. In this case, the feasible
region of the linear program is nonerilpty and pointed,
and so it is possible to find·a vertexxin polynomial time
[Khachian 1979; Grotschel, Lov8sz, and Schrijver
19871. Thus, if no vertex of (LP) is found, the instance
must be a 'no' instance; otherwise, the procedure given
in the proof of the rounding theorem produces a solu
tion to the integer program (IP). This 0-1 solution can
be interpreted as a schedule in the obvious way, and it
has makespan at most 2d. Hence, the procedure is a 2
relaxed decision pr~ure. We have proved the follow
ingresult.

THEOREM 2. There is a 2-approximation algorithmfor the
minimum makespan problem on unrelated parallel
machines that runs in time bounded by apolynomial in the
input size.

The analysis of the algorithm. cannot be improved to
yield a better bound. Consider the following instance.
There are m2·-m +1 jobs and m identical machines.
The first job takes m time units on all machines, and all
other jobs take one time unit on all machines. Oearly,
the optimal schedule has Illakespan m: assign the first

job to one machine and m of the remaining jobs to each
of the other machines. No deadline less than m has a
feasible fractional schedule. Suppose that the vertex of
(LP) that is found corresponds to the schedule where
one unit of the job of length m and m - 1 unit length
jobs are assigned to each machine. Rounding this frac
tional solution produces a schedule of length 2m - 1.

As a second application of the rounding theorem, we
give a polynomial approximation scheme for any fixed
number m of machines. The running time of the pro
cedure A (, which produces a schedule guaranteed to be
within a factor 1+*= of the optimum, will be bounded by
a function that is the product of (n + Iyn/(and a poly
nomial in the size of the input P. Given the fully polyno
mial approximation scheme of Horowitz and Sahni
[1976], one may question the novelty of such a scheme.
The significance of the new result lies in the fact that the
space required by the old scheme is (nm If.yn whereas the
new scheme uses space that is polynomial in both
10g(I/f.) andm (and the input size).

Again, all we have to do is to construct a (1 +f.)
relaxed decision procedure for the decision version of
the problem. Given (P,d), the algorithm attempts to
find solutions to (n + Iyn/(linear programs. H there is a
schedule with makespan at most d, then one of these
linear programs has a feasible solution, and this will
correspond to a schedule with makespan at most
(1 +f.)d. This suffices to guarantee the properties of a
(1 +f.)-relaxed decision procedure.

For any schedule for the instance (P,d), we classify
the assignment of a job to a machine as either long or
short, depending on whether or not the processing time
in question is greater than f.d. No machine can handle
I/f. or more long assignments before time d. Thus, for
any instance there are less than (n + Iyn/(schedules of
long assignments.

If the instance (P,d) has a feasible schedule, then this
includes a partial schedule of long assignments (which
may be empty). Suppose that for machine i the long
assignments amount to a total processing time ti , and
thus the remaining jobs are completed within time
d; = d - ti. If we then set t = fd, we see that the linear
program (LP) must once again have a feasible solution,
so that we can apply the rounding theorem. The result
ing integral solution yields a schedule of short assign
ments such that the total time taken by short assign
ments to machine i is at most d - t; + f.d. Combining this
with the schedule of long assignments, we get a schedule
where the total time used by machine i is at most
Ii +d-t; +f.d=(1 +£)d.

We try all possible schedules of long assignments in
this way, computing ·the remaining available time on
each machine and applying the rounding procedure.
Either we conclude that the instance is a 'no' instance,

221

or we produce a schedule with makespan at most
(1 +f.)d. (Notice that if f. = 1, there are no long assign
ments and the algorithm reduces to the previous one.)
We have shown the following result.

THEOREM 3. Let m be a fixed integer. There is a family
{A (} of algorithms such that, for each *= > 0, A (is a
(1 +f.)-approximation algorithm for the minimum mak
espan problem on m unrelated para/lei machines that
requires time bounded by a polynomial in the input size
and space bounded by apolynomial in m, log(1I f.), and the
input size.

An interesting open question is whether this result
can be strengthened to give a fully polynomial approxi
mation scheme for fixed values of m, where the space
required is bounded by a polynomial in m, 10g(I/f.), and
the input size.

4. LIMITS TO APPROXIMATION

We now present results which show that certain polyno
mial approximation algorithms cannot exist unless
P = NP. To this end, we investigate the computational
complexity of decision versions of our scheduling prob
lem with small integral deadlines.

THEOREM 4. For the minimum makespan problem on
unrelated parallel machines, the question of deciding if
there exists a schedule with makespan at most 3 is NP
complete.

Proof. We prove this result by a reduction from the 3
dimensional matching problem, which is known to be
NP-complete:

3-DIMENSIONAL MATCHING

Instance: Disjoint sets A = {aI, ... ,an}, B =
{b I, · .. ,bn }, C = {c I, ... , cn }, and a family F =
{TI, ... , Tm } of triples with IT; nA I =
11i nB I = IT; nc I = 1for i = 1, ... ,m.
Question: Does F contain a matching, i.e., a subfamily
F' for which IF' I = n and U ~ EF' 1i =A UB U C?

Given an instance of this problem, we construct an
instance of the scheduling problem with m machines
and 2n +mjobs. Machine i corresponds to the triple T;,
for i = 1, ... ,m. There are 3n 'element jobs' that
correspond to the 3n elements of A U B U C in the
natural way. In addition, there are m -n 'dummy jobs'.
(If m < n, we construct some trivial 'no' instance of the
scheduling problem.) Machine i corresponding to
1i = (aj,bk,c/) can process each of the jobs correspond
ing to aj' bk and c/ in one time unit and each other job in
three time units. Note that the dummy jobs require

three time units on each machine.
It is quite simple to show that there is a schedule with

makespan at most 3 if and only if there is a· 3
dimensional matching. Suppose there is a matching. For
each 1'; = (aj,bk,c/) in the matching, schedule the ele
ment jobs corresponding to aj' bk and c/ on machine i.
Schedule the dummy jobs on the m - n machines
corresponding to the triples that are not in the match
ing. This gives a schedule with makespan 3. Conversely,
suppose that there is such a schedule. Each of the
dummy jobs requires three time units on any machine
and is thus scheduled by itself on some machine. Con
sider the set of n machines that are not processing
dummy jobs. Since these are processing all of the 3n ele
ment jobs, each of these jobs is processed in one time
unit. Each three jobs that are assigned to one machine
must therefore correspond to elements that form. thetri
pie corresponding to that machine. Since each element
job is scheduled exactly once, the n triples correspond
ing to the machines that are not processing dummy jobs
form a matching. 0

As an immediate corollary of Theorem 4, we get the fol
lowing result.

COROLLARY 1. For every p < 4/3, there does not exist a
polynomial p-approximation algorithm for the minimum
makespan problem on unrelatedparallel machines, unless
P=NP.

The technique employed in Theorem 4 can be refined to
yield a stronger result.

THEOREM 5. For the minimum makespan problem on
unrelated parallel machines, the question of deciding if
there exists a schedule with makespan at most 2 is NP
complete.

Proof We again start from the 3-dimensional matching
problem. We call the triples that contain aj triples oftype
}. Let tj be the number of triples ()f type), for
}=1, ... ,n. As before, machine i corresponds to the
triple Ti , for i = 1, ... ,m. There are now only 2n ele
ment jobs, corresponding to the 2n elements of B U C.
We refme the construction of the dummy jobs: there are
tj -1 dummy jobs of type}, for} = 1, ... ,n. (Note that
the total number of dummy jobs is m -n, as before.)
Machine i corresponding to a triple of type}, say,
1'; =(aj,bk,c/), can process each of the· element jobs
corresponding to bk and c/ in one time unit and each of
the dummy jobs of type} in two time units; all other
jobs require three time units on machine i.

Suppose there is a matching. For each 1'; = (aj,bk,c/)
in the matching, schedule the element jobs

222

corresponding to bk and Cion machine i. For each}, this
leaves t} - 1 idle machines corresponding to triples of
type j that are not in the matching; schedule the t) - I
dummy jobs of type} on these machines. This completes
a schedule with makespan 2. Conversely, suppose that
there is such a schedule. Each dummy job of type j is
scheduled on a machine corresponding to a triple of
type j. Therefore, there is exactly one machine
corresponding to a triple of type} that is not processing
dummy jobs, for} =1, ... ,n. Each such machine is
processing two element jobs in one time unit each. If the
machine corresponds to· a triple of type j and its two
unit-time jobs correspond to bk and Cit then (a),bk,c/)
must be the triple corresponding to that machine. Since
each element job is scheduled exactly once, the n triples
corresponding to the machines that are not processing
dummy jobs form a matching. 0

CoROLLARY 2. For every p< 3/2, there does not exist a
polynomial p-approximation algorithm for the minimum
makespan problem on unrelatedparallel machines, unless
P=NP.

5. RBsnuCTED PllOCESSING TIMEs
We conclude this paper with a few remarks about spe
cial cases of our scheduling problem in which the
number of different processing times is bounded. If all
Pij =1, the problem is clearly solvable in polynomial
time, and even if all p;) E {l,oo}, the problem can be
solved by bipartite cardinality matching. Theorem 6
shows that, if all Pi} E {I,2}, the problem is still solv
able in polynomial time by matching techniques.

THEOREM 6. The minimum makespan problem on unre
lated parallel machines is solvable in polynomial time in
thecasethatallpij E {1,2}.

Proof The problem of deciding if there exists a schedule
with makespan at most d can be transformed into the
following problem, which is known to be solvable in
polynomial time by matching techniques [Schrijver
1983]: Given a bipartite graph G = (S,T,E), find a sub
graph with a maximum number of edges in which each
node in S has degree 0 or 2 and each node in T has
degree 1.

In case d =2k, construct G as follows: there are k
nodes in S for each machine; there is one node in T for
eachjob; and edges correspond to unit processing times.
Now solve the above problem on G. Construct a partial
schedule of unit-time assignments corresponding to the
edges in the subgraph, and try to extend it to a complete
schedule by assigning the remaining jobs for two time
units each while respecting the deadline. If a schedule
with makespan 2k exists, this procedure will find such a

schedule.
In case d =2k -1, create an additional unit-time job

for each machine, which requires two time units on any
other machine, and apply the above procedure for
d =2k. It follows from a straightforward interchange
argument that the original problem has a schedule with
makespan 2k - 1 if and only if the modified problem
has a schedule with makespan 2k. 0

Our final theorem implies that all other cases with a
fixed number of processing times cannot be solved in
polynomial time, unless P =NP.

THEOREM 7. The minimum makespan problem on unre
lated parallel machines is NP-hard in the case that all
Pij E {p,q} withP < q, 2p =1= q.

Proof We assume without loss of generality thatp and q
are relatively prime. Recall that the result. has already
been proved in Theorem 4 for the case that all
Pij E {1,3} by a reduction from 3-dimensional match
ing. We now reduce from q-dimensional matching.
Given a matching instance with m q-tuples over a
ground set of qn elements, we construct a scheduling
instance with qn element jobs, p(m - n) dummy jobs,
and m machines. An element job can be processed in p
time units by each machine that corresponds to a tuple
containing the corresponding element; all other pro
cessing times are q time units. It is trivial to see that for
each matching there is a schedule with makespanpq. To
prove the opposite implication, no schedule with mak
espanpq can have idle time, and it now follows from an
easy number theoretic argument that each machine
processes either q element jobs of length p or p dummy
jobs of length q. D

ACKNOWLEDGEMENTS
The research of the first author was supported in part by
the National Science Foundation under grant MCS-83
11422. The research by the second author was sup
ported in part by the National Science Foundation
under grant ECS-85-01988 and by Air Force contract
AFOSR-86-0078. The research by the third author was
supported in part by the National Science Foundation
under grant MCS-81-20790 and by the Hungarian
National Foundation for Scientific Research under
grant 1812.

REFERENCES
R. AHARONI, P. ERD~S, N. LINIAL (1985). Dual integer

linear programs and the relationship between their
optima. Proc. 17th Annual ACM Symp. Theory of
Computing, 476-483.

J.J. BARTHOLDI III, J.B. ORLIN, H.D. RATLIFF (1980).

223

Cyclic scheduling via integer programs with circular
ones. Opere Res. 28, 1074-1085.

J.J. BARTHOLDI III (1981). A guaranteed-accuracy
round-off algorithm for cyclic scheduling and set cov
ering. Oper. Res. 29,501-510.

S. BAUM, L.E. TROTTER, JR. (1981). Integer rounding for
polymatroid and branching optimization problems.
SIAMJ. Algebraic Discrete Methods 2,416-425.

V. CHVATAL (1979). A greedy heuristic for the set
covering problem. Math. Opere Res. 4, 233-235.

G.B. DANTZIG (1963). Linear Programming and Exten
sions, Princeton University Press, Princeton, NJ.

E. DAVIS, J.M. JAFFE (1981). Algorithms for scheduling
tasks on unrelated processors. J. Assoc. Comput.
Mach. 28,721-736.

M.R. GAREY, D.S. JOHNSON (1975). Complexity results
for multiprocessor scheduling under resource con
straints. SIAMJ. Comput. 4, 397-411.

M.R. GAREY, D.S. JOHNSON (1978). Strong NP
completeness results: motivation, examples and
implications. J. Assoc. Comput. Mach. 25, 499-508.

M.R. GAREY, D.S. JOHNSON (1979). Computers and
Intractability: a Guide to the Theory of NP
Completeness, Freeman, San Francisco.

T. GoNZALEZ, O.H. IBARRA, S. SAHNI (1977). Bounds
for LPT schedules on uniform processors, SIAM J.
Comput. 6, 155-166.

R.L. GRAHAM (1966). Bounds for certain multiprocess
ing anomalies. Bell System Tech. J. 45, 1563-1581.

R.L. GRAHAM (1969). Bounds on multiprocessing tim
ing anomalies. SIAMJ. Appl. Math. 17,416-429.

R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G.
RINNOOY KAN (1979). Optimization and approxima
tion in deterministic sequencing and scheduling: a
survey. Ann. Discrete Math. 5,287-326.

M. GR~TSCHEL, L. LovAsz, A. SCHRI1VER (1987).
Geometric Algorithms and Combinatorial Optimiza
tion, Springer, Berlin.

D.S. HOCHBAUM, D.B. SHMOYS (1987). Using dual
approximation algorithms for scheduling problems:
practical and theoretical results. J. Assoc. Comput.
Mach. 34, 144-162.

D.S. HOCHBAUM, D.B. SHMOYS (1988). A polynomial
approximation scheme for machine scheduling on
uniform processors: using the dual approach. SIAM
J. Comput., to appear.

E. HOROWITZ, S. SAHNI (1976). Exact and approximate
algorithms for scheduling nonidentical processors. J.
Assoc. Comput. Mach. 23,317-327.

L.G. KHACHIAN (1979). A polynomial time algorithm in
linear programming. Soviet Math. Dokl. 20,191-194.

L. LovAsz (1975). On the ratio of optimal and frac
tional covers. Discrete Math. 13, 383...390.

O.M.-C. MARCOTTE (1983). Topics in Combinatorial

Packing and Covering, Ph.D. thesis, School of Opera
tions Research and Industrial Engineering, Cornell
University, Ithaca, NY.

C.N. POITS (1985). Analysis of a linear programming
heuristic for scheduling unrelated parallel·machines.
DiscreteAppl. Math. 10, 155-164.

P. RAOHAVAN (1986). Probabilistic construction of
deterministic algorithms: approximating packing
integer programs. Proc. 27th Annual IEEE Symp.
Foundations ofComputer Science, 10-18.

P. RAOHAVAN, C.D. THOMPSON (1985). Provably good

224

routing in graphs: regular arrays. Proc. 17th Annual
ACM Symp. Theory ofComputing, 79-87.

S. SAHNI (1976). Algorithms for scheduling independent
tasks. I. Assoc. Comput. Mach. 23, 116-127.

A. SCHltIJVER (1983). Min-max results in combinatorial
optimization.- A. Bachem, M. Grotschel, B. Korte
(eds.) (1983). Mathematical Programming: the State
ofthe Art - Bonn 1982,439-500.

A. SCHlWVER (1986). Theory ofLinear and Integer Pro
gramming, Wiley, Chichester.

