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Abstract—Today’s HPC systems use two mechanisms to ad-
dress main-memory errors. Error-correcting codes make cor-
rectable errors transparent to software, while checkpoint/restart
(CR) enables recovery from uncorrectable errors. Unfortunately,
CR overhead will be enormous at exascale due to the high failure
rate of memory. We propose a new OS-based approach that
proactively avoids memory errors using prediction. This scheme
exposes correctable error information to the OS, which migrates
pages and offlines unhealthy memory to avoid application crashes.
We analyze memory error patterns in extensive logs from a BG/P
system and show how correctable error patterns can be used to
identify memory likely to fail. We implement a proactive memory
management system on BG/Q by extending the firmware and
Linux. We evaluate our approach with a realistic workload and
compare our overhead against CR. We show improved resilience
with negligible performance overhead for applications.

Keywords—Operating Systems, Memory Structures, Reliability,
and Fault-Tolerance.

[. INTRODUCTION

Frequent system failure due to an increased number of
memory errors is a major obstacle to scaling current HPC
technology [1]. These errors require the system to be rebooted
and any running applications to be restarted, either from
scratch or from previous checkpoints [2]. Error-correcting code
(ECC) is the traditional approach to addressing memory errors.
ECC uses extra, redundant memory cells to detect, and in
many cases to correct, memory errors before the errors lead to
memory corruption and system failure. However, as systems
scale up, unprecedented transistor and component density,
aggressive power efficiency requirements, and new fabrication
techniques will impose new challenges to system reliability
that ECC may not be able to address.

Memory failures are caused by soft or hard errors. Soft
errors are transient errors caused by external particles such
as neutrons and alpha particles. These particles can flip bit
values in the transistors. Hard errors are permanent, recur-
ring errors caused by wear-and-tear and aging of transistors
and metals. They are characterized by phenomena such as
electro-migration, voltage drop, Negative- or Positive-Biased
Temperature Instability (NBTI/PBTI), Hot Carrier Injection
(HCI), Time-Dependent Dielectric Breakdown (TDDB), and
other deterioration processes. In the next decade, hard errors
are expected to be the dominant source of errors while the
soft error rate is expected to decrease due to advances in
transistor technology such as the transition to FinFET. This
trend can already be observed in current systems in which
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there are significantly larger than expected numbers of hard
errors compared to soft errors [3], [4].

ECC mechanisms can address both soft and hard errors.
Correctable memory errors, those for which the redundant
ECC information is sufficient to reconstruct the correct mem-
ory content, can be handled without restarting the system or
applications. Uncorrectable errors are those that are detected by
the ECC mechanism but for which the redundant information
is insufficient for correction. Uncorrectable errors generally
require a system restart. Silent errors, those that escape even
detection by the ECC mechanism and result in outright mem-
ory corruption, are so damaging that ECC mechanisms are
designed to make them extremely rare, even in very large-scale
systems. This paper is primarily concerned with ECC-detected
memory errors, both correctable and uncorrectable.

While soft errors are intrinsically unpredictable, hard errors
can be described as a dynamic function of manufacturing
variations, surrounding conditions, and workload phases. Early
signs of degradation manifest as a pattern of correctable errors.
Correctable errors are typically logged by Reliability-and-
Availability Services (RAS) subsystems in HPC systems, but
are transparent to upper software layers including the OS
and applications. Several studies point to the predictability of
memory hard errors [5], [6]. These studies expose the potential
benefits in the early identification of unhealthy memory. These
studies also show how the occurrence of correctable memory
errors is concentrated in a small fraction of memory in few
nodes. The benefits of proactively avoiding failing memory are
discussed in [3]. While the study projects that simple policies
guiding the retirement of memory pages would be sufficient to
avoid a large number of correctable errors, it does not provide
a practical model and mechanism to apply these policies.

There are two main challenges that must be addressed
to enable proactive avoidance of failing memory. The first
challenge is to enable real-time access to corrected-error
information. The second is to efficiently analyze the error
information, recognize patterns that indicate likely imminent
failures, and take steps to avoid using the failing memory
areas. Addressing these challenges requires changes to the
typical RAS infrastructure deployed in HPC systems. Non-
fatal errors should continue to be captured and logged by the
RAS infrastructure but they should also be exposed to the OS.
Non-fatal error events must be presented in a way that allows
the OS to take proactive actions to avoid fatal errors. The OS
can then apply a failure prediction algorithm to the live stream
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of error events and distinguish between harmless error patterns
and error patterns that are likely to lead to failure.

We propose, implement, and evaluate a solution for ex-
ploring correctable memory error patterns for proactive mem-
ory management within the OS. Our solution consists of a
generic and adjustable memory-failure prediction algorithm for
DRAM, an OS mechanism implementing failure prediction,
and proactive memory management. Our solution is imple-
mented as a working prototype on Blue Gene/Q (BG/Q). In
order to develop a prediction algorithm, we used previous
studies and publicly available data on failure events in HPC
systems. Our algorithm is based on error patterns we identified
in raw BG/P RAS logs that were collected from Intrepid at
Argonne National Laboratory [7] and cover a period of seven
months of real workload. All the data is available in the
USENIX Computer Failure Data Repository (CFDR) [8]. We
describe the steps taken to process the error logs and report on
our analysis of memory-related events and on how the analysis
led to a generic and adjustable algorithm for DRAM that can
be applied to live event streams.

Our prototype consists of changes to the native BG/Q RAS
support, a memory health monitor, and changes to the BG/Q
Linux kernel. In order to expose detailed information about
correctable errors, we changed the mechanisms in the BG/Q
firmware used for error logging. Error information can be
intercepted and delivered to the OS through a custom interrupt
interface. The interface provides access to information about
the memory involved in correctable errors including physical
addresses and error types. We also implemented an error
emulation mechanism at the firmware level. This mechanism
can inject errors via the hardware memory controller that are
then processed as if they were real errors. The mechanism
allows us to evaluate our solution in realistic, repeatable
scenarios.

The memory health monitor is responsible for handling
interrupts caused by correctable error events, applying the
failure prediction algorithm, and triggering mitigation actions
if necessary. The mitigation actions involve the migration of
data away from, and the retirement of, pages for which failure
has been predicted. We use the page soft-offlining feature that
exists in Linux but was not previously enabled in BG/Q Linux.
The feature allows the retirement of a page through non-
disruptive migration of data from the page and its removal
from mapped memory.

The goal of this paper is two-fold. First, we demonstrate
the feasibility of our solution by showing how emulated errors
from existing logs can be avoided in a practical setup. We mea-
sure the overhead and the effectiveness for different scenarios.
We evaluate the number of errors avoided as a function of
the amount of memory offlined and the performance overhead
due to page migration. Second, we evaluate the benefits of our
mechanism for the improvement of overall system resilience
to memory failures. We present numbers for Mean-Time-
Between-Failure (MTBF) improvement and compare our ap-
proach to a checkpoint/restart mechanism for a representative
workload. We show that significant resilience improvement can
be obtained with negligible overhead compared with traditional
mitigation techniques.

The rest of the paper is organized as follows. In Section
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Fig. 1. Correctable memory error reporting format in BG/P.

I we describe how we derived a generic prediction algorithm
by analyzing a raw RAS log. We present in detail the method
used to process and interpret the logs, along with the spatial
and temporal correlation analysis that yielded the steps in the
algorithm. In Section III we describe our OS mechanism to
predict and avoid memory errors. In Section III-B we describe
the prototype implementation, including the changes to the
BG/Q infrastructure and the enabling and testing of memory
page migration/offlining in Linux on BG/Q. In Section IV we
present our evaluation of the effectiveness of the proposed
solution. In Section V we discuss related work, and in Section
VI we discuss conclusions and future work.

II. MEMORY HEALTH AND FAILURE PREDICTABILITY

Identifying early signs of memory health degradation is
necessary to mitigate the impact or avoid a failure. While
previous studies show strong statistical evidence of the cor-
relation between correctable errors and failures, little has been
done to demonstrate how this information can be exploited in
system software. Spatial and temporal distribution of errors and
their correlation can be used to separate healthy and unhealthy
memory chips. We define unhealthy chips as those with deteri-
orating memory error patterns. A common progression for an
unhealthy chip is multiple single-bit errors, followed by multi-
bit and/or non-trivial errors, until an eventual uncorrectable
error causes a failure.

Spatial correlation indicates the likelihood of experiencing
a failure after seeing a pattern of errors in bits that are near each
other physically. For hard errors, the frequency with which a
correctable error is experienced is a function of the degradation
process and the access pattern. We show how to capture both
the degradation process and the access pattern in a simple
algorithm, that when applied to a stream of correctable errors
can be used to anticipate when memory is unhealthy and a
failure is imminent. The failure prediction algorithm is derived
from an analysis of error logs from Intrepid, a BG/P system at
Argonne National Laboratory. These are publicly available logs
used in previous studies and are comparable to error patterns
in different systems [3].

Intrepid consists of 40 racks containing a total of 40,960
nodes. Each node has four PowerPC 450 cores and 40 DRAM
chips providing 2 GB of addressable memory. ECC can correct

TABLE 1. SUMMARY OF CORRECTABLE ERROR DISTRIBUTION FOR NODES AND
JOBS.
‘ Nodes # ‘ Reports/Jobs # ‘
All 40273 Error reports 68946
w/ memory error 956 Jobs 49500
w/ Chipkill activation 262 27%
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Fig. 2. Example of error address distribution in a memory bank for two

nodes activating Chipkill: (a) R34-M0-N13-J24 and (b) R20-M0-N14-]24.

single- and double-symbol errors, and it includes Chipkill
error correction that can tolerate complete failure of any
single DRAM chip by reconstructing data from redundant data
pieces kept in the remaining chips [9]. The error correction
capabilities and logging formats found in BG/P are similar to
those found in BG/Q, the system we use for our prototype.
Fig. 1 summarizes a sample from a correctable-error report
in BG/P. For each job executed, the first correctable error
in each of the following complexity categories is reported:
single-symbol error, double-symbol error, and Chipkill. For
each first occurrence, details such as the failing address,
DRAM chip, and timestamp, among others, are reported. The
total number of occurrences of each type of correctable error
is then summarized at the end of the job. In Table I, we
show a summary of correctable error occurrences in the BG/P
logs. We highlight the incidence of non-trivial error-correction
activations (Chipkill), an indication of impending hard errors.
Next we show how spatial and temporal characteristics of
memory errors can be used in a prediction algorithm.

A. Spatial Correlation

We first show how the spatial distribution of correctable
errors can be used to identify nodes with a high chance
of developing non-trivial error corrections. We focus on the
evolution of error patterns as an indication of predictable
memory failure. With respect to the occurrence of correctable
errors, two very distinct sets are observed. In one set are nodes
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Fig. 3. Probability of observing a Chipkill event based on spatial and temporal
distribution of repeated correctable errors for all jobs.
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Fig. 4. Example of error address distribution in a memory bank for two nodes
not activating Chipkill: (a) R21-M0-N10-J30 and (b) R44-M1-N01-J26.

that experienced instances of single-symbol errors, but never
required a more complex error correction activation such as
Chipkill. In another set are nodes that activated Chipkill. While
Chipkill is still a correctable error, its repeated occurrence is
highly correlated with the occurrence of an uncorrectable error
causing a failure (details can be found in Section II-C). The
second set of nodes represents 27% of all nodes experiencing
correctable errors.

We use spatial error distribution to identify errors that
tend to cluster, indicating the development of a faulty memory
area. Assuming that such patterns can be related only to hard
errors, one approach to identify a faulty area is to identify
the repetition of correctable errors in the same address (row
and/or column) in a given memory bank. Note that references
to “addresses” below are meant to imply the row and column
addresses that are relevant for spatial locality.

Fig. 2 and Fig. 4 show examples from the two distinct
node sets, with each failing address plotted in the memory
bank space. Each address in the graphs is colored according to
the number of repeated error occurrences it has experienced.
In Fig. 2, there are two examples of nodes that repeatedly
activated Chipkill. Conversely, in Fig. 4 are two examples of
nodes where single-symbol corrections never developed into
Chipkills. Most of the nodes that develop Chipkill follow the
pattern in Fig. 2, which is characterized by repeated error
corrections in the same address. Conversely, nodes that do
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Fig. 6. Example showing correlation of correctable error counts: total error
counts for all jobs run on node R04-M1-NO1-J17.

not activate Chipkill experience significantly fewer address
repetitions. As proposed in previous studies, the chances
of experiencing a Chipkill correction can be obtained as a
function of whether correctable errors are observed in the same
address. The left-hand side bars in Fig. 3 show the probability
of experiencing at least one Chipkill correction after seeing
at least one repetition at the same address for all jobs in the
error logs. The left-hand side bars in Fig. 5 show the prediction
coverage. While there is some predictability, the sole use of
spatial distribution implies a probability no higher than 20%
and a prediction coverage of 45%. These numbers are in line
with previous studies. Next we show that by combining spatial
and temporal error distribution, specifically the correctable
error rate, the prediction accuracy can be made significantly
higher.

B. Temporal Correlation

We use timing information from the BG/P logs in two
ways. We first calculate for each correctable error category,
an error rate based on the first occurrence of an error and the
total number of errors reported at the end of each job. We also
use error timestamps to measure the average time between
the first occurrence of a single-symbol error and a potential
Chipkill correction.

For each node, we calculate the error rate for each job,
and based on whether the first address report is an address
repetition, try to determine whether that specific job developed
at least one Chipkill. The right-hand side bars in Fig. 3 show
the updated probability when spatial and temporal correlation
is taken into account. We found that if any kind of repetition
is followed by an error rate greater than 1 error/second, all the
observed jobs developed Chipkill. However, not all jobs with
Chipkill had an early repetition and an error rate greater than
1 error/second. The right-hand side bars in Fig. 5 show the
updated coverage when error rate is taken into account. While
this analysis does not guarantee full coverage, it shows that the
observation of the first occurrence of a correctable error and
the frequency of any errors that follow allow the anticipation
of complex error activation with high accuracy.

Fig. 3 shows the probability of seeing at least one Chipkill
correction per job executed. While one instance of this non-
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TABLE II. TIME ELAPSED BETWEEN FIRST SINGLE-SYMBOL ERROR OBSERVED

AND FIRST CHIPKILL CORRECTION.

Im — 1h
9.51%

Is — 1m
63.57%

\ < 1s
[ 2621%

1h — 1 day |
069% |

trivial error correction pattern is already an indication of a
complex error scenario, its constant repetition can be asso-
ciated with a high probability of future uncorrected error. A
repetition of Chipkill corrections is typically preceded by a
repetition in single-symbol errors and double-symbol errors.
Fig. 6 shows the error counts for single-symbol errors, double-
symbol errors, and Chipkills for all jobs run on one of the
nodes in Intrepid. In this example, most of the jobs with
a high Chipkill count are also preceded by a high number
of single- and double-symbol errors. Calculating Pearson’s
coefficient [10] for the correlation between double-symbol
errors and Chipkill rates, we found that the error rates are
fairly correlated, with a coefficient of 0.88. With the steps in
the previous analysis, we are able to predict whether a Chipkill
correction will occur when we start a job. The correlation
between double-symbol errors and Chipkill lets us predict the
cases where repeated Chipkills are more likely.

A question that remains is the time between the first
correctable error and a Chipkill. This determines how much
time there is for proactive action to be taken, and when it
should be taken to avoid multiple and complex errors leading
to failure. Knowing the time of the first single-symbol error
and the first Chipkill, this distribution can be calculated for
all nodes and jobs with Chipkills. Table II shows the time
distribution. It reveals that in the majority of cases (63%),
the first Chipkill is experienced within one minute of the first
single-symbol error. When almost all jobs execute for longer
than a minute, it is clearly advantageous to take actions to
avoid failures while jobs are still running.

C. Chipkill and Uncorrected Errors

In our analysis we focus on relating single-symbol error
and Chipkill for two reasons. First, the majority of uncor-
rectable errors cause multiple failures that corrupt the error
reporting, making it difficult to accurately time uncorrectable
memory errors and calculate latency. Second, repeated Chip-
kills are strongly correlated with subsequent failure. While this
type of error is still correctable, its repetition has been shown
to be a clear sign of future failure. As shown in previous
studies, the presence of a multiple-bank or multiple-rank fault
increases the probability of experiencing an uncorrected error
by 350x and 700x, respectively [4]. The majority of nodes with
uncorrected errors, 83%, first experienced repeated corrected
errors from an existing fault. In our analysis, there were
no instances of uncorrected memory failures that were not
preceded by at least one correctable error.

The anticipation and avoidance of repeated non-trivial error
correction has multiple benefits. It first allows us to avoid
faulty memory before it is too late to prevent a failure. On the
other hand, the repeated activation of a costly and complex
error correction can be seen as an efficiency problem in itself.
In fact, due to its high area and power overhead, avoiding
Chipkill correction in some cases has significant benefits. We
try to predict and avoid repeated Chipkills, rather than outright
failures, both to allow a bit more time for proactive avoidance
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and also to gain insight into how a system without Chipkill
could operate. It may be possible to optimize the usage of
Chipkill and mitigate its associated cost. In the next section,
we show how the analysis presented in this section can be
captured in a memory-failure prediction algorithm and how
we incorporated it into an OS.

III. PROACTIVE MEMORY MANAGEMENT

In this section we propose an operating system mech-
anism to monitor, anticipate, and proactively mitigate the
impact of predictable memory failures. Our approach consists
of monitoring memory degradation and reallocating memory
proactively to avoid faulty memory. Our goal is to dynamically
migrate data residing in memory pages that are becoming
faulty without disrupting running processes. We transparently
avoid unhealthy memory before it causes a failure, allowing
nodes to keep running in the presence of faulty memory.

A. Design

The analysis in the previous section can be applied in real-
time to predict the probability of an uncorrectable error. A
mechanism that dynamically keeps track of addresses reported
in correctable errors can determine whether any given error
is part of a spatial repetition. When a repetition is detected,
the monitoring of past correctable errors can then be used
to calculate an error rate. These steps can be applied in
an algorithmic fashion, triggering mitigation actions when
certain situations are encountered. This model is intrinsically
parametric as error rate and repetition policy can be adjusted
considering accuracy, coverage, and the cost of false positives.

Fig. 7 illustrates our approach. A health tracking module
is responsible for interpreting reports of correctable errors,
applying a prediction algorithm, and triggering a page migra-
tion action upon the identification of unhealthy memory. The
monitor acts as a high-level interrupt handler for interrupts
generated by correctable errors. These interrupts are silent
machine checks generated by the memory controller, or any
kind of custom interrupt interface for notification of correctable
errors. In our approach, every interrupt that is the result of a
correctable error is handled by the health monitor.

In our design, we identify faulty memory with the granu-
larity of page frame numbers (PFNs). This approach (detailed
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Require: physical address, last occurrence of error, error type
1: addr <« physical address

2: Get PFN for addr
3: Search PEFN in pages hash table (PHT)
4: if PEN ¢ PHT then
5: Get time and error type
6: Add PFN to PHT
7. Add addr to address hash table (AHT)
8: else
9: Search addr in AHT
10: if addr € AHT then
11: Increment current repetition count
12: Get current time and last occurrence in PFN
13: Calculate error rate Fp-
14: if £, > error threshold then
15: Update health state of PFN to fatal
16: else
17: Update health state of PEN to unhealthy
18: end if
19: else
20: Update health state of PEN to healthy
21: Add addr to AHT
22: end if
23: end if
Fig. 8. Algorithm for failure prediction.

later) facilitates the implementation of page migration. A PFN
is the physical address divided by the physical page size. The
memory health monitor applies an algorithm derived from the
analysis of memory health degradation and marks memory
pages according to specified policies. These policies refer to
the number of spatial repetitions and the error rate threshold
that are associated with an imminent failure. All error events,
including those detected through self-testing mechanisms such
as memory scrubbing, are captured. The target pages for mi-
gration are selected from those pages that have not experienced
any previous error, which indicates the target pages are healthy.
Fig. 8 summarizes the algorithm used by the memory health
monitor.

For every interrupt, we calculate the PFN of the reported
address. We track the health state of every page that has at
least one correctable error. We define three states: healthy,
unhealthy, and fatal. The algorithm relies on two hash tables
for tracking reported addresses and PFNs as shown in Fig. 9.
In the address table, every address has a corresponding error
count. In the PFN table, every page has a last error time, an
error rate, and a health state. When an interrupt occurs, we
calculate the PFN from the address. If this is the first error for

Machine check exception

(address, column, row) uthash

vvvvvvvvvv »  pagen (last_occurence, error_rate, health_state)
page m (last_occurence, error_rate, health_state)
page k ¥ (last_occurence, error_rate, health_state)

update
A addrn count
addrm count
addr k Y count

Fig. 9. Mechanism to monitor the health states of memory pages.



the page, we add the PFN to the PFN table and the address to
the address table. If this is not the first error for the page, we
check if the address is a repetition by looking up the address in
the address table. If the address is a repetition (steps 11-18),
we calculate the error rate using the last occurrence of an error.
If the error rate threshold specified by the policy is crossed,
the health state of the page is updated to fatal. Otherwise, the
health state is updated to unhealthy. If the address is not a
repetition (steps 20-21), the health state is updated to healthy.

Updating the health state of a page to fatal triggers a
page migration action. This action relies on a specific im-
plementation for memory allocation and support for dynamic
memory remapping. In the next section, we describe how we
implemented this in our prototype.

B. Implementation and Prototype

We implemented a prototype in the Linux kernel that runs
on BG/Q nodes. A BG/Q node has 17 cores, each with 4
hardware threads, and 16 GB of physical memory [11], [12].
A BG/Q system consists of I/O and compute nodes. Compute
nodes usually run a lightweight kernel called the Compute
Node Kernel (CNK), but for this work we used a version of
the Linux 3.4 kernel that has been ported to run on both I/O
and compute nodes and is the basis for a hybrid Linux/CNK
research effort [13]. The kernel is available at [14].

There are four major components in our prototype. We first
reconfigured the BG/Q interrupt controller so that correctable
memory errors are presented as non-critical interrupts rather
than as machine checks, in order to expose correctable errors
to Linux. Second, we added a custom interrupt handler that
retrieves error details in cooperation with the firmware, applies
the failure prediction algorithm, and triggers page migration
and offlining when the health state of a page changes to
fatal. Third, we enabled memory hotplug support in the Linux
kernel we are using in our experiments. Fourth, for validation
and evaluation purposes, we implemented an error injection
mechanism to replay error patterns. The injection mechanism
consists of modifications to the firmware and the firmware
interface. New firmware routines are used to set error condition
bits, which trigger interrupts, in failure isolation registers.
These new firmware routines can be called from the OS. Below
we detail the implementation of each of these components.

1) Interrupt Controller Reconfiguration: Ordinarily, BG/Q
firmware handles correctable errors transparently. Errors en-
countered by the hardware generate machine check exceptions
that are handled by the firmware, which retrieves details
from the hardware. The firmware processes, aggregates, and
interprets error conditions. Error reports are delivered to the
control system and logged to a database. BG/Q Reliability-
and-Availability Services (RAS) uses a hard-coded threshold
for correctable errors. When this threshold is crossed, an
unrecoverable machine check is generated. The OS is inter-
rupted and terminates in a fatal condition when the correctable
error threshold is reached or when an unrecoverable error is
detected.

We reconfigured the BG/Q interrupt controller to divert and
expose correctable errors. There are two levels of interrupt con-
trollers in Blue Gene/Q. There is one Global Event Aggregator
(GEA) and 17 Processing Unit Event Aggregators (PUEAS),
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also called Blue Gene Interrupt Controllers (BICs). There
is one PUEA/BIC per core. Our health monitor requires all
correctable errors to be exposed to Linux. We reconfigured the
PUEA/BIC to present memory errors as non-critical interrupts,
handled by Linux, rather than as machine checks, handled by
firmware. Although memory errors are now handled by Linux,
we still use the firmware routines that retrieve error details and
reset hardware mechanisms involved in their reporting. We also
invoke the original firmware handler for memory errors so that
the errors are reported to the native control system via the
standard RAS infrastructure.

2) Interrupt Handler and Health Monitor: Fig. 10 illus-
trates our implementation. Every correctable error generates
a non-critical interrupt, which is then handled by our inter-
rupt handler. To collect error details, our handler calls the
firmware’s memory-error handler, which is normally invoked
from the machine check handler. This provides details such
as the type of correctable error, physical address, and timing.
As a side-effect of calling the firmware handler, the error is
reported to the RAS infrastructure and logged to a database.

We apply the algorithm for failure prediction every time
an interrupt is handled. We implemented the algorithm using
uthash code [15]. The hash tables grow dynamically, with
memory for new items allocated with the GFP_ATOMIC flag.
For every error encountered, the handler is called, resulting in
an update of the health state of each memory page. When a
memory page is moved to the fatal state, a page migration is
triggered.

3) Page Migration in Linux: Memory hotplug is a recent
feature in Linux that has been available since version 3.2.
Physical memory can be added/removed by adding/removing
DIMMS. Logical memory can be added/removed through
onlining/offlining. Memory hotplug allows the dynamic update
of the page table and virtual memory maps. We rely on
memory hotplug for its memory offline feature, allowing us
to migrate data and avoid the use of faulty memory.

Memory hotplug uses a non-linear memory model,
SPARSEMEM, which allows Linux to handle discontiguous
memory. We enabled SPARSEMEM for PowerPC/Book3E,
making the memory offline feature available for the BG/Q
A2 processor. The memory offline feature provides page soft-
offline and page hard-offline. With page soft-offline, suspicious
pages can be dynamically offlined without killing processes
using the page. With page hard-offline, pages are offlined and
processes using the pages are killed. Offlined pages are also
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included on a bad page list and retired. Memory offline is
performed at a kernel-specific granularity, which is usually the
base page size.

We call the soft-offline routine when the health state of
a page is updated to fatal. The kernel will then attempt to
migrate the contents of the page elsewhere or drop the page if
possible. Offlined pages are placed on a bad page list and never
reused. Fig. 11 illustrates the page migration process. Page
migration is implemented in the following steps: (1) allocate
a new page, (2) modify the radix tree, (3) invalidate the Page
Table Entry (PTE) descriptors pointing to the old page, and
(4) copy page contents from the old page to the new page.
In the current implementation, not all pages are migratable.
Structures such as kernel/text/stack and kmalloc() are examples
of un-removable memory.

4) Error Emulation Through BG/Q Firmware: To evaluate
our approach, we implemented an error emulation mechanism
in which simulated errors are indistinguishable, as far as
the OS is concerned, from real errors. Such an emulation
mechanism allows us to replay known error patterns, like those
found in BG/P logs, and evaluate the behavior of our memory
health monitoring system.

We added new routines to BG/Q firmware that force the
hardware to report various types of memory errors. We do
so by selectively setting bits in the Machine Check Failure
Isolation Registers (MCFIRs). These bits are normally set by
hardware when an ECC event occurs. By manually setting
them, we force the hardware to react, i.e., record error details
and generate a machine check exception (or a non-critical
interrupt, in our case). This means that as for a real error,
the custom interrupt interface is activated when an error
is emulated. We also have the capability to set the details
about an error. When the hardware drills down for detailed
information it will find the specified error type and address
we injected. While no actual manipulation has been done to
data in memory, the emulation approach makes the hardware
react realistically.

We created a Linux sysfs interface to allow a daemon to
drive error injection. In this approach, injection routines can
be called from userspace and errors can be emulated as other
applications run. In the next section, we describe how we use
this approach to evaluate our mechanism.
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IV. EXPERIMENTAL EVALUATION

We evaluated our mechanism and implementation by mea-
suring the performance overhead it imposed on applications
and by estimating the overall resilience improvement it ac-
complished. To demonstrate feasibility, we showed that critical
memory pages can be migrated dynamically without disrupting
applications. Costs are evaluated in terms of variation in
application running times when memory pages are migrated
and of the amount of memory offlined. The overall resilience
improvement was measured in terms of effectiveness in avoid-
ing failures, and we compared our results against traditional
checkpoint/restart support.

A. Benchmark and Parallel Execution Environment

We used LAMMPS from the ASC Sequoia Benchmark
Codes [16] in our evaluation. The benchmark mimics “particle-
like” systems such as molecular dynamics simulations. We
used the 3D Lennard-Jones melt benchmark script from
LAMMPS version 1Febl4. In order to adjust running time
and memory footprint, we varied the number of iterations and
problem size (reflected in the number of atoms). The bench-
mark has built-in support for scalable checkpoint/restart, which
allowed us to make a direct comparison with an efficient,
existing mechanism.

The benchmark aims to predict parallel efficiency for large
systems. In LAMMPS, several processes are run on each multi-
core node in a hybrid manner, each process using OpenMP to
exploit multiple threads and coordinating with other processes
via MPL In our experiments we ran the benchmark both on
a single node with OpenMP and multiple nodes with MPI
support. For multiple nodes, we deployed SLURM (Simple
Linux Utility for Resource Management) [17] across nodes
running our modified Linux. For process coordination, we rely
on MVAPICH2 (MPI-3 over OpenFabrics-IB, OpenFabrics-
iWARP, PSM, and TCP/IP) [18] on top of SLURM.

B. Error Injection and Reproduction of Error Patterns

We developed an error injector that reads the BG/P logs
and replays the error pattern for each node following time
and spatial distribution. The implementation allows time to be
accelerated given a specified time scale. For our experiments,
we use a time scale of 1:1200 seconds, allowing error patterns
that span months to be reproduced in a time frame of hours. In
this way, we evaluated a worst case scenario, which we take
into consideration in our conclusions and comparisons. When
reproducing errors, we used the following four cases:

Base: Idealistic case in which no errors are experienced.
The error monitoring and migration mechanism is
never activated in this case.

Node with unhealthy memory with several and
widespread repeated errors, including repeated
Chipkill correction. This pattern is correlated with
a high probability of failure. The error pattern in
node R20-MO-N14-J24 (Fig. 2.b) is an example
of this case.

Node with unhealthy memory with several errors
concentrated in few rows. The error pattern in
node R34-MO0-N13-J24 (Fig. 2.a) is an example
of this case.

Case 1:

Case 2:
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worst-case scenario of errors affecting the application stack.

Case 3: Node with healthy memory, with early signs of
degradation. Correctable errors are experienced,
but no repetition is observed. The error pattern in
node R21-MO0-N10-J30 (Fig. 4.a) is an example
of this case.

C. Survivability

We first show that a node and running application survive
when critical memory is migrated. Fig. 12 illustrates our
approach. Once started, the error injector first finds the virtual
address range used by the stack of a specified running process.
We use the stack in an attempt to evaluate a disturbance in a
highly and frequently used memory area. The injector uses the
information provided by Linux through /proc/pid/maps
and /proc/pid/pagemap. The virtual memory region used
by the stack is retrieved from maps. The physical page frame
that each virtual page is mapped to is then retrieved from
pagemap. The injector then iterates over the address range
and finds a dirty mapped memory page. It injects the first
error in the error pattern to this address and subsequent errors
by maintaining the spatial and time distribution.

In a first step, we first proved the criticality of pages found
through this process. For LAMMPS running on a single node,
we hard-offline the first page identified. If the kernel hard-
offlines a page that is being used, its owner will be killed.
Our action consistently caused the kernel to kill LAMMPS. In
the second step, we soft-offline the first page identified. When
the kernel soft-offlines a page the contents of the page are
migrated to a new page transparently. LAMMPS survived the
soft-offline of the first page identified.

In a parallel execution with multiple nodes, independent
instances of the injector run on each node (Fig. 12). They
reproduce different error patterns from the logs, according to
a specified selection criteria. Each process started by SLURM
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TABLE III. RESOURCE UTILIZATION OF LAMMPS IN A SHORT
SINGLE-NODE (4 OPENMP THREADS) RUN WITH PAGE MIGRATION.

scenario  real user sys sys
incr. (%)
baseline 23m 26.18s 1h 33m 40s Om 3.02s
case 1 23m 27.55s 1h 33m 42ss  Om 3.63s 20.20
case 2 23m 27.83s 1h 33m 45s Om 3.66s 21.19
case 3 23m 26.22s 1h 33m 40s Om 2.96s -1.99
TABLE IV. RESOURCE UTILIZATION OF LAMMPS IN A LONG
SINGLE-NODE (4 OPENMP THREADS) RUN WITH PAGE MIGRATION.
scenario  real user Ssys sys
incr. (%)
baseline 3h 55m 05s 15h 39m 41s 31.54s
case 1 3h 55m 05s 15h 39m 41s 32.05s 1.62
case 2 3h 55m 06s 15h 39m 46s 30.73s -2.57
case 3 3h 55m 06s 15h 39m 47s 31.56s  0.06

for the parallel execution of LAMMPS across the nodes is
found and the same steps applied. In a parallel execution, the
failure of a node halts the whole execution.

D. Performance Overhead

We evaluated the impact of tracking errors and performing
page migration on resource utilization and execution time. In
our experiments, based on the analysis of prediction accuracy
and coverage in Section II, we offline any page that has an
error address repetition with a frequency greater than 1 error
per second. The implementation of the migration mechanism
is non-blocking, meaning that other threads are able to make
progress while the OS is offlining a memory page. Then we
investigate how the individual cost per migration translates into
variations in resource utilization and completion times for runs
with different sizes on both single and multiple nodes.

1) Single-Node Scenario: We collected system and user
times taken by a single-node run of LAMMPS for each of
the cases. In order to have a short first run, we reduced the
number of iterations in the input script. Table III shows the
variation in resource utilization in a short run (<45 minutes,
with a memory footprint of 20 MB), running with 4 OpenMP
threads. User time in the table is the sum of times taken
by multiple threads. During the execution, 451 errors were
injected. The table reveals a negligible variation in the real
times taken for completion, while system activity increased
(= 20% in cases 1 and 2), showing the additional work the
OS performs to interpret errors and migrate pages. Since the
migration operation is non-blocking, the impact to user time is
negligible. An analysis of the number of pages migrated and
the amount of memory taken is shown in detail in the next
section.

Table IV shows resource utilization for a longer run (4
hours). In this time frame, thousands of errors are handled by
the OS. As in the short run, the impact on real and user times
is negligible. In this case, however, the variation in system
utilization also becomes negligible. The main reason for this is
that after paying the initial cost of migrating unhealthy pages,
page migration activity decreases as the application runs and
the final share of total system activity becomes negligible. This
happens due to the clustering of memory errors, as discussed
before, and the fact that a few unhealthy pages are responsible
for the majority of subsequent errors, which are avoided as
faulty memory is taken offline.
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migration comparison for short LAMMPS run on 64 nodes.

TABLE V. SUMMARY OF RESOURCE UTILIZATION ACROSS MULTIPLE
NODES: BASELINE AND PAGE MIGRATION COMPARISON FOR LONG RUN OF
LAMMPS ON 64 NODES, 6 DIFFERENT RUNS.

incr.  mean incr.  mean incr.
real time (%) user time (%) sys time (%)
(ticks 10%) (ticks 10%)
baseline 293m46.131s 1736.48 8.424
avg. with 292m58.317s  -0.27 1733.74 -0.16 8.437 0.14
page migration

2) Multi-Node Scenario: In a multi-node environment, we
evaluate whether a parallel run survives and how the overall
running time is impacted by page migration on each node.
In this scenario,b, LAMMPS runs in parallel on 64 nodes
(256 “procs”, 64 MPI processes x 4 OpenMP threads), in
6 independent runs. Each node has an independent instance
of the injector. The problem size (number of atoms) was
adjusted to increase memory usage to ~ 200 MB per processor.
The injector randomly selects, for each run, an error pattern
from logs of nodes with Chipkill. Fig. 13 shows the resource
utilization for each node in our environment. The baseline
scenario, where no errors are experienced, is compared against
the scenario where the page migration mechanism is active.
The left-hand side shows the user and system times. The
right-hand side shows system time in more detail. Table V
summarizes the variation observed in resource utilization in
multiple long runs (5 hours each). A very small variation
in user and system time is observed, which considering its
magnitude can be better explained by other sources of noise
than by a disturbance caused by page migration. On average
the change in system and user times are 0.14% and -0.16%,
respectively, meaning that page migration does not introduce
any measurable overhead. This is also observed in the real
times. The total wall-clock time taken to complete the parallel
run is almost the same with page migration (a variation of
-0.27%). These results show that for a parallel run several other
sources of overhead such as I/O and synchronization make the
cost of page migration insignificant.

3) Considerations on Memory Locality and Large Pages:
The measurable overhead of our scheme is small because
page migration is performed in the background. While there
may be applications that could be affected by background
page migration, we expect many applications to benefit. In
case of huge pages (GBs), the retirement of a whole page is
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TABLE VL EFFECTIVENESS AND MEMORY OVERHEAD WITH PAGE

MIGRATION: SINGLE-NODE SHORT RUN.

scenario  SSE DSE CK memory % of app.
avoid.(%) avoid.(%) avoid.(%) retired memory
case 1 273 239 71.5 512 KB 2.52
case 2 86.69 91.97 91.87 832 KB 4.10
case 3 0 n/a n/a 0 0
TABLE VIIL EFFECTIVENESS AND MEMORY OVERHEAD WITH PAGE
MIGRATION: 64 NODES, 6 DIFFERENT RUNS.
SSE DSE CK memory % of app.
avoid.(%) avoid.(%) avoid.(%) retired memory
best average ~ 76.34 71.42 80.42 max. 1152 KB 0.6
worst average 71.28 63.39 74.80 min. 64K KB 0.03
avg. run 76.07 68.65 76.42

probably undesirable due to excessive loss of usable memory.
A huge page would be broken up and only pieces retired.
We acknowledge that our solution could introduce additional
overhead in the form of increased TLB pressure. However, we
believe this is a reasonable compromise because the alternative
is an application crash.

Because BG/Q has a uniform-memory-access architecture,
memory locality is not a performance issue for us. For this
reason, we believe that the negligible overhead measured
for overall application performance is sustainable. We ac-
knowledge that memory locality issues could arise in NUMA
systems. These issues would need to be considered when
evaluating our solution in such environments.

E. Effectiveness

The effectiveness of the page migration mechanism is eval-
uated in terms of the number of repeated errors (specifically
Chipkills) that are avoided and the amount of memory that is
taken offline. We calculate the number of errors avoided by
counting the errors that would affect a memory page that has
been proactively offlined, and compare this to the total number
of errors for each category. While we observed a negligible
overhead in application running times, the remaining question
concerns how much memory overhead page migration incurred
in each of the previous scenarios and cases.

1) Single-Node Scenario: Table VI shows the number of
errors avoided for each error category and the amount of
memory retired for a single-node run of LAMMPS with a
memory footprint of 20 MB per process. The numbers are
consistent with the coverage expected by the calculation in
Section II and show that the majority of Chipkill errors can be
avoided. The effectiveness depends on how errors cluster in
space and time to trigger page migrations. The effectiveness
in avoiding repeated Chipkill were 71% and 92% in cases 1
and 2, respectively. Case 3 does not activate Chipkill. With
a small memory footprint, pages offlined represent 2.5% and
4.1% of memory used by the application, respectively. These
numbers confirm that very few memory pages account for the
vast majority of repeated errors.

2) Multi-Node Scenario: Table VII shows the statistics for
the effectiveness of page migration in multiple parallel runs
(6 in total), where error patterns are randomly selected. In
this scenario, each node has its own statistics based on the
error pattern used, and all nodes are affected by Chipkill,



as described previously. The table shows the worst average
(lowest effectiveness) and best average (highest effectiveness)
for the 64 nodes in a given run, and the average for the 6
multiple runs. We show that on average, a significant 76% of
all repeated Chipkills could be avoided by our mechanism. In
the best case average, 80% effectiveness is achieved with only
0.6% of the application memory being offlined. Even the worst
case average shows an effectiveness of 74%. We see that the
conclusions drawn from single-node executions hold true for
parallel executions.

3) Memory Availability: Our approach cannot directly
handle applications that consume all of memory. However,
memory reservation is common in many resilience strategies.
Our solution can avoid the majority of memory errors using
a very small amount of reserved memory. This amount could
impact the performance of some applications, but we believe
our solution provides a net gain.

4) Error Rate Threshold and Effectiveness: The threshold
was derived empirically from data collected over a long period
of time and involving many production-level application runs.
It is independent of the application being studied. The chosen
threshold value is the one that, experimentally, provides the
highest prediction accuracy. We show that even in that case,
the performance overhead is still negligible. A lower threshold
would potentially provide higher coverage, with the side effect
of false positives and memory unnecessarily retired. Our
approach allows study of this tradeoff, which is part of our
future plans.

5) Overall Resilience Improvement: As discussed in Sec-
tion II, repeated Chipkill correction can be correlated with
failure with a probability of 83%. We use this correlation to
project how the overall resilience can be improved through
our approach. For a parallel run of LAMMPS with real error
patterns from BG/P logs, we showed that on average 76.42%
of repeated Chipkill errors could be avoided. This implies the
avoidance of 63.43% of memory failures, which shows that
a significant number of memory failures can be avoided with
negligible overhead to the application.

6) Comparison with Traditional Checkpoint/Restart: In
[19], it is shown that application-level Checkpoint/Restart
(CR) techniques are often more efficient than system-level
autonomous CR. To compare our approach with application-
level CR, we leverage the built-in CR support in LAMMPS
to measure CR overhead on BG/Q. We use the same input
script for a run of approximately 5 hours for a total of
1000 simulation steps using 64 nodes. The CR support allows
multiple writers, up to one per node. We set the most efficient
scenario of 64 nodes writing checkpoint files concurrently. In
a run with CR disabled, the application takes 294 minutes to
complete. Enabling checkpointing at an interval of 199 steps
for a total of 9 checkpoints, the application takes 308 minutes.
We explicitly use an odd number of steps as checkpoint interval
to avoid unnecessary CR overhead at the end of execution. The
checkpoint latency is calculated to be (308 — 294)/9 ~ 100
seconds per checkpoint, at an interval of 1960 seconds. We also
measure the restart latency by comparing the execution time
of application runs that are restarted from the checkpoints to
the no-CR run. The restart latency is measured in the best case
to be 117 seconds.
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By assuming that the measured checkpoint interval is op-
timal, we can calculate the corresponding MTBF as described
in [20], [21] and the associated performance overhead in
terms of checkpoint overhead, loss of work overhead, and
restart overhead. In [20], [21], the formula for optimal interval
is expressed as ~ (/2 x mtbf X ckpiatency, Which leads to
MTBF = (19602)/(2 % 100) ~ 19000 seconds or 5.3 hours.
The checkpoint overhead is 100/1960 = 5.1%. We compute
the loss of work overhead using the excess life model described
in [22]. We model the failure process by scaling the failure
distribution in the BG/P error logs in which we normalized
to the MTBF of 19000 seconds, and conservatively assume
that a restart is triggered only when the number of Chipkill
(CK) errors on a node reaches its maximum count of 65,535.
We assume that a restart event recovers the systems state
from the most recent checkpoint, in which the time of the
checkpoint is the largest multiple of the optimal checkpoint
interval up to the restart time. Therefore, the loss of work
for an error is calculated as T, — T,,, where T). is the time
of restart and T, the time of most recent checkpoint. The
loss of work overhead, calculated as the average loss of
work over MTBEF, is calculated as 6.3%. The restart latency
is 117 seconds, and the restart overhead is calculated as
117/19000 = 0.6%, a small overhead. Therefore, the total
CR overhead is 5.1 4 6.3+ 0.6 = 12.0% for a system with an
MTBF of 5.3 hours. In comparison, our approach achieves a
negligible overhead as shown in Table V. At the accelerated
time scale of 1:1200 seconds, these cases are equivalent to a
system with an MTBF of 8 minutes. The comparison shows
that our approach can mitigate extremely high memory failure
rates at a significantly lower performance overhead than that
of CR.

Our proposed scheme cannot eliminate the need for CR
in tackling non-memory errors and the memory errors we
miss. However, by avoiding a large fraction of normally-fatal
memory errors at very low cost, it can effectively lengthen
the MTBF factor that is used in choosing an optimal check-
pointing interval and can thereby lower the overall overhead
of the combination of memory-error avoidance and CR. We
acknowledge that our CR evaluation is not exhaustive, and
that more sophisticated approaches are available. Our goal was
to evaluate a readily-available CR approach that can tolerate
memory failures and does not require additional hardware. We
compared both approaches on the same platform and used
accelerated memory error rates for a pessimistic evaluation.
This comparison shows that CR overhead related to memory
failures is much higher than our overhead. While CR overhead
can be reduced with new storage and I/O strategies, our
approach reduces this overhead even further.

E  Applicability

We targeted a detailed analysis that could help us under-
stand the fundamental characteristics of our approach, focusing
on a representative application with a built-in alternative for
comparison. Two aspects in our analysis and solution make us
confident in its applicability for a wide range of applications.
First, we took a pessimistic approach in emulating errors and
in selecting memory to be affected, showing that our solution
safely operates even when the affected memory is critical and
highly used. Second, our failure modeling is derived from error



patterns obtained from multiple real workloads on a production
system. The analysis of multiple applications is important in
thoroughly confirming our claims, which is currently part of
our next steps. We emphasize that we are not aware of any
issue that would keep us from collecting results for a wide
range of scenarios.

V. RELATED WORK

Mechanisms for memory fault avoidance and handling
have been deployed at various levels of the software stack,
ranging from application and runtime to OS schedulers. Our
work is related to a series of previous studies on memory
failure prediction and proactive techniques to avoid failure. The
predictability of memory failure is exploited in [6], [4], [3],
[23]. In [6], [23] error logs from HPC systems are analyzed for
common failure sources. They present evidence that memory
and core failures are the main failure sources and explore
correlation in their occurrences. While showing that these
failures can be predicted, they do not explore mechanisms
to take advantage of prediction. In [4], [3], memory error
patterns in DRAM from different large systems are analyzed,
showing that hard errors are the dominant errors in DRAM. A
theoretical projection for errors avoided with OS support for
bad-page retirement is presented in [3]. The study suggests
better OS support for exploring these patterns but does not
propose or implement one. The analysis in our work is closely
related to the approach in these studies, but diverges in the way
it is used. We depart from a typical offline approach to use error
pattern recognition for real-time prediction and adaptation.

There are implementations of OS-based features to antici-
pate the impacts of memory failures. Mcelog [24] is a daemon
for x86 Linux systems that monitors and interprets machine
check messages. The daemon can be configured to trigger ac-
tions, including bad-page offlining. Bad-page offlining occurs
when a certain number of correctable errors are experienced.
Similar support implemented in Solaris 9 is presented and
discussed in [25]. These studies also try to proactively avoid
memory that shows early signs of failure. However, they rely
solely on static error counting and do not explore real-time
observation of spatial and temporal error distribution. Our
work implements an algorithmic and dynamic approach to
monitor errors, migrate data, and offline pages. In addition,
these approaches have not been designed for and evaluated in
an HPC environment.

Checkpoint/restart techniques have been commonly used to
recover from memory failures. Failure prediction has been used
to guide the determination of optimized checkpointing intervals
in reactive fault management techniques [26], [27], [2]. While
related in the aspect of trying to anticipate memory failures,
we try to avoid failures before they happen. In this way, our
approach differs fundamentally from CR by avoiding most
of the overhead related to frequent checkpointing, work loss,
and restart times. Unlike CR, which can resume application
execution after failures in a broad range of faulty components
such as processors and power supplies, our approach is limited
because it currently targets only memory failures; therefore it
cannot completely eliminate the need for CR. In some severe
cases of memory errors, such as errors at the memory chip or
link levels, our approach will not be effective; instead, these
cases are detected by memory scrubbing tests and mitigated
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through CR on a spare node or a shared memory chip.
However, our approach avoids memory failures and therefore
reduces the frequent CR overhead. While ramdisk-based CR
such as [27], [28] may have comparable speed and memory
overhead with respect to our approach, their use of additional
memory is also subjected to potential memory failures and
therefore can also benefit from our proactive memory error
avoidance approach.

There are also other proactive schemes exploiting health
monitoring capabilities for failure prediction. They target dif-
ferent levels, such as the migration of processes or entire
nodes. Fault-tolerant MPI masks memory failures in a parallel
execution through replication or migration [29], [30]. Our
approach is completely transparent to the MPI stack and does
not require any changes to the application. The migration of
entire nodes has been also shown to be feasible in HPC as
shown in [31]. In our approach, by operating at the kernel
level, we achieve intrinsically lower overheads compared to
mechanisms at higher layers in the software stack.

VI. CONCLUSIONS AND FUTURE WORK

We have shown how correctable error information can be
used by the OS in real time to migrate data, offline faulty
memory pages, and avoid repeated memory errors and failure.
By implementing a prototype in Linux running on a BG/Q
system, we have shown a working and transparent solution
that is a viable alternative to traditional reactive mechanisms.
Reproducing realistic error patterns in extensive logs from a
BG/P system, we have shown that most of the repeated errors
that affect a parallel run of a representative benchmark can be
avoided with negligible performance overhead and a negligible
amount of memory offlined. We have shown experimentally a
coverage of 76% of repeated error avoidance, implying the
avoidance of 63% of failures caused by memory. Using the
built-in Checkpoint/Restart (CR) support in LAMMPS, we
have shown that the performance overhead imposed by CR
is significantly higher than that of our approach.

As future work, we plan to study the impact of repeated
error avoidance on performance and power consumption. In
this work we showed feasibility through an error emulation
approach that does not impact the hardware cost of performing
complex error correction. We plan to deploy and evaluate
our mechanism in a production system, in a scenario where
multiple real memory errors are expected and can be poten-
tially avoided. For the use in production environment, we
plan to optimize our implementation making error history
persistent across reboots. Another approach we are considering
is an accelerated fault-injection experiment to evaluate the
effectiveness of our technique under real-world failures of
memory. We envision new opportunities for memory error
protection by showing that complex error correction in the
field can be replaced with software support. We also envision
extending the proactive reliability management paradigm to
cover other components such as network links, processors, and
power supplies. In a different direction, we plan to understand
how to compensate for cases where our mechanism cannot
avoid a failure. We plan to leverage studies showing tolerance
for error corruption in application data, and use our migration
mechanism to rearrange memory in such a way that suspect
memory is used only to hold non-critical data. In the case



where critical data cannot be protected, a proactive notification
would allow applications to prepare for an imminent crash.
We envision this support as an application-OS cooperation
interface, allowing data criticality to be expressed by the
application and notifications to be delivered to the application.
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