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Abstract—The parallel computing platforms available today are increasingly

larger and thus, more and more subject to failures. Consequently it is necessary to

develop efficient strategies providing safe and reliable completion for HPC parallel

applications. Checkpointing is one of the most popular and efficient technique for

developing fault-tolerant applications on such context. However, checkpoint

operations are costly in terms of time, computation, and network communication.

This will certainly affect the global performance of the application. In this work, we

propose a performance model that expresses formally the checkpoint scheduling

problem. This model exhibits the tradeoff between the impact of the checkpoints

operations and the lost computation due to failures. Based on this model, we study

the computational complexity of the problem of scheduling checkpoints with

variable costs for general failure distributions. More precisely, we provide a new

computational complexity analysis that explicits in depth the relations between the

probabilistic failure model, the checkpoint cost, and the computational model. In

particular, we prove that the checkpoint scheduling problem is NP-hard even in the

simple case of uniform failure distribution. We also present a dynamic

programming scheme for determining the optimal checkpointing times in all the

variants of the problem.

Index Terms—Fault tolerance, checkpoint scheduling, failure detection

Ç

1 INTRODUCTION

1.1 Context and Motivation

IN the recent years, parallel computing systems have turned
increasingly to extremely large-scale parallel platforms composed
of thousands of processors. Many actual applications run on such
systems for long durations, up to several days or weeks. Recently,
statistical analysis about failures on high performance computing
(HPC) platforms emphasize that the mean time between failures
may not exceed few hours [7], [27]. In this context, it is necessary to
develop efficient strategies that provide safe and reliable comple-
tion of applications. This may be achieved through redundancy
[26] or by storing intermediate computation states on reliable
external devices [12] (this technique is called checkpointing). The
saved states are then used to restart computations from the last
checkpoint in case of failure. This last approach is one of the most
popular fault-tolerance technique in parallel and distributed
systems and there exist various protocols able to capture a global
valid state of a parallel application (see [2] for more details).

One of the main problems for this technique is to determine the
right series of intervals for checkpointing. Indeed, too many
checkpoints would increase the time overhead while too few
checkpoints would lead to a large loss of computation time in case
of failures. The time when to perform the checkpoints depends
mainly on two parameters, namely, the volume of data to
checkpoint (due to communication times) and the failure arrival
time distribution.

1.2 Related Works

There exist various performance models for computing the optimal
checkpointing strategies that minimize the delay due to failures
during the execution of an application and the induced checkpoint
overhead. Let us review below the most relevant results.

Young proposed in [33] a first order approximation of the
optimal interval length between checkpoints that minimizes the
expected lost time before failure. Considering that checkpoints
are periodically scheduled, their cost is supposed to be constant
during the entire execution and under the hypothesis that failures
arrivals follow a Poisson’s process. Daly extended Young’s result in
[9] and proposed a higher order approximation considering the
same hypothesis. In [30], Vaidya studied the impact of the
checkpoint latency time on the model proposed by Young. Trivedi
et al. developed in [14] a model that expresses the expected
completion time of a program when the failure distribution is
general and considering a periodic checkpoint scheduling with
rejuvenation capability on the platform. Then, they provided an
optimal interval for checkpointing and rejuvenation when their cost
is constant.

Since the periodic assumption on the checkpoint intervals does
not lead to an optimal solution when the failure rate is not
constant, some authors remove this hypothesis. Duda proposed in
[11] a recursive objective function that expresses the expected
completion time when the checkpoint cost is considered as
constant. However, this formulation is mathematically intractable
and determining optimal solutions is too time consuming. In [29],
Toueg and Babao�glu. provided a dynamic programming techni-
que to minimize the expected completion time considering general
failure distributions. Unfortunately, this model expresses only an
upper bound for the expected completion time. Later, Ling et al.
introduced a new variational technique in [32] that gives a first
order approximation of the checkpoint frequency for minimizing
the expected lost time before the system failure. This method is
based on the first order of the Taylor expansion for the failure
distribution under the hypothesis that the checkpoint cost is
constant and failure-free. It does not affect the probability of
failure of the application. Recently, Dohi et al. extended their
previous works in [10], [22], and [21] and provided a numerical
algorithm using the Brender’s classical fixed-point theorem
considering a failure distribution with increasing failure rate
property (known as the IFR assumption [1]). Hence, the proposed
algorithm converges to a near-optimal solution, considering that
the checkpoint cost is constant and failure-free under the IFR
assumption, while recent computing platforms rather exhibit a
behavior corresponding to decreasing failure rates (DFR). For
instance, the failure distribution of the computing system number
20 of the Top 500 from the LANL supercomputing center is well
fitted by a Weibull distribution with a shape parameter 0.7 [27]
[28]. Similarly, many failure traces of recent computing systems
are close to a Weibull distribution with a shape parameter less
than 1 [17]. Those results correspond to a DFR. In [24], Ren et al.
were interested on the utilization of the large amount of idle
computation recourses available on the volunteer computing
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platforms. To handle the unavailability of the volunteer computing

nodes a checkpoint-based approach to tolerate failures were

proposed. First of all they formulated the problem of selecting

the volunteer nodes to store checkpoints fragment then a greedy

algorithm is provided to solve it. Second, by considering an

arbitrary failure distribution to model failures, the optimal

checkpoint interval selecting problem is considered to handle the

tradeoff between the lost work due to failure and the checkpoint

overhead cost. To compute the optimal checkpointing schedule,

one step look ahead heuristic were provided. In this heuristic, the

checkpointing decision is taken based on the comparison between

the cost of checkpointing immediately with the cost of delaying

the checkpoint later. Also in the context of volunteer computing

Nurmi et al. [20] extended the work of Vaidya [30] by proposing a

numerical-based approach to compute an optimal checkpointing

schedule. In this work, authors built a system that records the

traces of the availability and unavailability period from each

resource and a statistical model is fitted to the collected traces

using the well-known estimation techniques, namely, Maximum

Likelihood Estimation or Expectation Maximization. Then, using

the induced failure distribution model they provided a numerical

method based on the Golden Section optimization algorithm to

compute the optimal scheduling. It is well worth mentioning the

fact that the authors did not provide any technical proof about the

existence or the uniqueness of the solution or the computational

complexity of the numerical optimization with regards to the

failure distribution. Bougeret et al. presented in a recent paper [4]

an optimal solution for the problem on a single machine assuming

an exponential failure distribution. They computed the optimal

intervals and showed that they are periodic. This confirms the

result provided in 2009 by Bouguerra et al. [5] for a slightly

different objective function. They also proposed a dynamic

programming scheme for the restricted case of constant checkpoint

costs and constant block lengths in a parallel platform.
After this overview of sequential checkpointing models, let us

focus on parallel and distributed checkpointing models designed
for parallel application. All the contributions described below
share the following assumptions. The application is modeled by
a perfect linear model such that the speedup is equal to the
number of processors and the checkpoint cost is constant. The
parallel platform is composed from Q identical processors in
terms of computing capability and failure distribution. Finally,
failures and unavailability times are exponentially distributed.
Considering those assumptions Plank et al. considered the
problem of choosing k computing processors among Q proces-
sors to replace the faulty nodes as soon as possible by safe
processors [23]. To manage the trade off between the number of
nodes to be involved in the computation, the number of spares
that should be on standby and the checkpoint period to
maximize the expected fraction of time in which the system is
executing useful work, the stationary distribution of the markov
chain is computed with respect to computing pool cardinality,
spare pool cardinality and the checkpoint interval. However, it
worth noting that such result will be impossible to use in the
context of HPC due the huge number of processors involved in
the computation given that the computational complexity of the
algorithm provided by Plank et al. is exponential with respect to
the number of processors. In [19], Jin et al. provided an analytical
model to express the expected completion time in presence of
failures with respect to the number of the involved processors in
the computation and the amount of workload to execute. Using
the queuing theory and by applying Taylor expansion to the
expression of the expected completion time of the application
with respect to the involved processors in the computation they
provided a first order approximation to the optimal checkpoint
interval considering that the checkpoint cost is constant.

1.3 Contributions

The past literature provides different approximation solutions for
determining the checkpoint intervals for a single processor under
some simplified assumptions: unbounded execution time, pre-
emptive execution process, failure-free checkpoints, constant
checkpoint costs, and failure distributions with increasing failure
rates. As we have previously seen that most of the proposed
algorithms for the arbitrary failure distribution case are based on a
numerical optimization approach. It is well worth mentioning the
fact that such technique of optimization requires some mathema-
tical properties that the objective function should satisfy like the
continuity or the existence of the first derivative. Which is not
always true for example if we consider an arbitrary checkpoint cost
function. Moreover, most of the proposed algorithms are without
any guarantee on the time needed to compute the optimal
checkpointing solution.

In this paper, we fill this gap by studying the general problem,
considering an arbitrary failures distribution function, check-
points costs are not constant and parallel blocks with different
durations. We provide a new computational complexity analysis
that explicits in depth the relation between the probabilistic fault
model, the checkpoint cost and the computational model. Finally,
we present a dynamic programming scheme for all the variants
of the problem that provides an optimal checkpointing schedule.

In Section 2, we propose a new discrete mathematical
formulation for the checkpoint scheduling problem for parallel
application in HPC platforms. This formulation aims at minimiz-
ing the expected wasted time considering the variability on
checkpoint costs and the time to detect failures. We show in
Section 3 that the described problem of checkpoint scheduling is
NP-complete even for the case of simple failure distributions like
the uniform distribution. However, we exhibit some special cases
that are polynomially solvable. Finally, we propose in Section 4 an
optimal scheduling strategy for the different variants of the
problem with a low computational cost. It is interesting to notice
that according to our knowledge there exist no related works
taking into account general failure distribution, variable check-
point costs and latency on the time needed to detect failures.

2 PERFORMANCE MODELS

In this section, we present the performance model that will be used
to express the problem of optimizing the tradeoff between the
checkpoints overhead and the lost computation time due to
failures. In what follows we present the main components of this
model, namely, the execution model and the application failure
model. Then, we exhibit formally the optimization problem.

2.1 Execution Model

In this work, we are interested in efficient implementations of
parallel applications on HPC platforms. The target parallel
platform is a cluster composed of identical processors. Many
HPC scientific programs are implemented in a series of synchro-
nized computing blocks (iterative numerical methods [8], super

steps of programs written in the BSP paradigm [31], and so on). The
basic computations within each block are evenly distributed over
all the processors. At the end of the execution of each block, the
processors exchange their results and a new block can start its
computations. Fig. 1 represents the basic computation scheme for
the execution of a series of n parallel blocks on Q processors where
block i has a processing time pi. Its execution can only start after
the completion of block ði� 1Þ.

We assume that the blocks are not preemptive. Thus, the
checkpoints can only be performed between blocks. The
ith checkpoint concerns the intermediary results between the ith
and ðiþ 1Þth blocks. According to most actual applications [16],
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the amount of data to save between the ith and ðiþ 1Þth blocks
depends on the ith block. Therefore, checkpointing is a global
operation that takes ci units of time if it is performed after the
ith block. For the checkpoint failure model, we suppose that the
checkpoint operations are not failure-free as it is usually
considered in the literature [33], [9], [14] and that the time spent
in this phase increases the failure probability of the application.

Furthermore, we assume that checkpoints can also be used for
the purpose of failure detection if there is no dedicated failure
detector mechanism. Technically, checkpointing mechanisms in
parallel middleware [6], [25], [18], [3] rely on a global synchroniza-
tion phase before starting the creation of the checkpoint files. If
there exists no dedicated detection mechanisms into the middle-
ware, it is possible to detect failures using the coordination
phase into the global synchronization in the checkpoint barrier.
Therefore, if failures are not detected immediately, the time needed
to detect a failure depends on the next scheduled checkpoint after
the actual failure. However, remark that if failures are detected
immediately, the proposed model remains valid as will be
discussed in the next section. Fig. 2 depicts the execution scheme
in the presence of checkpoints.

2.2 Failure Model

We present now the application failure distribution that will be
used to build the performance model. In this section, we describe
the different methods that can be used to express the failure
distribution of the application. More precisely, the application
failure distribution F ðxÞðresp: F ðxÞÞ expresses the probability that
the application will fail (resp. will not fail) in the next x units of
time (F ðxÞ ¼ 1� F ðxÞ). Most HPC applications executed on
parallel platforms are highly synchronized and they immediately
fail if only one processor failure occurs. Then, all surviving
application processes are aborted and the whole application is
restarted from the last checkpoint. Moreover, upon a given failure,
the faulty processor is either replaced by a new one or the failure
root-cause is fixed immediately and this can be neglected. This is a
reasonable assumption since an application usually uses only a
part of the available processors on the large machine. Considering
all these hypotheses, it is clear that the overall failure pattern of
the platform is the superposition of the failure patterns of the
different processors where each processor has its own failure
distribution and failure/repair history. Failure/repair history
represents the duration since the processor has been put into
operation after the last repair or replacement (i.e., processor’s age).

We recall that F ðxÞ is the probability that the execution will not
fail in the next x units of time. This probability is equivalent to the
probability that all the processors survive and not fail in the next
x units of time. In addition, each processor has its own age
(defined as the time since the last failure) and failure distribution
function. Various methods can be used to express this probability
function. We present the two most common methods. In the first
method, the application failure distribution is expressed consider-
ing the exact processor ages. In the second method, the processor

ages are not provided and the application failure distribution is
expressed using the asymptotic remaining life distribution. In the
remaining of this section, we present these two methods in more
detail. Let us emphasize that while the results presented in this
paper require a failure distribution, end users are free to use the
distribution function of their choice.

Formally, suppose that the execution of the user application

starts at time t. Each processor has its own failure/repair history

denoted by ðh1; h2; . . . ; hqÞ, where hq is the time since the last

failure on processor q, failure distribution GqðxÞ, and mean time to

failure denoted by �q .
In the first method, the failure distribution of the application is

given by the product over all the conditional failure distributions of

the processors used by the application. Let GqðxjhqÞ denote the

probability that processor q fails in the next x units of time knowing

that hq units of time are elapsed since the last failure. Therefore, the

conditional failure distribution of processor q is given by

GqðxjhqÞ ¼
Gqðxþ hqÞ �GqðhqÞ

GqðhqÞ
:

The probability distribution F ðxÞ that the application will not fail

in the next x units of time is given by

F ðxÞ ¼
YQ
q¼1

GqðxjhqÞ: ð1Þ

For instance, suppose that the failures are exponentially distrib-

uted with GqðxÞ ¼ 1� exp�x=�q . In this case due to the memoryless

property of the exponential distribution, the application failure

distribution is not history dependent and is given by

F ðxÞ ¼ exp�ðx=
PQ

q¼1
�qÞ: ð2Þ

In the second method, instead of using the failure/repair history of

each processor to express the failure distribution of the application,

the asymptotic remaining life distribution of each processor is

used. We notice that in most HPC platforms the exact failure/

repair history of each processor is not provided to the users.

Therefore, it will be more convenient to express the failure

distribution using this method. Various approaches were proposed

to derive the distribution of the remaining life of a single processor

and a survey may be found in [1]. We present below the

asymptotic distribution when the processors are considered in

the steady state regime (i.e., when t!1). Let RqðtÞ denote the

remaining life of the processor in use at time t. Assume that the

next failure on the qth processor will occur at time Tq with ðTq > tÞ
we have RqðtÞ ¼ Tq � t. Suppose now that all the processors are in

the steady state regime. The asymptotic probability distribution of

the remaining life of the qth processor is given by
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lim
t!1

IP½RqðtÞ > x� ¼ 1

�q

Z 1
x

GqðuÞdu:

Thus, the probability that the application will not fail in the next
x units of time, is given by the probability that the remaining life of
each processor is greater than as given in x.

F ðxÞ ¼
YQ
q¼1

1

�q

Z 1
x

GqðuÞdu
" #

: ð3Þ

Notice that using this method, if failures are exponentially
distributed, the global application failure distribution will be the
same as the distribution obtained with the first method in (2).

Therefore, with regard to the availability of the information
about processors failure/repair history, the user can decide which
failure distribution to use for computing the checkpoint scheduling
strategy. Let us finally remark that dF ðtÞ exists if all the GqðxÞ
distribution functions are derivable that implies the existence of a
general application failure density.

2.3 Description of the Optimization Problem

With the failure distributions and the execution model defined in
previous sections, we are now able to formally describe the
checkpoint scheduling problem.

Usually, the most common objective in HPC is to minimize the
completion time of the application. To achieve this objective, we
focus on the minimization of the wasted time as a pertinent
dependability metric. It corresponds to the overhead time that will
be added to the completion time of the application without
failures. More precisely, the wasted time is composed of three
terms: First, the overhead induced by checkpoints themselves
which will increase the completion time. Second, the amount of
work which is lost after a failure between the last checkpoint and
the actual failure time. Finally, as the failures are not necessarily
detected immediately, there is another delay to consider corre-
sponding to the amount of time since the actual failure until the
moment when it is detected.

To be more precise, an instance of the optimization checkpoint
scheduling problem denoted in short by CSF is defined as
follows: The inputs of the problem are 2n positive rational
numbers pi and ci for 1 � i � n, where pi is the processing time of
the ith block and ci is the overhead that will delay the completion
of the application if a checkpoint is performed after block i. The
objective is to provide a schedule that minimizes the mathema-
tical expectation of the wasted time. The schedule vector is
defined by A ¼ fa1; . . . ; ang 2 f0; 1gn, where ai is a decision
variable (ai ¼ 1 if a checkpoint is scheduled after the ith block
and ai ¼ 0 otherwise). We remark that the failure probability
distribution F ðxÞ which is a mapping from IRþ to ½0; 1� is also
considered as an input of the problem.

Let us detail below the mathematical expression of the expected
wasted time denoted by WðAÞ and composed of the three following
terms:

. The first term is the expected checkpoint overhead. Let �i
denote the cumulative checkpoint overhead from the
beginning until the completion of the ith block. Based on
this definition, �i is given by �i ¼

Pi
j¼1 ajcj with �0 ¼ 0.

Let �i denote the useful computing time from the
beginning until the ith block such that �i ¼

Pi
j¼1 pj with

�0 ¼ 0 and dF ðxÞ denotes the derivative of the application
failure distribution. Therefore, by conditioning that the
failure occurs during the block iþ 1 at time x (i.e., �i þ �i �
x < �iþ1 þ �iþ1 ). The expected checkpoint overhead is
given by the following expression:

CðAÞ ¼
Xn�1

i¼0

Z �iþ1þ�iþ1

�iþ�i
�idF ðxÞ: ð4Þ

. The second term represents the expected lost computation
due to failure. We recall briefly that after a failure, all the
computation results since the last checkpoint are lost.
Thus, the lost computation is the amount of work since the
last checkpoint until the actual failure time (see Fig. 3). In
the same way, we condition that the failure occurs after the
execution of the ith block and before the completion of the
iþ 1th one at time x. Also the last performed checkpoint
before the block iþ 1 is executed at time maxj�iðaj�j þ �jÞ.
Hence, the amount of lost work is x�maxj�iðaj�j þ �jÞ.
The expected lost work is given by

LðAÞ ¼
Xn�1

i¼0

Z �iþ1þ�iþ1

�iþ�i
ðx�max

j�i
ðaj�j þ �jÞÞdF ðxÞ: ð5Þ

. The last term is the failure detection latency which is the
elapsed time from the actual failure time until the time of
the failure detection. As pointed out in section a detection
mechanism is included into each checkpoint. Let nextðiÞ
denote the time of the next checkpoint after the ith block.
nextðiÞ is given by

nextðiÞ ¼ max aiþ1�iþ1; max
iþ1<j�n

aj�j
Yj�1

k¼iþ1

ak

 ! !
:

For instance suppose that the next checkpoint sched-
uled after the ith block is performed after the block iþ d
such that iþ 1 < iþ d � n. Therefore, all the ak are equal
to 0 for j ¼ iþ 1 to j ¼ iþ d� 1. Hence, aj�j

Qj�1
k¼iþ1 ak > 0

only for j ¼ iþ d. Suppose that a failure occurs at time x
such that �i þ �i � x < �iþ1 þ �iþ1. The detection latency is
given by nextðiÞ þ �i � x. By conditioning on failure times
we obtain the following expression for the expected time to
detect failures:

DðAÞ ¼
Xn�1

i¼0

Z �iþ1þ�iþ1

�iþ�i
ðnextðiÞ þ �i � xÞdF ðxÞ: ð6Þ

As a summary, the expected amount of wasted time is the
summation of (4), (5), and (6).

WðAÞ ¼ CðAÞ þ LðAÞ þDðAÞ: ð7Þ

3 COMPLEXITY ANALYSIS

With the checkpoint scheduling problem now formally defined, we
propose to start its study with a computational complexity
analysis. Formally, the decision version CSF of the checkpoint
scheduling problem is expressed as follows:
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INPUT: 2nþ 1 positive rational numbers fp1; . . . ; png
fc1; . . . ; cng and W that corresponds to a target to achieve.

QUESTION: Does it exist a schedule A ¼ fa1; . . . ang such that

WðAÞ �W?
Clearly, the general objective function WðAÞ is a complicated

nonlinear function due to the general failure distribution function

and the max operator. Therefore, without loss of generality to

prove the NP-completeness of the problem we consider a

particular failure distribution and a subfamily of instances as

described in the next section.

3.1 Subfamily of Instances

We describe in what follows the particular failure distribution and

the considered subfamily of instances that will be used to prove the

NP-completeness of the problem.

. Detection latency. First of all, we start by assuming that the
detection latency is null (i.e., DðAÞ ¼ 0). We notice that this
hypothesis leads to the classical problem formulation in
the literature where failures are supposed to be detected
immediately. Therefore, the objective function is given by

WðAÞ ¼
Xn�1

i¼0

Z �iþ1þ�iþ1

�iþ�i

�
x�

�
max
j�i

aj�j
��
dF ðxÞ: ð8Þ

. Uniform distribution. Usually, it is well established that the
most convenient failure distribution in terms of mathema-
tical manipulation is the uniform distribution. Thus, we
consider the particular problem such that F ðxÞ ¼ x for
x 2 ½0; 1½. This enables to simplify (8) of the expected
wasted time and WðAÞ is given by

W ðAÞ ¼
1

2
ð�n þ �nÞ2

�
Xn�1

i¼0

ðpiþ1 þ aiþ1ciþ1Þ
�

max
j�i

aj�j
�
:

ð9Þ

This variant of the problem with the uniform failure

distribution is denoted by CSU instead of CSF .
. Checkpoint cost. Finally, the last hypothesis concerns the

checkpoint costs. Intuitively, the idea is to replace the max
operator by a linear operator. To simplify the objective
function, we consider a subfamily of instance where the
checkpoint cost is null for the blocks with even index.
Therefore, it is clear that such a checkpoint with null cost
does not have any impact on the accumulated checkpoint
overhead when it is performed while it reduces the lost
work in case of failure. Thus, we are able to prove the
following lemma.

Lemma 1. In any optimal schedule that minimizes WðAÞ we have:

ci ¼ 0) ai ¼ 1.

Proof. Considering a particular instance where the ith checkpoint

has a null cost ci ¼ 0: Let ~A ¼ <~a1; . . . ; ~ai; . . . ~an> and ~ai ¼ 0.

Suppose by contradiction that ~A is an optimal schedule for this

instance, such that, 8A; Wð ~AÞ �WðAÞ. Let A0 ¼ ~A except for the

ith index such that, ða0i ¼ 1� ~ai ¼ 1Þ. Therefore, based on the

(9), we have

WðA0Þ ¼Wð ~AÞ þ
c2
i

2
þ ci

X
j 6¼i
ðajcjÞ � �iðpiþ1 þ aiþ1ciþ1Þ:

Recall that ci ¼ 0. Thus,

c2
i

2
þ ci

X
j 6¼i
ðajcjÞ � �iðpiþ1 þ aiþ1ciþ1Þ < 0:

Which leads to the contradiction WðA0Þ < Wð ~AÞ. tu
Thus, without loss of generality, according to Lemma 1 we

have for all blocks with even index 8i; c2i ¼ 0 and a2i ¼ 1. This

transformation leads to the simplification of the max operator

as follows:

max
j�i

aj�j ¼
�i; if i is even;
ai�i þ ai�i�1; if i is odd:

�

Let I denote the set of odd indices up to n. It is straightforward

to verify that (9) becomes

W ðAÞ ¼
ð�n þ �nÞ2

2
�
X
i2I

�i�1ðpi þ piþ1Þ þ aið�i�1ci þ pipiþ1Þð Þ: ð10Þ

Then, let K ¼ �2
n=2�

P
i2I �i�1ðpi þ piþ1Þ, which is a constant

with respect to any scheduling strategy. The objective function of

the considered subfamily can be expressed as follows:

W ðAÞ ¼ K þ �2
n=2�

X
i2I

aici �i�1 � �n þ
pipiþ1

ci

� �
: ð11Þ

3.2 NP-Completeness

We exhibit in this section a polynomial reduction for the presented

subfamily of instances from the well-known Subset Sum problem

which is NP-complete [13]. Formally, an instance of Subset Sum is

given by
INPUT: m positive numbers s1; s2; . . . ; sm, and an integer S.
QUESTION: Does there exist a subset denoted by E of

f1; 2; . . . ; mg such that
P

i2E si ¼ S?

Theorem 1. The checkpoint scheduling CSU problem is NP-Complete.

Proof. It is straightforward to verify that the decision version of the

checkpoint scheduling problem belongs to NP . Since a

deterministic algorithm in polynomial time bounded by OðnÞ
can be used to check if W ðAÞ � W for any schedule A.

The reduction is based on a transformation of Subset
Sum to CSU .

. Checkpoint cost mapping. For each item sið1 � i � mÞ
create two checkpoints such that: c2i�1 ¼ si and c2i ¼ 0.
Therefore, we remark that n ¼ 2m.

. Processing time mapping. The idea is to set pi values in
such a way that

Xm
i¼1

a2i�1c2i�1 �2i�1 � �n þ
p2ip2iþ1

c2i�1

� �� �

¼
Xm
i¼1

½a2i�1c2i�1S�:
ð12Þ

Therefore, 8i; 1 � i � m create two blocks with p2i ¼
2nS and p2i�1 ¼ c2i�1ð2n�

Pi�1
j¼1ð1þ

p2j�1

2nS ÞÞ.
. Target mapping. Finally, the target is defined by

W ¼ K � S2=2.

Suppose now that Subset Sum has a positive instance
denoted by E where

P
i2E si ¼ S.

We consider the following schedule A given by: 8i; 1 � i �
m a2i ¼ 1 (such that all the checkpoints with even indices are
performed). 8i; 1 � i � m if i 2 E then a2i�1 ¼ 1 else a2i�1 ¼ 0.
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We mention that, by construction 8i 2 I we have �2ði�1Þ �
�2m þ p2ip2i�1

c2i�1
¼ S and �2m ¼ S therefore W ðAÞ ¼ K þ �2

2m=2�
�2mS ¼ K � S2=2 ¼W which is a positive instance for CSU .

Conversely, suppose now that CSU has a positive instance A

such that W ðAÞ �W . Therefore, K þ �2
n=2 � S�n � K � S2=2.

As the inequality 1=2ð�n � SÞ2 � 0 has one solution where

�n ¼ S. Therefore, Subset Sum has a positive solution. tu
This completes the proof that CSF is weakly NP-complete and

thus, we cannot hope for better than pseudopolynomial algorithms

unless P ¼ NP .

4 ALGORITHM DESCRIPTION

We present in this section a pseudopolynomial algorithm for

scheduling the checkpoints with variable costs for any failure

distribution and prove its optimality. We show also that the

problem is fully polynomial in the restricted case of constant

checkpoint costs.

4.1 General Case

We present in this section a scheduling algorithm for solving the

general problem. This algorithm is based on a dynamic program-

ming approach that provides an optimal schedule minimizing the

objective function given in (7). We start by introducing some

notations.
Let ��

i be the set of schedules Ai;�i verifying the following

constraints.:

Ai;�i ¼ fa1; . . . ; aig 2 ��
i iff

Xi
j¼1

ajcj ¼ �

ai ¼ 1:

8><
>:

More precisely, Ai;�i is a checkpoint schedule for the i first blocks,

such that the cumulative checkpoint overhead until the i first

blocks is exactly equal to �i ¼ � and a checkpoint is necessarily

scheduled after the ith block that is ai ¼ 1.
It is clear that ��

i is a finite set which implies the existence of an

optimal schedule A�i;�i with the minimal expected waste time value

over this set. Let W �
i;� denoted this optimal value such that

WðA�
i;�i
Þ ¼ W �

i;�.
We also introduce r that represents the block index of the

penultimate checkpoint in Ai;�i (i.e., the last checkpoint before the

ith one) such that r is given by r ¼ arg maxj<iaj�j. Based on this

definition, we introduce the schedule A0r;�r such that A0r;�r is

subvector of Ai;�i for values with indices between 1 and r. More

accurately, A0r;�r is exactly the same scheduling solution as Ai;�i for

checkpoints up to r (8j; 1 � j � r we have aj ¼ a0j). This relation

may be interpreted in the following way: The scheduling solution

for checkpoints considering only the i first blocks with cumulative

checkpoint overhead �i ¼ � can be obtained from a scheduling

solution for checkpoints with cumulative checkpoint overhead

�r ¼ �� ci for blocks up to r. Considering this construction the

expected wasted time in (7) can be expressed as follows:
Let Ai;�i 2 ��

i and �ðr; iÞ ¼
R �iþ�i
�rþ�r
ð�i � �r þ �iÞdF ðtÞ. We obtain

WðAi;�i
Þ ¼WðA0

r;��ci
Þ þ�ðr; iÞ: ð13Þ

Based on this construction, we are able to establish the

following proposition.

Proposition 1. If Ai;�i is the optimal schedule in ��
i then A0r;�r is the

optimal schedule in ���ci
r .

Proof. Let Ai;�i 2 ��
i and suppose that WðAi;�i Þ ¼W �

i;�. First, it is

straightforward to see that by construction we have

A0r;�r 2 ���ci
r . Suppose now by contradiction that A0r;�r is not

optimal over the set ���ci
r . Thus, it exists a valid schedule

~Ar;�r 2 ���ci
r such that Wð ~Ar;�r Þ < WðA0r;�r Þ. Therefore, Wð ~Ar;�r Þ þ

�ðr; iÞ < WðAi;�i
Þ < W �

i;�. This leads to a contradiction. tu

Let W � denote the global minimal wasted time for the general
problem. It is clear that W � ¼ min�2�W

�
n;� corresponds to the

minimum taken over all possible integer values of � between the
minimum and the maximum checkpoint overhead for instance
� ¼ ½0;

Pn
i¼1 ci�. Using a recursion on the last checkpoint, we can

directly derive from the proposed Proposition 1 the following
dynamic programming scheme:

Initialization :8i � n;
W �

i;ci
¼ ð�iÞF ð�i þ ciÞ;

8� > ci : W �
i;� ¼ 1;

Recurrence :8i � n and � <
Xi
j¼1

cj;

W �
i;� ¼ min

1�r<i

�
W �

r;��ci þ�ðr; iÞ
�
:

ð14Þ

This algorithm leads to an optimal schedule. It is pseudopolyno-
mial time in Oðn3 �maxiðciÞ.

4.2 Constant Checkpoint Costs

Using a similar analysis, we show that when the checkpoint cost is
constant, the previous algorithm can be simplified to an optimal
polynomial-time algorithm. It is clear that when checkpoint cost is
constant and equal to c. It is straightforward to remark that the
cumulative checkpoint overhead is necessarily a multiple of c
(�i ¼ lc). Thus, considering a given checkpoint scheduling policy,
the cumulative checkpoint overhead is fully characterized by the
number of checkpoints l in this schedule. Thus, in this case the
range of l is reduced to integer interval ½1; n�. Using Proposition 1,
the optimal scheduling is obtained after computing all the values
W �

i;l for 1 � i � n and 1 � l � i using the following recurrence
equations:
8i � n and l � i,
W �

i;l ¼ minl�1�r<iðW �
r;l�1 þ�ðr; iÞÞ,

where W �
i;1 ¼ ð�i þ cÞF ð�i þ cÞ8i � n.

This algorithm is polynomial and its computational complexity
is in Oðn3Þ.

5 CONCLUDING REMARKS

We have presented in this paper a new combinatorial approach for
scheduling checkpoints for HPC applications in parallel platforms.
We have proven that the general problem with any failure
distribution and variable checkpoint costs is NP-complete even
in the case of uniform failure distribution. We have also proposed
a dynamic programming algorithm for solving this problem. This
algorithm leads to a low-cost polynomial time algorithm when the
checkpoints costs are constant.

We believe that this work could serve as a solid basis for many
further studies. For instance, it is clear that for nonpreallocated
blocks, checkpoint scheduling, and block scheduling are strongly
interleaved. Thus, the dynamic programming scheme can be used
as a basic step for designing a mixed solution. Another extension of
this work is to include advanced failure detection mechanisms into
the proposed scheme. Finally, it may be interesting to investigate
the effects of the steady state regime hypothesis on the failure
distribution. In particular, it would be interesting to study eventual
performance gaps between schedules obtained with the different
failure distribution models.
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