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Abstract—Building future generation supercomputers while
constraining their power consumption is one of the biggest
challenges faced by the HPC community. For example, US
Department of Energy has set a goal of 20 MW for an exascale
(1018 flops) supercomputer. To realize this goal, a lot of research
is being done to revolutionize hardware design to build power
efficient computers and network interconnects. In this work, we
propose a software-based online resource management system
that leverages hardware facilitated capability to constrain the
power consumption of each node in order to optimally allocate
power and nodes to a job. Our scheme uses this hardware
capability in conjunction with an adaptive runtime system that
can dynamically change the resource configuration of a running
job allowing our resource manager to re-optimize allocation
decisions to running jobs as new jobs arrive, or a running job
terminates.

We also propose a performance modeling scheme that esti-
mates the essential power characteristics of a job at any scale.
The proposed online resource manager uses these performance
characteristics for making scheduling and resource allocation
decisions that maximize the job throughput of the supercomputer
under a given power budget. We demonstrate the benefits of
our approach by using a mix of jobs with different power-
response characteristics. We show that with a power budget
of 4.75 MW, we can obtain up to 5.2X improvement in job
throughput when compared with the SLURM scheduling policy
that is power-unaware. We corroborate our results with real
experiments on a relatively small scale cluster, in which we obtain
a 1.7X improvement.

I. INTRODUCTION

The US Department of Energy has identified four key
areas that require significant research breakthroughs in order
to achieve exascale computing over the next decade [1]. This
paper explores a global power monitoring strategy for high
performance computing (HPC) data centers and addresses one
of those four key areas – machine operation under power
envelope of 20MW. Our work focuses on a hardware-assisted
software-based resource management scheme that intelligently
allocates nodes and power to jobs with the aim of maximizing
the job throughput, under a given power budget. Most of the
current and past work in HPC is done from the perspective that
number of nodes is the limiting factor which can freely draw
any amount of power. As we move on to large machines, power
consumption will overtake hardware as the limiting factor.
Hence, HPC researchers might be forced to think power as
the limiting factor. This paper proposes an HPC scheduling
system that considers power to be the limiting resource and
hence assumes that it is economical to add nodes to the

supercomputer to efficiently utilize the power budgeted for the
data center.

Computer subsystems such as CPU and memory have a
vendor-specified Thermal Design Power (TDP) that corre-
sponds to the maximal power draw by the subsystem. Cur-
rently, maximum power consumption of an HPC data center
is determined by the sum of the TDP of its subsystems. This
is wasteful, as these subsystems seldom run at their TDP limit.
Nonetheless, near TDP amount of power has to be set aside for
the subsystems so that the circuit breakers do not trip in that
rare case when the power consumption reaches TDP. Recent
advances in processor and memory hardware designs have
made it possible for the user to control the power consumption
of the CPU and memory through software, e.g., the power
consumption of Intel’s Sandy Bridge family of processors can
be user-controlled through the Running Average Power Limit
(RAPL) library [2]. Some other examples of such architectures
are IBM Power6, Power7, and AMD Bulldozer. This ability to
constrain the maximum power consumption of the subsystems,
below the vendor-specified TDP value, allows us to add more
machines while ensuring that the total power consumption of
the data center does not exceed its power budget. Such a
system is called an overprovisioned system [3].

Earlier work [3], [4] shows that an increase in the power
allowed to the processor (and/or memory) does not yield a
proportional increase in the application’s performance. As a
result, for a given power budget, it can be better to run an
application on larger number of nodes with each node capped
at lower power than fewer nodes each running at its TDP.
The optimal resource configuration for an application can
be determined by profiling an application’s performance for
varying number of nodes, CPU power and memory power and
then selecting the best performing configuration for the given
power budget [4]. In this work, we address the data center
scenario in which an additional decision has to be made: how
to distribute available nodes and power amongst the queued
jobs. The challenge is to obtain a distribution that is globally
optimal and not individually for the jobs (which was the
focus of the earlier work [4]). Additionally, new job requests
arrive with time and currently running jobs terminate, which
requires re-optimization of scheduling and resource allocation
decisions. With this context, we believe the major contributions
of this paper are:

• An online resource manager, PARM, that uses overprovi-
sioning, power capping and job malleability along with the
power-response characteristics of each job for scheduling
and resource allocation decisions that significantly improve



the job throughput of the data center (§ IV).
• A power aware strong scaling (PASS) performance model

that estimates an applications performance for a given
number of nodes and CPU power cap (§ V). We demonstrate
the use of our model by estimating characteristics of five
applications having different power-response characteristics
(§ VI-C).

• An evaluation of our online resource manager on a 38 node
cluster with two different job data sets. A speedup of 1.7
was obtained when compared with SLURM (§ VI).

• An extensive simulated evaluation of our scheduling policy
for larger machines and its comparison with the SLURM
baseline scheduling policy. We achieve up to 5.2X speedup
operating under a power budget of 4.75 MW (§ VII).

II. RELATED WORK

Performance modeling using Dynamic Voltage and Fre-
quency Scaling (DVFS) has been extensively studied be-
fore [5]–[8]. These models estimate execution time based on
the CPU frequency. These models cannot be used directly
in the context of CPU power capping. This is because ap-
plications running under the same CPU power cap can have
different CPU frequencies because of the difference in their
memory/CPU characteristics. Based on the on-chip activity
of the application, the frequency will be adjusted in order to
ensure the CPU power cap. The power aware strong scaling
model proposed in this paper differs from the previous work as
it estimates execution time for a given CPU power cap (that
includes power consumption of cores, caches, and memory
controller present on the chip).

Power and energy profiling of parallel scientific work-
load [9]–[11] and modeling of their energy efficiency [12]
has been extensively researched before. Their has been a lot
of work on reducing the energy consumption by applications
while minimizing the degradation in performance. For in-
stance, Porterfield et al in [13] conserve energy consumption
by using an adaptive runtime system to automatically throttle
the number of concurrently used threads based on power and
energy consumption gathered by using the RAPL interface.
Mammela [14] et al have proposed a scheduling scheme to
reduce energy consumption of an entire data center using
DVFS. Other work on energy optimization can be found
in [15]–[18]. Our work deals with the current scenario in
which performance has to be optimized with power as a hard
constraint as compared to optimizing energy efficiency.

Patki et al [3] proposed the idea of overprovisioning the
compute nodes in power-constrained HPC data centers. Appli-
cation is profiled at various node levels and CPU power caps.
For a given power budget, the best operating configuration
is then selected from the sampled configurations. Sarood
et.al. [4] with average system load of 7. included memory
power capping and proposed a scheme to obtain exhaustive
profiling of an application, thus improving the performance
by selecting the optimal configuration for a given power
budget. In this work, we propose an online scheduler for an
overprovisioned data center, that optimizes the distribution of
power and nodes to multiple jobs selected by the scheduler for
simultaneous execution. To the best of our knowledge, PARM
is the first resource manager that uses CPU power capping

and job malleability to show significant improvements in the
throughput of the data center.

III. DATA CENTER AND JOB CAPABILITIES

In this section, we describe some of the capabilities or
features which, according to our understanding, ought to be
present in future HPC data centers. In the following sections,
we highlight the role these capabilities play for a scheduler,
whose goal is to increase the throughput of a data center while
ensuring fairness. Power capping: This feature allows the
scheduler to constrain the individual power draw of each node.
Intel’s Sandy Bridge processor family supports on-board power
measurement and capping through the RAPL interface [2].
RAPL is implemented using a series of Machine Specific
Registers (MSRs) which can be accessed to read power usage
for each power plane. RAPL supports power capping Package
and DRAM power planes by writing into the relevant MSRs.
Here, ‘Package’ corresponds to the processor chip that hosts
processing cores, caches and memory controller. In this paper,
we use package power interchangeably with CPU power, for
ease of understanding. RAPL can cap power at a granularity
of milliseconds which is adequate given that the capacitance
on the motherboard and/or power supply smoothes out the
power draw at a granularity of seconds. Overprovisioning: By
using RAPL to cap the CPU (same as package) power below
TDP value, it is possible to add more nodes to the data center
while staying within the power budget. An overprovisioned
system is thus defined as a system that has more nodes than a
conventional system operating under the same power budget.
Due to the additional nodes, such a system can not enable all
of its nodes to function at their maximum TDP power levels si-
multaneously. Moldable jobs: In these jobs, the user specifies
the range of nodes (the minimum and the maximum number
of nodes) on which the job can run. Typically, the range of
the nodes in which the job can run is dictated by its memory
usage and strong scaling characteristics. The job scheduler
decides the number of nodes within the specified range to be
allocated to the job. Once decided, the number of nodes cannot
be changed during job execution [19]. Malleable jobs: Such
jobs can shrink to a smaller number of nodes or expand to
a larger number of nodes upon instruction from an external
command with in a specified range. The number of allocated
nodes to a malleable job can be changed at any time during the
execution of the job. To enable malleable jobs, two components
are critical – a smart job scheduler, which decides when and
which jobs to shrink or expand, and a parallel runtime system
which provides dynamic shrink and expand capability to the
job. We rely on existing runtime support for malleable jobs
in Charm++ [20]–[22]. In Charm++, malleability is achieved
by dynamically redistributing compute objects to processors
at runtime. Applications built on top of such an adaptive
system have been shown to shrink and expand with small
costs [23]. Charm++ researchers are currently working on
further improving the support for malleable jobs. Prior research
has also shown how MPI applications can be made malleable.
Some notable works are dynamic CPUSET’s mapping and
dynamic MPI [24], dynamic malleability of iterative MPI
applications using PCM (Process Checkpoint and Migration)
library [25], and migratable threads-based overdecomposition
and disk-based checkpoint-restart in Adaptive MPI [26].
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Fig. 1: A high level overview of PARM

IV. POWER AWARE RESOURCE MANAGER

Figure 1 shows the block diagram of our online Power
Aware Resource Manager, or PARM. It has two major mod-
ules: the scheduler and the execution framework. The scheduler
is responsible for identifying which jobs should be scheduled
and exactly which resources should be devoted to each job. We
refer to the resource allocation for each job by the resource
combination tuple, (n, p), where n is the number of nodes
and p is the CPU power cap for each of the n nodes. The
scheduling decision is made based on the Integer Linear
Program (ILP), and the job profiles generated by our strong
scaling power aware model described in § V. The scheduler’s
decisions are fed as input to the execution framework which
implements/enforces them by launching new jobs, shrink-
ing/expanding running jobs, and/or setting the power caps on
the nodes.

The scheduler is triggered whenever a new job arrives or
when a running job ends or abruptly terminates due to an
error or any other reason (‘Triggers’ box in Figure 1). At each
trigger, the scheduler tries to re-optimize resource allocation
to the set of pending as well as currently running jobs with
the objective of maximizing overall throughput. Our scheduler
uses both CPU power capping and moldability/malleability
features for throughput maximization. We formulate this
resource optimization problem as an Integer Linear Program
(ILP). The relevant terminology is described in Table I. Our
scheduling scheme can be summarized as:
Input: A set of jobs that are currently executing or are
ready to be executed (J ) with their expected execution time
corresponding to a set of resource combinations (n, p), where
n ∈ Nj and p ∈ Pj .
Objective: Maximize data center throughput.
Output: Allocation of resources to jobs at each trigger event,
i.e., identifying the jobs that should be executed along with
their resource combination (n,p).

A. Integer Linear Program Formulation

We make the following assumptions and simplifications in
the formulation:

• All nodes allocated to a given job operate at the same power.

Objective Function∑
j∈J

∑
n∈Nj

∑
p∈Pj

wj ∗ sj,n,p ∗ xj,n,p (1)

Select One Resource Combination Per Job∑
n∈Nj

∑
p∈Pj

xj,n,p ≤ 1 ∀j ∈ I (2)

∑
n∈Nj

∑
p∈Pj

xj,n,p = 1 ∀j ∈ I (3)

Bounding total nodes∑
j∈J

∑
p∈Pj

∑
n∈Nj

nxj,n,p ≤ N (4)

Bounding power consumption∑
j∈J

∑
n∈Nj

∑
p∈Pj

(n ∗ (p+Wbase))xj,n,p ≤Wmax (5)

Disable Malleability (Optional)∑
n∈Nj

∑
p∈Pj

nxj,n,p = nj ∀j ∈ I (6)

Fig. 2: Integer Linear Program formulation of PARM scheduler

TABLE I: Integer Linear Program Terminology

Symbol Description

N total number of nodes in the data center
J set of all jobs
I set of jobs that are currently running
I set of jobs in the pending queue
J set of jobs which have already arrived

and have not yet been completed i.e they
are either pending or currently running, J = I ∪ I

Nj set of node counts on which job j can be run
Pj set of power levels at which job j should be run or

in other words, the power levels at which job j’s
performance is known

nj number of nodes at which job j is currently running
wj weighing factor to set job priorities
α a constant in wj used to tradeoff job fairness/priority vs

data center throughput
xj,n,p binary variable, 1 if job j should run

on n nodes at power p, otherwise 0
tnow current time
taj arrival time of job j
Wbase base machine power that includes everything

other than CPU and memory
tj,n,p execution time for job j running on n

nodes with power cap of p
sj,n,p strong scaling power aware speedup of application j

running on n nodes with power cap of p

• We do not include cooling power of the data center in our
calculations.
• Job characteristics do not change significantly during the

course of its execution. By relaxing this assumption we can
benefit from the different phases in an application. However,
that is out of the scope of this study.
• The network power consumption stays constant. It is a rea-

sonable assumption since network power does not fluctuate



much for most interconnect technologies.
• Expected wall clock time represents a good estimate of the

actual execution time that the scheduler uses for decision
making.

• Wbase, that includes power for all the components of a node
other than the CPU and memory subsystems, is assumed to
be constant.

• A job once selected for execution is not stopped until its
completion, although the resources assigned to it can change
during its execution.

• All jobs are from a single user (or have the same priority).
This is assumed just to keep the focus of the paper on other
issues. This assumption can be very easily relaxed by setting
wj proportional to the user/job-queue priority.

Scheduling problems are framed as ILPs and ILPs are NP-hard
problems. Maximizing throughput in the objective function
requires introducing variables for the start and end time of jobs.
These variables make the ILP computationally very intensive
and thus impractical for online scheduling in many cases.
Therefore in the objective function, instead of maximizing
the overall throughput of all the jobs currently in queue, we
propose a greedy objective function that maximizes the sum of
the power-aware speedup (described later) of the jobs selected
for immediate execution. This objective function improves the
job throughput while keeping the ILP optimization computa-
tionally tractable for online scheduling.

We define the strong scaling power aware speedup of a job
j as follows:

sj,n,p =
tj,min(Nj),min(Pj)

tj,n,p
(7)

where sj,n,p is the speedup of job j executing using resource
combination (n, p) with respect to its execution with resource
combination (min(Nj),min(Pj)). Objective function (Eq. 1)
of the ILP maximizes the sum of the power aware speedups
of the jobs selected for execution at every trigger event. This
leads to improvement in FLOPS/Watt (or power efficiency,
as we define it). Improved power efficiency implies better
job throughput (results discussed in § VI,§ VII). Oblivious
maximization of power efficiency may lead to starvation for
jobs with low strong scaling power aware speedup. Therefore,
to ensure fairness, we introduced a weighing factor (wj) in the
objective function, which is defined as follows:

wj = (tremj,min(Nj),min(Pj)
+ (tnow − taj ))α (8)

wj artificially boosts the strong scaling power aware speedup
of a job by multiplying it by the job’s completion time, where
completion time is the sum of the time elapsed since job’s
arrival and the job’s remaining execution time with resource
combination (min(Nj),min(Pj)) i.e. (tremj,min(Nj),min(Pj)

) .
The percentage of a running job completed between two
successive triggers is determined by the ratio of the time
interval between the two triggers and the total time required
to complete the job using its current resource combination.
Percentage of the job that has been completed so far can then
be used to compute tremj,min(Nj),min(Pj)

. The constant α (α ≥ 0)
in Eq. 8 determines the priority given to job fairness against
its strong scaling power aware speedup i.e. a smaller value
of α favors job throughput maximization while a larger value

TABLE II: Different versions of PARM

Acronym Description

noMM Jobs are neither Moldable nor Malleable
noSE Jobs are moldable but not malleable
wSE Jobs are both moldable and malleable

favors job fairness. We now explain the constraints of the ILP
formulation (Figure 2):

• Select one resource combination per job (Eq. 2,3): xj,n,p
is a binary variable indicating if job j should run using
resource combination (n, p). This constraint ensures that at
most one of the variables xj,n,p is set to 1 for any job
j. The jobs which are already running (set I) continue
to run although they can be assigned a different resource
combination (Eq. 3). The jobs in the pending queue (I),
for which at least one of the variables xj,n,p is equal to 1
(Eq. 2), are selected for execution and moved to the set of
jobs currently running (I).
• Bounding total nodes (Eq. 4): This constraint ensures that

the number of active nodes do not exceed the maximum
number of nodes available in the overprovisioned data
center.
• Bounding power consumption (Eq. 5): This constraint en-

sures that power consumption of all the nodes does not
exceed the power budget of the data center.
• Disable Malleability (Eq. 6): To quantify the benefits of

malleable jobs, we consider two versions of our scheduler.
The first version supports only moldable jobs and is called
noSE (i.e. no Shrink/Expand). The second version allows
both moldable and malleable jobs and is called as wSE (i.e.
with Shrink/Expand). Malleability can be disabled by using
Eq. 6. This constraint ensures that number of nodes assigned
to running jobs does not change during the optimization
process. However, it allows changing the power allocated to
running jobs. In real-world situations, the jobs submitted to a
data center will be a mixture of malleable and non-malleable
jobs. The scheduler can apply Eq. 6 to disable malleability
for non-malleable jobs. In addition to the noSE and wSE,
we also measure the performance of noMM (no Moldability
and Malleability) version of PARM in which the jobs are
neither moldable nor malleable. In this version, besides job
selection, the only degree of freedom available to PARM is
the CPU power allocated to the nodes of the selected jobs.
The three versions of the PARM are summarized in Table II
for ease of reference.

V. POWER AWARE STRONG SCALING
PERFORMANCE MODEL

PARM’s optimal resource allocation decisions depend on
the availability of jobs performance data. Performance data
corresponding to a large number of resource combinations
(n, p) can be crucial to the quality of solution PARM pro-
vides. Since exhaustive profiling can be impractical for large
number of resource combinations, we need a model to predict
job performance. One of the significant contributions of our
work is the proposed performance model that can predict an
application’s performance for any given resource combination
(n, p). We call it a Power Aware Strong Scaling performance



TABLE III: Power Aware Strong Scaling Model Terminology

Symbol Description

A Average parallelism in the application
σ fraction of the duration when application parallelism

is not A, parallelism is 2A− 1 for σ
2

fraction and 1 for
σ
2

fraction of the duration
T1 Application execution time on 1 node
f CPU Frequency
fh Threshold frequency beyond which application

execution time does not reduce
fl/fmin Minimum CPU frequency supported by vendor
fmax Maximum CPU frequency supported by vendor
Tl Execution time at CPU frequency fl
Th Execution time at CPU frequency fh
Wcpu on-chip workload in terms of CPU cycles
Tmem Time for off-chip work in the application that is unaffected

by CPU frequency

model or PASS model. The model parameters are specific to
the application and the input dataset with which the application
will be executed. Applying mathematical regression to applica-
tion’s profile data for different resource combinations enables
PASS to estimate important power characteristics. PASS model
extends Downey’s [27] strong scaling model by making it
power aware. Table III gives the terminology used in this
section.

A. Strong Scaling Model

An application can be characterized by an average par-
allelism of A. The application’s parallelism remains equal
to A, except for some fraction σ of the duration. Available
parallelism is 2A − 1 for σ

2 fraction of the duration and just
1 for the remaining σ

2 fraction of the duration. We adjust
Downey’s [27] model to satisfy the boundary conditions -
t(1) = T1, and t(n) = T1

A for n ≥ A, where t(n) is the
application time on n nodes, and T1 is the application time on
a single node. According to Downey’s model, the execution
time, t(n), of an application executing on n nodes can be
modeled as:

t(n) =



T1 − T1σ
2A

n
+
T1σ

2A
, 1 ≤ n ≤ A (9)

σ(T1 − T1

2A )

n
+
T1
A
− T1σ

2A
A < n ≤ 2A− 1 (10)

T1
A
, n > 2A− 1 (11)

The first equation in this group represents the range of n
where the application is most scalable i.e. when the number
of nodes is less than A. The application’s scalability declines
significantly once n becomes larger than A because of lack
of parallelism for most of the duration. Finally, for n ≥ 2A,
the execution time t(n) equals T1/A and does not decrease
further. Given application characteristics σ, A, and T1, this
model can be used to estimate execution time for any number
of nodes n.

B. Adding Power Awareness to Strong Scaling Model

The effect of changing frequency on the execution time
varies from application to application [28] . In this section, we
model execution time as a function of CPU frequency. Since,
CPU frequency can be expressed as a function of CPU power,
we can finally express execution time as a function to CPU
power.

1) Execution Time as a Function of Frequency: Existing
work [4], [28] indicates that increase in CPU frequency beyond
a certain threshold frequency (let us call it fh) does not
reduce the execution time. The value of fh depends on the
memory bandwidth being used by the application. For f < fh,
execution time depends on the CPU-bounded and memory (off-
chip) bounded work of the application and can thus be modeled
as [5]–[7], [29]:

t(f) =


Wcpu

f
+ Tmem, for f < fh (12)

Th, for f ≥ fh (13)

where, Wcpu and Tmem are defined in Table III, and Th
is the execution time at frequency fh. Let Tl be the execution
time at frequency fl where fl is the minimum frequency at
which the CPU can operate. Parameter β characterizes the
frequency-sensitivity of an application and can be expressed
as:

β =
Tl − Th
Tl

(14)

Range of β depends on the frequency range supported by
the CPU vendor. Given the frequency range of (fl, fmax),
β ≤ 1 − fl

fmax
. Typically, CPU-bound applications have

higher values for β whereas memory-intensive applications
have smaller β values.

Using Eq. 14 and applying boundary conditions, t(fl) = Tl
and t(fh) = Th, to Eq. 12, we get:

Wcpu =
Thβflfh

(1− β)(fh − fl)
(15)

Tmem = Th −
Thβfl

(1− β)(fh − fl)
(16)

2) Frequency as a Function of CPU Power: Although Intel
has not released complete details of how the CPU power
consumption is ensured to be below the user specified CPU
power cap, it has been hinted that it is achieved using a
combination of DVFS and CPU throttling [2], [30].

Let pl denote the CPU power corresponding to fl, where
fl is the minimum frequency the CPU can operate at using
DVFS. To cap power below pl (p < pl), other architectural-
level mechanisms such as CPU throttling are used. We have
empirically observed that for p < pl, the application perfor-
mance degrades significantly even for very small savings in
power. Therefore, we restrict our study to power caps greater
than pl. The value of pl can be easily determined by setting
the CPU frequency at fl. CPU or the package power includes
the power consumption by its various components such as
cores, caches, memory controller, etc. The value of pl varies
depending on an application’s usage of these components.



In a CPU-bound application, a processor might be able to
cap power to lower values using DVFS, since only the cores
are consuming power. In contrast, for a memory intensive
application, pl might be higher, since the caches and memory
controller are also consuming significant power in addition to
the cores.

The major part of the dynamic CPU power consumption
can be attributed to the cores, on-chip caches and memory
controller. Power consumption of the core, pcore, is often
modeled as pcore = Cf3 + Df , where C and D are some
constants [31]. Power consumption due to cache and memory
accesses is modeled as,

∑3
i=1 giLi + gmM , where, Li is

accesses per second to level i cache, gi is the cost of a level i
cache access, M is the number of memory accesses per second,
gm is the cost per memory access. The total CPU power can
then be expressed as [32]:

p = pcore +

3∑
i=1

giLi + gmM + pbase (17)

where, pbase is the base/static package power consumption.
Since number of cache and memory accesses is proportional
to the CPU frequency, Eq. 17 can be written as:

p = F (f) = af3 + bf + c (18)

where a, b, and c are constants. bf corresponds to the cores’
leakage power and power consumption of caches and memory
controller. The term af3 represents the dynamic power of the
cores, whereas, c = pbase represents the base CPU power. The
constants a and b are application dependent since the cache and
memory behavior can be different across applications. Eq. 18
can be rewritten as a depressed cubic equation and solved using
Fermat’s Last Theorem to get F−1:

f = F−1(p) =
3

√
p− c
2a

+

√
(p− c)2
4a2

+
b3

27a3

+
3

√
c− p
2a

+

√
(p− c)2
4a2

+
b3

27a3
(19)

3) Execution Time as Function of CPU power & Number
of Nodes: To express t in terms of p, we use Eq. 19 to replace
f , fl, and fh in Eqs. 12, 15, 16. To obtain the PASS model,
that estimates execution time as a function of n and p, we
combine our power aware model with the strong scaling model
described in § V-A, by replacing Th in Eqs. 12, 13, 15, 16 with
t(n) from Eqs. 9, 10, 11.

VI. EXPERIMENTAL RESULTS

In this section, we first describe our experimental setup
that includes applications, testbed, and job datasets. Next, we
obtain the application characteristics using the PASS perfor-
mance model and finally compare the performance of different
versions of PARM with SLURM. PARM can be used in
conjunction with most parallel programming models. While
programming models such as CHARM++ can benefit by using
wSE scheme that uses job malleability, other models like MPI,
can use the noSE scheme to benefit from power awareness
and job moldability. Usage of PARM is not restricted to data
centers with focus on running large number of applications

simultaneously. It can even be used in data centers where
performance of running very small number (or just 1) of large-
scale applications is critical. For example, while running just 1
large job, PARM optimizer will determine the optimal number
of nodes and the cpu power cap of the nodes, on which the
job should be executed for optimal performance.

A. Applications

We used five applications, namely, Wave2D, Jacobi2D,
LeanMD, Lulesh [33], and Adaptive Mesh Refinement or
AMR [34], [35]. These applications have different CPU and
memory usage:

• Wave2D and Jacobi2D are 5-point stencil applications that
are memory-bound. Wave2D has higher FLOPS than Ja-
cobi2D.
• LeanMD is a computationally intensive molecular dynamics

application.
• CPU and memory usage of Lulesh and AMR lies in between

the stencil applications and LeanMD.

B. Testbed

We conducted our experiments on a 38-node Dell Pow-
erEdge R620 cluster (which we call the Power Cluster). Each
node contains an Intel Xeon E5-2620 Sandy Bridge with 6
physical cores at 2GHz, 2-way SMT with 16 GB of RAM.
These machines support on-board power measurement and
capping through the RAPL interface [36]. The CPU power
for our testbed can be capped in the range [25− 95]W , while
the capping range for memory power is [8− 35]W .

C. Obtaining Model Parameters of Applications

Application characteristics depend on the input type, e.g.,
grid size. We fix the respective input types for each ap-
plication. Each application needs to be profiled for some
(n, p) combinations to obtain data for curve fitting. A single
time step (iteration) of an application is sufficient to get the
performance for a given resource combination. For applications
having time steps (iteration) in order of milliseconds, the
cost of profiling several resource combinations is negligible
compared to the overall execution time of the application.
Each time step (iteration) will include the different phases of
an application such as IO, communication, solvers, etc. and
therefore the overall characteristics of the job can be captured
in a step/iteration. This approach works best for iterative
applications and other applications whose characteristics do
not change significantly over time, which is true for majority
of the scientific applications.

We use linear and non-linear regression tools provided by
MATLAB to determine the application parameters by fitting
our performance model proposed in § V to the sampled perfor-
mance data obtained by running the parallel applications on 20
nodes. The obtained parameter values for all the applications
are listed in Table IV and are discussed here:

• The parameter c (CPU base power) lies in the range [13−
14]W for all applications
• pl was 30W for LeanMD and 32W for rest of the applica-

tions. For LeanMD, it is possible to cap the CPU power to
a lower value just by decreasing the frequency using DVFS.
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Fig. 3: Modeled (lines) and observed (markers) power aware speedups
of the applications at 20 nodes

TABLE IV: Obtained model parameters

Application a b pl ph β

LeanMD 1.65 7.74 30 52 0.40
Wave2D 3.00 10.23 32 40 0.16
Lulesh 2.63 8.36 32 54 0.30
AMR 2.45 6.57 32 54 0.33
Jacobi2D 1.54 10.13 32 37 0.08

This is because LeanMD is a computationally intensive
application and therefore most of the power is consumed by
the cores rather than caches and memory controller. On the
contrary, for other applications, CPU throttling kicks in at
a higher power level because of their higher cache/memory
usage.

• value of ph lies in the range of [37 − 54]W for the
applications under consideration.

• value of β lies in the range [0.08 − 0.40]. Higher value of
β means higher sensitivity to CPU power.

• Wave2D and Jacobi2D have the largest memory footprint
that results in high CPU-cache-memory traffic. Therefore
the value of b is high for these two applications.

Figure 3 shows the modeled (lines) as well as the observed
(markers) power-aware speedups for all applications with
varying CPU power cap at 20 nodes. Power-aware speedup
is calculated with respect to the execution time at p = pl and
the same number of nodes. LeanMD has the highest power-
aware speedup whereas Jacobi2D has the lowest.

D. Power Budget

We assume a power budget of 3300W to carry out experi-
ments using our Power Cluster. Although the vendor-specified
TDP of CPU and memory of the Dell nodes was 95W and
35W, respectively, the actual power consumption of CPU and
memory never went beyond 60W and 18W while running any
of the applications. Therefore, instead of the vendor-specified
TDP, we consider 60W and 18W as the maximum CPU and
memory power consumption and use them to calculate the
number of nodes that can be installed in a traditional data

center. The maximum power consumption of a node, thus, adds
up to 60W + 18W + 38W = 116W , where 38W is the base
power of a node. Therefore, the total number of nodes that can
be installed in a traditional data center with a power budget
of 3300W will be b 3300116 c = 28 nodes. By capping the CPU
power below 60W, the overprovisioned data center will be able
to power more than 28 nodes.

E. Job Datasets

We constructed two job datasets by choosing a mix of
applications from the set described in § VI-A. All these appli-
cations are written using the Charm++ parallel programming
model and hence support job malleability. Application’s power-
response characteristics can influence the benefits of PARM.
Therefore, in order to better characterize the benefits of PARM,
these two job datasets were constructed such that they have
very different average values of β. We name these datasets
as SetL and SetH, with average β value of 0.1 and 0.27,
respectively. For instance, SetH has 3 LeanMD, 3 Wave2D,
2 Lulesh, 1 Jacobi, and 1 AMR job, that gives us an average
β value of 0.27. A mix of short, medium and long jobs were
constructed by randomly generating wall clock times with a
mean value of 1 hour. Similarly, the job arrival times were
generated randomly. Each dataset spans over 5 hours of cluster
time and approximately 20 scheduling decisions were taken (a
scheduling decision is taken whenever a new job arrives or
a running job terminates). The minimum and the maximum
number of nodes on which a job can run was determined by
the job’s memory requirements. We used 8 node levels (i.e.
|Nj |= 8) that are uniformly distributed between the minimum
and maximum number of nodes on which the job can run. The
memory power is capped at the fixed value of 18W whereas
we used 6 CPU power levels - [30, 32, 34, 39, 45, 55]W.

F. Performance Metric

We compare our scheduler with SLURM [37]: an open-
source resource manager that allocates compute nodes to
jobs and provides a framework for starting, executing and
monitoring jobs on a set of nodes. SLURM provides resource
management on many of the most powerful supercomputers
of the world including Tianhe-1A, Tera 100, Dawn, and
Stampede. We deployed both PARM and SLURM on the
testbed. For comparison purpose, we use SLURM’s scheme in
which the user specifies the exact number of nodes requested
for the job and SLURM uses FIFO + backfilling for making
scheduling decisions. We call this as the SLURM baseline
scheme or just the baseline scheme. The number of nodes
requested for a job submitted to SLURM is the minimum
number of nodes on which PARM can run that job.

We use response time and completion time as the metric
for comparing PARM and SLURM. A job’s response time,
tres, is the time interval between its arrival and the beginning
of its execution. Execution time, texe, is the time from start to
finish of a job’s execution. Completion time, tcomp, is the time
between job’s arrival and the time it finished execution, i.e.,
tcomp = tres + texe. Job throughput is the inverse of the average
completion time of jobs. In this study, we emphasize on
completion time as the performance comparison metric, even
though typically response time is the preferred metric. This
is because unlike conventional data centers, where resources



allocated to a job and hence the jobs execution time are fixed,
our scheduler dynamically changes job configuration during
execution which can vary job execution time significantly.
Hence, response time is not a very appropriate metric for
comparison in this study. Completion time includes both the
response time and the execution time and is therefore the
preferred metric of comparison.

G. Results

Figure 4(a) shows the average completion times of the two
datasets with SLURM and noMM, noSE, and wSE versions of
PARM. In noMM experiments, the number of nodes allocated
to a job were the minimum number of nodes on which the
noSE and wSE versions can run the same job. The maximum
number of nodes on which noSE and wSE can run the job were
same as the number of nodes on which SLURM runs the same
job. The completion times for noMM, wSE and noSE include
all overhead costs including the ILP optimization time and the
costs of constriction and expansion of jobs. All versions of
PARM significantly reduce the average completion time for
both the data sets compared to SLURM (Figure 4(a)). This
improvement can mainly be attributed to the reduced average
response times shown in Figure 4(b). Our scheduler intelli-
gently selects the best power levels for each job which allows
it to add more nodes to benefit from strong scaling and/or
scheduling more jobs simultaneously. noMM version of PARM
significantly reduces the completion times by intelligently
selecting jobs and allocating power to them. Allowing job
moldability and malleability in noSE and wSE, respectively,
further reduces the completion times. For example, there is
an improvement of 7.5% and 13.9% in average completion
time of SetL with noSE and wSE, respectively over the noMM
scheme. A speedup of 1.7X is achieved with wSE scheme over
the baseline scheme. Ability to shrink and expand the jobs for
wSE version of PARM, gives additional flexibility to the ILP to
re-optimize the allocation of nodes to the running and pending
jobs. noSE reduces the solution space of ILP (compared to
wSE) by not allowing running jobs to change the number of
nodes allocated to them during their execution. The noMM
version reduces the search space even further by fixing the
number of nodes allocated to a job both at the start time and
during its execution. The wSE version further benefits from the
fact that it can expand the running jobs to run on the unutilized
machines. e.g. when there are not enough jobs to utilize all
the nodes. These factors reduce both the average completion
and the average response time in wSE (Figure 4(a), 4(b)). As
shown by Figure 4(c), wSE scheme utilizes an average of 36
nodes during the entire dataset execution as compared to an
average of 33 nodes used in the case of noSE for SetL.

A smaller value of β means that the effect of decreasing the
CPU power on application performance is small. When β is
small, the scheduler will prefer to allocate less CPU power and
use more nodes. When β is large, the benefits of adding more
nodes at the cost of decreasing the CPU power are smaller. The
flexibility to increase the number of nodes gives PARM higher
benefit over SLURM when β is small as compared to the case
when β is large. This is corroborated with the observation
(Figure 4) that the benefits of using PARM as compared to
SLURM are much higher with dataset SetL (β = 0.1) as
compared to dataset SetH (β = 0.27). PARM’s intelligent
allocation of power can significantly improve completion and

response times. These can be further improved by using job
moldability and malleability features.

VII. LARGE SCALE PROJECTIONS

After experimentally showing the benefits of PARM on a
real cluster, we now analyze its benefit on very large machines.
Since it was practically infeasible for us to do actual job
scheduling on very large machine, we use the SLURM simu-
lator [38] which is a wrapper around SLURM. This simulator
gives us information about SLURM’s scheduling decisions
without actually executing the jobs. To make analysis of PARM
more reliable, we develop a model to estimate the cost of
shrinking and expanding jobs. We then give the experimental
setup and present a comparison of PARM scheduling with
baseline scheduling policy. Since noMM version of PARM was
inferior to both wSE and noSE, we concentrate on wSE and
noSE schemes in this section.

A. Modeling Cost of Shrinking and Expanding Jobs

Constriction and expansion of jobs has an overhead associ-
ated with it. These overheads come from data communication
done to balance the load across the new set of processors
assigned to the job and from the boot time of nodes.

For demonstrating our system using real experiments
(§ VI), we used the existing malleability support in
Charm++ [23]. However, the approach in [23] is practical only
for small clusters as it starts processes on as many nodes
as the job can run on. Inter-job interference and security
concerns make that approach impractical for large-clusters,
where many jobs run simultaneously. Charm++ researchers
have recently proposed a new approach which eliminates the
need of spawning processes on all nodes and does not leave any
residual processes after shrink. Hence, for more practical and
accurate large-scale projections, we model an approach which
would require dynamic process spawning when expanding.
Hence, we consider boot times in our model.

A scheduler typically makes two decisions: 1) how many
nodes to assign to each job, and 2) which nodes to assign
to each job. We address the first decision in this paper and
defer the second for future work. Let us say that job j
with a total memory of mj MB, has to expand from nf
nodes to nt nodes. For simplification of analysis, we assume
that each job is initially allocated a cuboid of nodes (with
dimensions- 3

√
nf× 3

√
nf× 3

√
nf ) interconnected through a 3D

torus. After the expand operation, size of the cuboid becomes
3
√
nf × 3

√
nf × nt

2
3
√
nf

. For load balance, the data in memory
(mj MB) will be distributed equally amongst the nt nodes.
Hence, the communication cost for the data transfer can be
expressed as (secs):

tc =
(
mj

nf
− mj

nt
) ∗ nf

2 ∗ b ∗ n
2
3

f

(20)

where b is the per link bandwidth in MB/sec. The numerator
in Eq. 20 represents the total data to be transferred whereas
the denominator represents the bisection bandwidth of the
cuboid. Similarly, the cost of shrinking a job is determined by
computing the cost of distributing the data of nf − nt nodes
equally across the final nt nodes.
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Fig. 4: Comparing performance of SLURM with noMM, noSE, and wSE versions of PARM.

Boot times can be significant for some supercomputers.
Since many supercomputers in Top500 [39] belong to the
Blue Gene family, we include their boot time when evaluating
our scheme. We adopt the following simple linear model to
calculate the boot time (tb) for expand operation based on
Intrepid boot time data [40]:

tb(in seconds) = (nt − nf ) ∗ 0.01904 + 72.73 (21)

In an expand operation, communication phase can start only
after additional nodes become available. These additional
nodes might have to be booted. Therefore the total cost of
a shrink or expand operation is the sum of boot time and data
transfer time, i.e., tse = tc+ tb. A job set for expansion might
receive additional nodes from a job undergoing constriction
in the same scheduling decision. Therefore, an expanding
job has to wait until the shrinking job has released the
additional resources. To simplify this analysis, we determine
the maximum tse from amongst the shrinking/expanding jobs
(tmaxse ) and add 2tmaxse to the execution times of all the jobs
shrinking or expanding during the current scheduling decision.
To control the frequency of constriction or expansion of a job,
and consequently its cost, we define a parameter fse (in secs).
fse is the time after which a job can shrink or expand. i.e. if
a job was shrunk or expanded at t secs, then it can be shrunk
or expanded only after t+fse secs. This condition is enforced
using Eq. 6.

B. Experimental Setup

1) Job Datasets: The results presented in this section are
based on the job logs [41] of Intrepid [42]. Intrepid is a
IBM BG/P supercomputer with a total of 40, 960 nodes and
is installed at Argonne National Lab. The job trace spans over
8 months and has 68, 936 jobs. We extracted 3 subsets of
1000 successive jobs each from the trace file to conduct our
experiments. These subsets will be referred to as Set1, Set2,
and Set3 and the starting job ids for these subsets are 1, 10500,
and 27000, respectively. To measure the performance of PARM
in the wake of diverse job arrival rates, we generated several
other datasets from each of these sets by multiplying the arrival
times of each job by γ, where γ ∈ [0.2− 0.8]. Multiplication
of the arrival times with γ increases the job arrival rate without
changing the distribution of job arrival times and tells us how
the data center throughput would change in case the load is
increased, i.e., faster job arrival rate.

2) Application Characteristics: Since most data centers do
not report power characteristics of running jobs, application
characteristics, (σ, T1, A, fl, fh, β, a and b), of the jobs in the
Intrepid logs are not known. Hence, we sampled parameter
values from the range defined applications in § VI-C and
randomly assign them to jobs in our datasets. Since these
parameters are chosen from a diverse set of applications that
range from CPU intensive to memory intensive applications,
we believe them to be representative of real applications.

3) Node Range for Moldable/Malleable Jobs: Intrepid does
not allow moldable/malleable jobs, and therefore logs only
specify the fixed number of nodes requested by the jobs.
For jobs submitted to the PARM scheduler, we consider this
number as the maximum nodes that the job can be run
(max(Nj)), and set min(Nj) = θ ∗ max(Nj), where θ is
randomly selected from the range [0.2− 0.6].

4) Power Budget and CPU Power levels: Information about
power consumption of Intrepid nodes is not publicly available.
Therefore, we use the power values from our testbed cluster
(described in § VI-B). With 116W as the maximum power
consumption per node, the maximum power consumption of
40, 960 nodes equals 4751360W. The SLURM scheduler will
schedule on 40960 nodes with each node running at maximum
power level. As in § VI-E, PARM uses 6 CPU power levels,
Pj = {30, 33, 36, 44, 50, 60}W .

C. Performance Results

Figure 5 shows that both noSE and wSE significantly
reduce average completion times compared to SLURM’s base-
line scheduling policy. As γ decreases from 0.8 to 0.2, the
average completion time increases in all the schemes because
the jobs arrive at a much faster rate and therefore have to
wait in the queue for longer time before they get scheduled.
However, this increase in the average completion times with
both our schemes is not as significant as it is with the SLURM
baseline scheme. The average completion times includes the
cost of all overheads. In all the job datasets, the average
overhead for shrinking and expanding the jobs was less than
1% of the time taken to execute the dataset. We controlled
these costs by setting fse = 500 secs, i.e., the scheduler waited
for at least 500 secs between two successive shrink and expand
operations for a job. Cost of optimizing the ILP was also very
small. In the worst case, it took 15 secs to optimize an ILP,
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Fig. 5: Comparing average completion times of baseline, noSE, and wSE on several datasets.

which is negligible as compared to the frequency at which the
scheduler was triggered.

Table V shows that both noSE and wSE have significantly
improved average response times, with wSE outperforming
noSE. Execution time in wSE includes the costs of shrinking
or expanding the job (§ VII-A). Despite this overhead, wSE
consistently outperforms noSE in all data sets. Better average
completion times in noSE and wSE, despite having poor
average execution time (Table V), as compared to SLURM is
because of the fact that they can run more jobs simultaneously
by intelligently selecting the number of nodes for each job.
Speedups in Table V are the improvement in average com-
pletion time compared to the baseline scheme. A speedup of
5.2X is obtained in the best case. We make the following two
observations in the obtained speedups:

• Higher speedups for smaller values of γ: This implies that
as the job arrival rate increases relative increase in average
completion time of wSE is much less than the relative
increase in the average completion time of the baseline
scheme.

• Smaller speedups in Set3 as compared to Set2: This is
because Set3 does not have enough jobs to keep the machine
fully utilized for first half of Set3.

D. Comparison with Naive Overprovisioning

To show the benefits of using a sophisticated optimiza-
tion methodology for intelligent power allocation in PARM
(§ IV-A), we compare PARM with a naive strategy in which
all nodes in the overprovisioned system are allocated the same
CPU power and the jobs are scheduled using the SLURM
baseline scheduling policy. For instance, with CPU power of
30W, the naive strategy can use up to b 4751360

30+18+38c = 55248
nodes. Table VI gives the speedup of wSE over the naive
strategy executed with different CPU power caps. Significant
speedups in Table VI clearly demonstrate that intelligent power
allocation to the jobs is essential and benefits of PARM are
not coming merely from overprovisioning of nodes.

E. Analyzing Tradeoff Between Fairness and Throughput

We introduced the term wj in the objective function of
the scheduler’s ILP (Eq. 1) to prevent starvation of jobs with
low power-aware speedup. In this section, we analyze the
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Fig. 6: Average (left axis) and maximum (right axis) completion times
for Set 1 for different values of (α)

tradeoff between maximum completion time of any job (i.e. job
fairness) and the average completion time of the jobs (i.e. data
center throughput). Figure 6 shows the results from several
experiments where we varied α and measured its impact on
average and maximum completion times. As the value of α
(Table I) increases, the maximum completion time decreases at
the cost of increase in average completion time. Therefore, the
parameter α can be be tuned by the data center administrator
to control fairness and throughput.

F. How Much Profile Data is Sufficient?

Number of binary variables in the PARM ILP formulation
(xj,n,p) are proportional to the number of CPU power levels
of the jobs (Pj). Larger number of such power levels increase
the solution space of the ILP and hence the quality of the
solution. However, larger the number of variables, longer it
takes to solve the ILP. As mentioned earlier in § VII-C, the
cost of solving the ILP in all of our experiments was 15 secs
in the worst case when |Pj |= 6 and the job queue J had
200 jobs. In this section, we show the impact of |Pj | on the
completion times. Figure 7 shows the average and maximum
completion times of job dataset Set1(γ = 0.5) as the number
of CPU power levels (Pj) are increased from 2 to 8. For
example, |Pj |= 2 means that a job can execute either at 30W
or at 60W CPU power. The average and maximum completion
times decreases as |Pj | goes from 1 to 6 and the improvement



TABLE V: Comparing various performance metrics of baseline, wSE and noSE on various datasets

Set Avg Resp. Time (mins) Avg Exe. Time (mins) Avg. Num. of Nodes Speedup
baseline wSE noSE baseline wSE noSE baseline wSE noSE wSE noSE

1 (γ = 0.5) 90 3 6 80 84 95 453 610 601 1.91 1.70
2 (γ = 0.5) 500 34 57 57 69 89 632 714 721 5.25 4.66
3 (γ = 0.5) 217 99 88 60 73 90 520 662 665 1.65 1.61
2 (γ = 0.7) 142 12 20 57 66 83 596 656 660 2.36 1.96
3 (γ = 0.7) 194 95 86 60 73 90 488 596 599 1.54 1.43

TABLE VI: Speedup of wSE over baseline scheduler running on
an overprovisioned system (i.e. the naive strategy) at different CPU
power caps on Job Dataset Set2 (γ = 0.5)

CPU power cap (W) 30 40 50 60

Speedup of wSE over naive 4.32 1.86 2.33 5.25
Num. of nodes in naive strategy 55248 49493 44824 40960
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Fig. 7: Effect of increasing the number of power levels (|Pj |) on the
average and maximum completion time of Set 1 (γ = 0.5). There is
negligible improvement in performance after 6 power levels

stops as |Pj | is further increased. This indicates that 6 CPU
power levels were sufficient to get maximum performance from
PARM for the given job datasets.

VIII. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, PARM is the first online
scheduler that uses power aware characteristics , CPU power
capping and job malleability to achieve high job through-
put under a strict power budget. PARM holds promise for
maximizing job throughput of existing and upcoming data
centers where power is a constraint. We proposed a power-
aware strong scaling model that can estimates an application’s
power-capped performance at any scale with good accuracy.
The proposed sophisticated ILP optimization methodology
uses performance estimates from the model to select jobs
for scheduling, and allocates CPU power caps and nodes to
them. Programming models like MPI, which do not directly
support job malleability can also benefit significantly from
our power-aware scheduling (using noSE version of PARM).
To conclude, hardware-software coordinated approaches can
significantly help in driving performance-power tradeoff at

exascale. Adaptive runtime systems can further increase these
benefits by allowing job malleability.

Caches constitute a significant portion of the node power
consumption. However, the benefits of using different levels of
caches on application performance may not be proportional to
their power consumption [43]. In our future work, we plan
to add this additional degree of freedom to PARM, which
is the ability to dynamically enable/disable caches at various
levels. We also plan to provide rich support for user priorities
in PARM. Thermal behavior of CPUs can significantly affect
the reliability of a machine [44] as well as the cooling costs of
the data center [45]. We also plan to investigate the possibility
of incorporating thermal constraints along with a strict power
constraint in our scheduling scheme.
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