
Optimization of Multi-level Checkpoint Model for Large Scale HPC Applications

Sheng Di12, Mohamed Slim Bouguerra12, Leonardo Bautista-gomez2, Franck Cappello2

1INRIA, France, 2Argonne National Laboratory, USA,

sheng.di@inria.fr, slim.bouguerra@imag.fr, {leobago, cappello}@mcs.anl.gov

Abstract—HPC community projects that future extreme
scale systems will be much less stable than current Petascale
systems, thus requiring sophisticated fault tolerance to guar-
antee the completion of large scale numerical computations.
Execution failures may occur due to multiple factors with
different scales, from transient uncorrectable memory errors
localized in processes to massive system outages. Multi-level
checkpoint/restart is a promising model that provides an elastic
response to tolerate different types of failures. It stores check-
points at different levels: e.g., local memory, remote memory,
using a software RAID, local SSD, remote file system. In this
paper, we respond to two open questions: 1) how to optimize
the selection of checkpoint levels based on failure distributions
observed in a system, 2) how to compute the optimal checkpoint
intervals for each of these levels. The contribution is three-
fold. (1) We build a mathematical model to fit the multi-
level checkpoint/restart mechanism with large scale applica-
tions regarding various types of failures. (2) We theoretically
optimize the entire execution performance for each parallel
application by selecting the best checkpoint level combination
and corresponding checkpoint intervals. (3) We characterize
checkpoint overheads on different checkpoint levels in a real
cluster environment, and evaluate our optimal solutions using
both simulation with millions of cores and real environment
with real-world MPI programs running on hundreds of cores.
Experiments show that optimized selections of levels associated
with optimal checkpoint intervals at each level outperforms
other state-of-the-art solutions by 5-50 percent.

I. INTRODUCTION

Most of recent scientific problems have to launch a large

number of processes simultaneously to process huge amount

of workload for a long time. For example, recent studies

[1] show that taking advantage of about 83k processors of

one of the world’s most powerful supercomputers can only

mimic just one percent of one second’s worth of human

brain activity - and even that took 40 minutes.

Any HPC environment may inevitably encounter various

hardware failures from time to time, significantly decreasing

the reliability [2]. For example, at Lawrence Livermore

National Laboratory (LLNL), a BlueGene/L system with

100k nodes encounters one L1 cache bit error every 8

hours [3]. Hence, it is likely to experience fatal failures in

the course of large scale executions, because any interruption

to one running process will cause the whole execution crash.

In order to resolve the fault-tolerance issue, most of

existing fault-tolerance projections [4] adopt periodic check-

point/restart model [5], [6], not only because it is very

easy to apply in practice but also with a satisfied overall

performance in general [7], [8], [9]. For instance, for an MPI

program, one just needs to periodically store the processes’

memories into Parallel File System (PFS), and roll back the

execution to the most recent checkpoint when necessary.

For large scale applications with huge data size to process,

classic checkpoint/retart method with single level suffer

from huge performance degradation. First, there are many

different types of transient/software failures1 and various

levels of hardware failures to strike the application, such

that it is hard to predict failure locations with high accuracy.

For example, ELSA [10] is an excellent failure prediction

tool, yet it still suffers from 50% prediction errors in recall.

Second, it is too costly to always store checkpoint files

into PFS. On the one hand, large scale applications tend

to suffer frequent failures because of a large number of

running processes. Even worse, exascale applications [11]

might experience multiple simultaneous hardware failures.

On the other, large scale applications tend to load larger-size

data to process, leading to huge checkpoint/restart overhead

(up to 25%) [12], because of I/O bottleneck.

Multi-level checkpoint/restart model [13], [14], [15], [16]

has been considered the best-fit solution for the above large

scale fault-tolerance issue. Such a model is able to suit var-

ious overheads on checkpointing at different storage levels.

Scalable Checkpoint/Retart (SCR) [15], for example, is a

well-known multi-level checkpointing library, which allows

to write checkpoints to RAM, Flash, or disk on compute

nodes in addition to PFS. Fault Tolerance Interface (FTI)

[16] is another outstanding toolkit which provides four-level

checkpointing interfaces, including local-disk, partner-copy,

Reed-Solomon coding (RS-coding), and PFS. Obviously,

multi-level checkpoint/restart model creates a new avenue to

refine the optimization of checkpoint intervals on demand,

with significantly lower checkpoint/restart cost than single-

level checkpoint model. If the application fails due to

software errors or user interruption, we just need to restart

the execution from the recent checkpoint stored on local-

disk. If the failure is due to disk errors or node crash, we

have to restart the execution by checkpoints stored on remote

disks like nearby partner storage device or PFS.

In this paper, we present the following three contributions

based on the multi-level checkpoint/restart model.

• We build a generic mathematical multi-level check-

point model for optimizing the execution of large

scale HPC applications. Our model is suitable for the

situation with correlated failures like the cases with

1transient failure here refers to software failure, as opposed to hardware
failure. That is, local disk on the host is still available.
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simultaneous adjacent node failures in a rack. This

contrasts the well-known analysis like Young’s formula

[5] and Daly’s work [6], which is subject to single-level

checkpoint/failure situation.

• Our solution is split into two stages, which optimize the

checkpoint intervals and the selection of levels respec-

tively. For the former, we compute optimal checkpoint

intervals for different checkpoint levels, with in-depth

analysis of entire wall-clock time for each application.

The serious challenge is that failure locations are un-

predictable and different levels may not be independent

with each other. We have to combine different levels of

failures together to optimize the entire performance.

• We evaluate our optimal multi-level checkpoint/restart

method on both large scale simulation and a real

cluster environment with real-world HPC applications.

We compare our solution with optimal selection of

levels associated with optimized checkpoint intervals

to three other state-of-the-art solutions: (1) single-level

checkpoint only with PFS, (2) multi-level checkpoint

with all possible levels and Young’s formula [5], (3)

multi-level checkpoint with all possible levels with our

optimal checkpoint intervals. Experiments show that

our solution outperforms other solutions by 5-50%.

The rest of the paper is organized as follows. In Sec-

tion II, we briefly introduce the background of multi-level

checkpoint mechanism and present the system overview. In

Section III, we formulate the multi-level periodic check-

point model to be an optimization problem, by aiming

to compute the optimal checkpoint intervals for different

levels. In Section IV, we derive the optimal checkpoint

intervals for different levels with various types of failures,

and also optimize the selection of levels based on the

optimized checkpoint intervals. We present in Section V our

experimental results. We discuss the related works in Section

VI, and finally, provide concluding remarks with a vision of

the future work in Section VII.

II. SYSTEM OVERVIEW

At present, two most well-known multi-level check-

point/restart toolkits are SCR [15] and FTI [16], and they

adopt similar design models. There are multiple checkpoint

levels, each of which corresponds to a particular type of fail-

ure event. One can perform different levels of checkpoints

onto running MPI processes, and restart them at a particular

level upon different types of failures. In this paper, we adopt

FTI as the prototype of our multi-level checkpoint/restart

model, in that FTI allows to restart MPI processes upon

multiple simultaneously failed nodes by leveraging Reed-

Solomon coding (RS-coding) technology [17].

With RS-coding technology, FTI [16] is able to quickly

recover an MPI execution, even though half number of

checkpoint files are missing due to crashed nodes in the

worst case. In addition to RS-coding technology, FTI also

integrates partner-copy method [16], [18] which has lower

checkpoint/restart overhead than RS-encoding. Hence, there

are 4 levels in FTI based on different storage technologies:

local storage, partner-copy, RS-encoding, and PFS.

Figure 1 presents the system architecture of the HPC

execution environment deployed with FTI. Based on this

figure, the whole HPC architecture can be split into five lay-

ers. Physical hardware infrastructure (e.g., execution nodes

and network) serves as the bottom layer, on top of which

is the resource allocation layer like Parallel Batch System

(PBS). FTI is a particular library or toolkit which supports

multi-level checkpoint/restart interfaces for MPI library. Any

MPI programmer just needs to add a few FTI function calls

(or annotations) into programs to specify the heap or stack

memories to save in case of failures. Unlike the system

level checkpoint tool (e.g., Berkeley Lab Checkpoint/Restart

(BLCR) [19]), such a design with inserted annotations in

MPI programs can effectively reduce checkpoint overheads

because of on-demand critical memory states to store.
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Figure 1. System Architecture Deployed with FTI

In this paper, we focus on how to optimize the check-

point intervals based on different levels of checkpoint/restart

technologies, shown as the optimization tool in Figure 1.

This optimization work is non-trivial in that it has to be

related to different layers in the whole system. We also need

to construct a mathematical model which can fit the real

checkpoint/restart cases, and try to find the optimal solution

with in-depth analysis on the multi-level checkpoint model.

III. PROBLEM FORMULATION

In this section, we formulate our research as an optimiza-

tion problem based on multi-level checkpoint/restart model.

We mainly focus on the periodic checkpoint model (a.k.a.,

equidistant checkpoint model), as it is a de-facto standard in

the fault-tolerance research. Although a hybrid model with

both periodic checkpoints and proactive checkpoints [20],

[21] has been studied recently, it requires practitioners to

predict the locations of failures with a high precision, which

would be non-trivial in practice.

Suppose we are given a large scale MPI program, whose

processes are running on K separate processors like nodes.

Without loss of generality, transient failures (level 1) are

independent with hardware failures (other levels), since their

root causes lie in different layers (application layer and

physical infrastructure layer) as shown in Figure 1.

In general, an application user can estimate with a certain

high precision his/her own HPC application length (denoted
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as Te) based on experiential analysis. Note that such a length

refers to the productive time, excluding any failure-related

costs like roll-back loss and checkpoint overhead.

There are two types of basic failures, transient failure

(a.k.a., software failure) and hardware failure. The expected

number of transient failures (denoted as ns) during the

execution of the HPC application is able to be predicted with

the mean time to interruption (MTTI) based on historical

statistics or the knowledge of possible interruptions. The

hardware failure rate per processor is denoted as λ. That

is, for a particular period t, there are about λt hardware

failures on a processor.

Here, we propose a generic multi-level checkpoint/restart

model with L checkpoint levels. The checkpoint level 1

corresponds to transient failures. The remaining higher

checkpoint levels (2,3,· · · ,L) correspond to different cases of

node failures. It is easy to tune such a model to fit practical

cases. In FTI, for example, there are totally four checkpoint

levels (local storage, partner-copy, RS-coding, and PFS) as

shown in Figure 2. The four checkpoint levels correspond

to “no hardware failure”, “nonadjacent node failures”, “a

certain number of node failures with adjacent failure cases”,

and “the situations that lower levels cannot take over”

respectively. Upon any type of hardware failure, the system

will reallocate a new resource (such as a compute node)

for the interrupted application, and the resource allocation

period in our model is a constant period, denoted by A,

which is far shorter than application execution time Te.
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Figure 2. The Process of An HPC Application with Failures

In Figure 2, we present the overall procedure in running

an application with three failure cases (software failure, one-

node-crash failure, and adjacent-node-crash failure), where

xi refers to the number of checkpoint intervals at checkpoint

level i during the normal execution period Te. For simplicity

of presentation, this figure does not present resource alloca-

tion period, checkpoint overheads and restart overheads.

The checkpoint overhead and restart overhead are differ-

ent from level to level. We denote the checkpoint overhead at

the checkpoint level i by Ci, where C1 ≤ C2 ≤ · · · ≤ CL in

general. Similarly, the restart overhead at level i is denoted

by Ri, where R1 ≤ R2 ≤ · · · ≤ RL in general.

Optimization of multi-level checkpoint model is non-

trivial because of the mutual impact among levels and

unpredictable failure locations on particular levels. In order

to make the problem tractable, we introduce a key random

variable called the number of failures (denoted by Y ) during

the application’s execution, as opposed to other common

metrics like interval between failures.

Our objective is to minimize the expected wall-clock

length for each given application. The expected wall-clock

length E(Tw) can be written as Formula (1), where L, Γij

and Pi(Y = N) denote the total number of checkpoint lev-

els, the roll-back loss due to the jth failure in the execution

and the probability of experiencing N failures1 at checkpoint

level i respectively. On one hand, we need to determine

the optimal values of x1,x2,· · · ,xL with minimized E(Tw)

regarding all possible overheads and roll-back losses. On the

other hand, we need to determine which levels are supposed

to be selected/removed for the optimal performance.

E(Tw) = Te +
L∑

i=1

Ci(xi − 1)

+
L∑

i=1

[
∞∑

N=1

(
Pi(Y = N)

N∑
j=1

(Γij +A+Ri)

)] (1)

Some key notations are summarized in Table I.
Table I

SUMMARY OF KEY NOTATIONS

Notation Description
L number of checkpoint levels each with different failure types

K number of processes of the studied application

Te the execution length of the studied application

ns expected number of soft failures of the studied application

λ hardware failure rate per node (a constant)

Ci checkpoint overhead per checkpoint at level i (a constant)

Ri restart overhead per recovery at level i (a constant)

A resource allocation period (a constant)

xi number of checkpoint intervals of the application at level i
Pi(Y = N) the probability of encountering N failures at level i
Γij roll-back loss of the application due to jth failure at level i

IV. OPTIMIZING MULTI-LEVEL CHECKPOINT MODEL

The roll-back loss in multi-level checkpoint model is

different from that in traditional single-level checkpoint

model. As the application is restarted based on a checkpoint

at level i, the total roll-back loss has to include all checkpoint

overheads at lower levels in addition to the lost execution

time. For the example shown in Figure 2, when the appli-

cation rolls back to a level-3 checkpoint, both of the level-

1 checkpoint overheads and level-2 checkpoint overheads

should also be counted in the roll-back loss. On the other

hand, since all failures are unpredictable with random arrival

locations and the checkpoints are taken periodically with

equal distances, the expected roll-back execution time with-

out considering checkpoint overheads should approach half

of the checkpoint interval, i.e., Te

2xi
. As such, the expected

value of Γij can be represented in Formula (2), where

1The N failures here are evaluated with respect to productive time. If
the productive time is long, then it is close to wall-clock time, so N≈ Te

Tfi
,

where Tfi refers to mean time between failures (MTBF) at level i.
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Te/(2xi)
Te/xk

refers to the number of checkpoints at level k during

a roll-back period.

E(Γij) =
Te

2xi
+

i−1∑
k=1

(
Te/(2xi)
Te/xk

Ck

)
= Te

2xi
+

i−1∑
k=1

Ckxk

2xi
(2)

Since the unpredictable hardware failures occur randomly

during the execution, the roll back loss in each checkpoint

interval is supposed to be independent with the total number

of failures. As a result, we can convert the expected wall-

clock time to be Formula (3), where ni (i=1,2,· · · ,L) refers

to the expected number of failures at checkpoint level i
during the execution.

E(Tw)=Te+
L∑

i=1

Ci(xi−1)+
L∑

i=1

(
Te

2xi
+

i−1∑
j=1

Cjxj

2xi
+A+Ri

)
·ni (3)

Our objective is to minimize E(Tw) based on the

above formula with variables xi (i=1,2,· · · ,L). Since ∀i
∂2E(Tw)

x2
i

> 0, there must exist an unique minimum point,

when
∂E(Tw)

xi
= 0. Hence, we can derive L equations, i.e.,

Formula (4), where i=1,2,· · · ,L. That is, we can get the

optimal checkpoint intervals for different levels as long as

such simultaneous equations are solved.

Ci=
ni

2x2i

(
Te+

∑i−1
j=1

Cjxj

)
−Ci

2

∑L

j=i+1

nj

xj
(4)

However, it is non-trivial to directly solve such simulta-

neous equations due to two key factors.

• According to Abel-Ruffini theorem (a.k.a., Abel’s im-

possibility theorem) [22], there is no generic formula to

directly solve a system of quintic equations with single

variable, not alone to say the above simultaneous equa-

tions (Formula (4)) with higher degrees and multiple

variables xi (i=1,2,· · · ,L).

• We need to compute the expected number of failure

events1 for different checkpoint levels (i.e., ni). Which

levels the failure events should belong to are determined

by the mutual occurrence intervals between hardware

failures or the state of node connection. As shown

in Figure 3, a failure event is considered higher-level

failure if and only if there are multiple nodes crashing

simultaneously in a short period. Such a failure event in

literatures is also known as correlated failure event [8],

[23], [24]. The short period (a.k.a., correlated failure

window) can be set to a constant overhead, such as

resource allocation period. For example, in [23] and

[24], the correlated failure windows are set to 1 minute

and 2 minutes respectively. In Figure 3, the first blue

cross implies a soft failure due to no hardware failures

occurring around it, so it belongs to the checkpoint

level 1. When there are two nonadjacent node failures

occurring during the resource allocation, the failure

event belongs to level 2, while a failure event with

1A failure event is a failure case with one or more simultaneous
hardware failures occurring in a short period before restarting execution.

three simultaneous hardware failures will be considered

checkpoint level 4 (e.g., CPL4 in the figure). On the

other hand, simultaneous node failures may occur due

to the malfunctioned switch or power board shared by

multiple nodes.
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Figure 3. Illustration of CheckPoint Levels (CPL)

In the following text, we first present a very effective

method to iteratively obtain the solution to the above simul-

taneous equations (4). We then describe how to optimize

the selection of checkpoint levels based on such an iterative

method. After that, we use a real use-case (FTI prototype)

to illustrate how to extend our multi-level checkpoint/restart

model and compute the optimal solution in practice. Finally,

we illuminate some ideas on how to derive the expected

number of failure events belonging to different checkpoint

levels, based on different types of failures.

A. Optimizing Checkpoint Intervals for Different Levels

As analyzed previously, the solution to the simultaneous

equations presented by Formula (4) leads to the optimal

checkpoint intervals for different checkpoint levels. That is,

we need to find a set of values for {x1,x2,· · · ,xL} such that

Equation (4) always holds for i=1,2,· · · ,L. In fact, Abel-

Ruffini theorem [22] reveals that there is no formula to get

the solution.

Fortunately, we find an iterative method which is able to

solve the Equations (4) very quickly, with just a few iterative

steps. The idea is similar to Jacobi method [25] which is

commonly used to solve a system of linear equations.

It is easy to convert Formula (4) to Formula (5).

xi =

√√√√ni(Te +
∑i−1

j=1 Cjxj)

Ci(2 +
∑L

j=i+1
nj

xj
)

(5)

Based on Formula (5), we can further derive an iterative

function shown below, where x
(k)
i and x

(k+1)
i are referred

to as the converged results at the kth step and the (k+1)th

step respectively.

x
(k+1)
i =

√√√√√ni(Te +
∑i−1

j=1 Cjx
(k)
j )

Ci(2 +
∑L

j=i+1
nj

x
(k)
j

)
(6)

Similar to Jacobi method, we first set the variables

{x1,x2,· · · ,xL} to some initial values, and then iteratively

perform Formula (6) until each equation in Formula (4)

approximately holds with little errors. The initial values of

{x1,x2,· · · ,xL} can be obtained by Formula (7), in that

it leads to the sub-optimal checkpoint interval result for a
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particular level i by overlooking the impact of checkpoint

overheads at other levels.

x
(0)
i =

√
niTe

2Ci
(7)

In fact, Young’s formula [5] can be considered a special

case of Formula (7). That is, when assuming that failure

intervals follow Exponential distribution and the checkpoint

overhead is very small, then we can get Young’s formula

from Formula (7) through the following derivation, where

Tci and Tfi refer to the checkpoint interval at level i and the

mean time between failures (MTBF) at level i respectively.

Tci ≈ Te

x
(0)
i

= Te√
1
2niTe/Ci

= Te√
1
2

Te
Tfi

·Te

/
Ci

=
√
2CiTfi

Suppose there are millions of running processes with 8

checkpoint levels (from level 1 to level 8): their check-

point overheads are 10,30,45,50,55,60,65,240 seconds and

the expected number of failures are 30,10,20,25,18,15,8,2

(transient failures at the first level are independent with

hardware failures and the last checkpoint level is PFS).

When the productive time Te is set to 1000, 5000, and

9000 seconds, the total loss (excluding productive time)

induced by Formula (7) is higher (worse) than that of

Formula (6) by 17.8%, 5.6%, and 4.2% respectively. The

numbers of iterative steps used in our iterative method (error

threshold=10−6) are 27, 21, and 19 respectively, confirming

fairly high efficiency of our iterative algorithm.

B. Optimizing Selection of Checkpoint Levels

Considering the non-negligible checkpoint overheads at

different checkpoint levels, it is likely that the overall

execution performance can be further improved if we remove

some lower levels. For example, if checkpoint costs at level

1 and level 2 are comparative, we can try removing level

1 such that all previous failures belonging to this level will

be rolled back to the most recent level-2 checkpoints. Due

to decreased total number of checkpoints in the system,

the overall checkpoint overhead will decrease, which may

improve the entire performance in turn.

Our basic idea of finding the optimal selection of levels,

is traversing all of possible cases each with a specific combi-

nation of checkpoint levels and compute optimal checkpoint

intervals for each case. The case with shortest wall-clock

length estimated will serve as the final optimal solution.

It is plausible that such an approach in finding the optimal

combination of checkpoint levels may suffer from high

computation complexity due to exponential number (2L) of

possible cases. In effect, the practical time complexity is

still very low due to two factors. On one hand, the number

of checkpoint levels is small in general. For example, there

are no more than four checkpoint levels in both FTI and

SCR. On the other hand, there are few iterative steps in

computing the optimal checkpoint levels for each case.

As for the example in the last subsection, there are 8

checkpoint levels, and it just requires at most 30 iterative

steps to obtain a converged result (with maximum error

= 10−6). There are at most 28−1=255 different possible

combinations of different levels selected, thus there are at

most 255×30=7650 iterations in total, which means a fairly

low computation complexity.

C. Analysis of A Practical Case − FTI

We here illustrate how to make our multi-level checkpoint

model fit a real implementation - FTI [16], and how to

compute the optimal multi-level checkpoint intervals for it.

In FTI, all nodes are split into several groups and there

are totally four checkpoint levels for each group: local

storage (no hardware failure), partner-copy (nonadjacent

node failures), RS-encoding (adjacent node failures with

≤M failed nodes), and PFS (adjacent node failures with

M+ failed nodes). M is the number of RS-encoding files

to be generated per group during execution, thus M is the

maximum number of node failures RS-coding technology

can tolerate in a group. That is, even with M crashed pro-

cessors during the execution, the M missing checkpoint files

can still be restored based on the remaining valid checkpoint

files and encoding files. As for the four checkpoint levels,

their checkpoint overheads are denoted as Clf , Cpc, Crs,

and Cpf respectively. Similarly, their restart overheads are

denoted by Rlf , Rpc, Rpc, and Rpf respectively.

The target expected wall-clock length based on the FTI

four-level checkpoint model can be written as follows.

E(Tw) = Te + Clf (xlf − 1) + Cpc(xpc − 1)
+Crs(xrs − 1) + Cpf (xpf − 1)
+( Te

2xlf
+Rlf )nlf

+( Te

2xpc
+

Clfxlf

2xpc
+Rpc)npc

+( Te

2xrs
+

Clfxlf

2xrs
+

Cpcxpc

2xrs
+Rrs)nrs

+( Te

2xpf
+

Clfxlf

2xpf
+

Cpcxpc

2xpf
+ Crsxrs

2xpf
+Rpf )npf

(8)

The optimal checkpoint intervals should be the solution

of Equations (9), where nlf , npc, nrs, and npf are expected

numbers of failure events handled by different levels.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Clf =
nlf

2x2
lf
Te − Clf

2
npc

xpc
− Clf

2
nrs

xrs
− Clf

2
npf

xpf

Cpc =
npc

2x2
pc
(Te + Clfxlf )− Cpc

2
nrs

xrs
− Cpc

2
npf

xpf

Crs =
nrs

2x2
rs
(Te + Clfxlf + Cpcxpc)− Crs

2
npf

xpf

Cpf =
npf

2x2
pf
(Te + Clfxlf + Cpcxpc + Crsxrs)

(9)

Finally, the optimal multi-level checkpoint intervals

{x∗lf ,x∗pc,x∗rs,x∗pf} can be effectively obtained by our iter-

ative method based on Formula (6).

D. Estimating Expected Number of Failure Events

There are two cases that nodes fail simultaneously. The

first one (called failure case A) is that the different nodes

fail consecutively in a short period (i.e., during resource

allocation duration) before the uniform recovery/restart op-

eration. In this case, we assume each node failure occurs
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independently. The second one (called failure case B) is due

to tightly-coupled structures inside the supercomputer. For

example, when a switch or an outlet power board is mal-

functioned, all of nodes connected to it will be disconnected

or crashed. We will discuss the two cases respectively and

derive the expected numbers of failure events for different

checkpoint levels based on the above FTI design model.

1) Analysis of Failure Case A: In FTI [16], there are

totally four checkpoint levels based on different types of

failures. Since software failures are independent with hard-

ware failures, the expected number (n1=ns) of software

failures must be independent with that of hardware failures

(ni, i=2,3,4). In the following, we intensively derive the

expected numbers of failure events for the other three

checkpoint levels, partner-copy (level 2), RS-coding (level

3) and PFS (level 4), based on given hardware failure rate λ
per processor per time unit. For simplicity, we assume that

there is no iterative failure propagation issue, i.e., there are

no new hardware failures occurring in a restart period Ri

after the resource allocation step.

There are three steps in our estimate of expected number

of failures for specific levels.

1) Compute the expected total number of failure events

(denoted as y) during the application execution.

2) Compute the probability of one failure event belonging

to a particular checkpoint level i, denoted as Pi.

3) Since each failure event occurs independently, we can

treat them Bernoulli trials, thus the expected number

of failure events at checkpoint level i is equal to y ·Pi.

In the following, we illuminate how to derive y and Pi.

- To derive expected total number of failure events y

With respect to a single processor, λA is supposed to be

very small, where A is the resource allocation period, then

we can derive that the probability that there exist failures

during A is approximately equal to λA. In fact, according to

[12], the number of hardware failures per year per processor

is about 0.2-0.7. Suppose the resource allocation period is

60 seconds, then, λA ≈ 0.7
360∗24∗60 ≈ 1.35 × 10−6. Due to

“law of rare events” [26], the failure probability follows a

Poisson distribution. Then, the probability that there do not

exist any failures in a short interval A (such as 1 minute)

is equal to e−λA≈1−λA. That is, the probability that there

exists at least one failure during A approaches λA.

Since K processors are independent with each other,

the expected number of hardware failures during a re-

source allocation period A is approximately equal to KλA.

Similarly, the total expected number of hardware failures

during the whole execution among the K processors is∑K
j=1 λTw=KλTw, where Tw is application running time.

Hence, y=KλTw

KλA =Tw

A .

- To derive the probability Pi of one failure event
belonging to level i

We derive the value of Pi based on three cases, partner-

copy, RS-coding, and PFS respectively.

• Partner-copy is widely used in the fault-tolerance of

exascale HPC applications [16], [18]. Figure 4 shows

the basic principle of partner-copy technology. In a

nut shell, partner-copy maintains two copies of the

checkpoint file for each process of the application,

on local disk and on a partner-node disk respectively.

Obviously, upon a failure event with multiple simulta-

neous hardware failures, the whole execution cannot be

restarted through the partner-copy method if and only

if there exist two adjacent nodes crashing.

"!
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Figure 4. Principle of Partner-copy Technology

The probability of failure event belonging to the parter-

copy level can be derived as follows. Upon a node

failure occurring, the system will allocate one or more

available nodes to the interrupted application. The

hardware failure event belongs to the partner-copy

checkpoint level if and only if there are no adjacent

failed nodes in the end of the resource allocation period.

For the example in Figure 4, suppose Node 1 is the

initial failed node, then the hardware failures striking

Node 2, Node 6, or any other two adjacent nodes

(e.g., node 3 and node 4) will make the whole failure

event beyond the partner-copy level. Recall that the

probability of a node failing in the resource allocation

period with a length of A is λA, so the probability of

the failure event belonging to partner-copy level is:

Ppc = 1− {2λA(1− λA) + (λA)2

+(1− λA)2
[
(K − 4)(λA)2(1− λA)

]}
= 1− λA(2− λA+ λA(1− λA)3(K − 4))

(10)

Obviously, in the situation with independent node fail-

ures, Ppc is very close to 1 when λA is extremely small

(e.g., in the order of 10−6).

• RS-encoding can tolerate the adjacent node failures,

yet it has an upper-bound on the number of node

failures, which is equal to the number M of extra

RS-encoding files generated per checkpoint. Hence,

we need to focus on the node-failure situation that

partner-copy level cannot take over and there are no

more than M failed nodes in the failure event. Based

on the discussion about partner-copy, the probability

of the failure event handled by RS-encoding is: Prs

= 2λA(1−λA)
M−2∑
j=0

P (K−3, j)+(λA)2
M−3∑
j=0

P (K−3, j),
where P (K, j) is the probability with j node failures

occurring during the resource allocation period A when

1186



an application is running with K mutually-independent

nodes, derived in Formula (11).

P (K, j) =

(
K
j

)
(λA)j(1− λA)K−j (11)

• PFS is used to tolerate the failure events with multiple

node failures that cannot be restored using lower levels

like partner-copy or RS-encoding. So, the probability

of such failure events is: Ppf = 1−Ppc−Prs.

2) Analysis of Failure Case B: As discussed above, if

the node failures occur independently, the probability of the

correlated failures occurring beyond the partner-copy level

is very low. Whereas, in practice, the compute nodes in a

supercomputer are always tightly-coupled, which leads to a

potentially strong correlations of failure events among them.

In this subsection, we analyze the probability and ex-

pected number of correlated failures based on Failure Case

B, which takes into account the possible correlations among

compute nodes. Our key concern is whether the partner-

copy takes a dominant role as in the case with independent

nodes. Hence, we mainly study how to estimate the expected

number of failure events for the partner-copy checkpoint

level based on Failure Case B.

Partner-copy technology saves each process’s checkpoint

file on both local host disk and its adjacent node disk. Hence,

partner-copy can tolerate multiple hardware failures unless

some node and its adjacent node fail together.

In general, all of nodes are organized in a very tightly-

coupled pair-wise manner. Dongarra’s recent report [27]

shows that the totally 16,000 nodes in Tianhe-2 (the most

powerful supercomputer currently) are placed in 8,000 com-

pute blades ( i.e., two nodes per blade). Its entire network

adopts a fat-tree topology to connect all of nodes, connected

through 13×576≈7500 ports, which means a malfunction of

any one port will lead to about two adjacent-node failures.

As for the world-wide rank-2nd supercomputer Titan [28],

the network is organized as Torus topology composed of

25×16×24=9,600 Gemini components. Each such compo-

nent combines two nodes via an embedded 48-port router,

which means the adjacent node failure will arise whenever

a Gemini component encounters an error.

Suppose there are S network-connection components

(such as Gemini in Titan) and W power boards in the whole

cluster. Denote the failure rate of one connect component by

λS and denote that of each power board by λW . Based on

Bernoulli-trial model and Poisson Equation, we can write

the probability (denoted P ′pc) of experiencing a failure event

that partner-copy can handle during the task execution length

Te as Formula (12), where Δt refers to a small time unit

and Ppc is given in Formula (10).

P ′pc=(1− λSΔt)
Te
ΔtS ·(1− λWΔt)

Te
ΔtW ·Ppc

= Ppce
−(λSS+λWW )Te

(12)

Obviously, if an application scale is large enough (e.g., with

large values of S and W ), it is likely to encounter a failure

event beyond the recovery ability of partner-copy level.

V. PERFORMANCE EVALUATION

A. Experimental Setting

Since our fault-tolerance research is designed for large

scale (or even exascale) HPC applications, it is best to

perform the evaluation over a large scale test-bed with

millions of nodes or cores. At the moment, however, we

only have up to 128 nodes with totally up to 1024 cores to

perform the experiment, so we have to evaluate our solutions

by leveraging simulations to a certain extent.

Our evaluation can be split into two types, called eval-
uation type A and evaluation type B. Evaluation type A is

based on numerical simulation with millions of emulated

cores, which can evaluate our solution from the perspective

of real system scale. In the simulation, we also take into

account the possible prediction errors (with 20% error ratio)

in checkpoint/restart cost. For instance, if the checkpoint

cost is set to 10 seconds, the real cost used in the simulation

is a random value in [8,12] seconds. Evaluation type B is

based on a real experimental environment over a cluster

with hundreds of cores, and the node failures occur ran-

domly over time in accordance with that on a large scale

situation. Evaluation type B can confirm the feasibility of

our optimized multi-level checkpoint model in practice. We

comprehensively evaluate the solutions with different failure

rates, including both the optimistic cases with rare failures

and the very pessimistic cases with frequent failures.

The application prototype used in our experiment is a

well-known MPI program, Heat-Distribution, which is com-

monly used in real scientific research like Ocean Simulation

[29]. This application aims to compute the heat distribution

over time based on a set of initial heat sources. Its execution

length is determined by a preset expected precision or the

simulation length (the number of iterations). The checkpoint

cost and recovery cost (or restart cost) are both dependent

upon two factors: (1) the program’s memory sizes, which

are determined by the problem size (such as a square grid

with 10000×10000 points or 15000×15000 points); and (2)

the execution scale, i.e., the number of processes to raise in

parallel. We present in Table II the checkpoint overhead of

FTI characterized with hundreds of cores on FUSION cluster

[30]. Basically, checkpoint overheads are determined by the

group size set by FTI [16] and checkpoint file size to store.

The checkpoint file sizes to be stored per process for the

problem size 10000×10000 and 15000×15000 are 25MB

and 56.6MB respectively. Note that with small execution

scale (e.g., 64 cores), the checkpoint overhead on PFS is

smaller than that on other lower levels. This is because of

the special fast storage device (such as SSD) used by PFS in

the FUSION cluster. However, the checkpoint overhead of

PFS increases significantly with number of cores used in the

execution due to inevitable bottleneck, which means PFS is

unsuitable for large scale (or exa-scale) HPC applications.
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Table II
CHECKPOINT OVERHEAD OF FTI (IN SECONDS)

Problem Scale Execution Scale Ckpt Cost (level 1 − level 4)
10000×10000 64 cores 3.3 7.5 13.2 4.9

15000×15000 128 cores 4.3 9.8 13.7 6.9

15000×15000 256 cores 3.2 7.1 11.7 12.2

15000×15000 512 cores 5.8 8.3 9.6 20.8

15000×15000 1024 cores 6.6 9.5 10.6 43.1

Two indicators will be mainly used in our evaluation.

The first one is called Workload Processing Ratio (WPR),

which is defined as the ratio of the application’s productive

time to its wall-clock time. The second one is called total
overhead, which includes all types of overheads like rollback

loss and checkpoint/restart cost. Total overhead excludes

application’s productive time, which can clearly quantify the

impact of different checkpointing methods to the overhead.

B. Experimental Results

1) Evaluation based on Simulation: We first compare our

optimal solution based on Formula (6) to the suboptimal

approach adopting Young’s formula separately on multiple

levels. Then, we present the different effects when using

different selections of levels.

- Iterative Optimal Solution vs. Young’s Formula
In Section IV-A, we present that the performance gain of

WPR can reach up to 17.8% in that example case with 8

checkpoint levels. In the following, we mainly focus on the

practical use cases in terms of FTI [16] and SCR [15]. In our

simulation, there are up to 5 potential levels with different

types of storage devices: RAM, local disk, partner-copy, RS-

encoding, and PFS.

We perform a large number of tests and find that the

multi-level checkpoint effect differs with the checkpoint

overhead and application execution length. Table III shows

that different performance gains are obtained on WPR with

the iterative optimal solution based on different represen-

tative cases, where MNOF refers to Mean (or expected)

Number of Failures at some level (e.g., ni at level i).The

first case is allowed to use all of five levels (including

RAM disk level) and the other two cases are only allowed

to use four higher levels (which is consistent with FTI

architecture). It is observed that the improvement of WPR

and reduction of total overheads are prominent when the

checkpoint overheads are relatively huge compared to the

application’s productive time, such as the case #2 and #3,

where the reduction of total overhead is up to about 8%.

The key reason that our iterative optimal method exhibits

better effects is due to the impact of checkpoint overheads

across different levels ignored by the suboptimal solutions

with separate Young’s formula used onto multiple levels,

especially when checkpoint overheads are relatively huge.

- Different Selections of Checkpoint Levels
The optimized selection of levels in our design can

significantly improve performance. As for the example used

in Section IV-A, if the application’s productive length is

Table III
ITERATIVE OPTIMAL SOLUTION VS. YOUNG’S FORMULA

Cases Description of Setting (costs are in seconds) Ipvt Rdct
ram ld pc rs pfs WPR Ovhd

Case #1: ckpt-cost 2 20 30 40 50
length= restart-cost 2 4 6 8 10 1.33% 1.92%
3 hours MNOF 50 50 30 30 30

Case #2: ckpt-cost - 40 45 50 55
length= restart-cost - 5 8 10 13 4.0% 4.8%
3 hours MNOF - 200 100 80 60

Case #3: ckpt-cost - 12 13 14 15
length= restart-cost - 2 3 4 5 6.7% 7.8%
5 min. MNOF - 30 20 20 20

one day, our simulation shows the total overhead (including

checkpoint/restart cost and rollback loss) using our iterative

method with all 8 levels is 93712 seconds. In contrast, our

algorithm shows that the optimal solution should just select

level 7 and level 8, and the entire overhead can be reduced

down to 47399 seconds (being reduced by about 50%).

We also evaluate the performance with different selections

of checkpoint levels in two typical cases based on FTI multi-

level checkpoint model. The settings of the two cases are

shown in Table IV. This table also presents the solutions

(i.e., the checkpoint interval lengths for different levels)

based on different methods.
Table IV

SIMULATION SETTINGS AND OPTIMAL CKPT INTERVALS

Case Metric Level (1-4)
checkpoint-cost 8 10 80 90

Case #A: restart-cost 8 10 80 90
length= Mean Num of Fails (MNOF) 20 30 5 2

12 hours Young Form. only on PFS (sec) 0 0 0 369
Opt. Sol. with all Levels (sec) 201 179 1178 1884

Opt. Sel. of Levels (sec) 0 137 0 1054

checkpoint-cost 1 20 60 70
Case #B: restart-cost 1 10 30 35

length= Mean Num of Fails (MNOF) 50 50 40 30
12 hours Young Form. only on PFS (sec) 0 0 0 189

Opt. Sol. with all Levels (sec) 50 214 382 425
Opt. Sel. of Levels (sec) 47.6 0 0 225

Figure 5 presents the Cumulative Distribution Function

(CDF) of WPR of the optimized checkpointing method with

different selections of levels. We observe that all curves look

relatively vertical, which means that for a particular case, the

evaluation with 20% prediction errors on checkpoint/restart

cost lead to very close results. On the other hand, it is
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Figure 5. Evaluation Results with Different Selections of Levels

observed that the multi-level checkpoint model with all

possible levels does not always outperform single-level

checkpoint model with only PFS. The former outperforms

the latter by about 0.8−0.725
0.725 ≈10% in Case A while the
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latter outperforms the former by 0.63−0.61
0.61 =3.3% in Case

B. However, the optimal multi-level checkpoint model with

optimized selection of levels will always exhibit best results,

which outperforms other two solutions by about 10-20%.

2) Evaluation based on Real Experiment: Figure 6

presents the WPR of running HeatDistribution MPI program

on 512 cores and 1024 cores respectively, based on different

failure rates at various levels. The productive times are

about 1300 seconds and 12 hours respectively. It is observed

that our solution with optimal selection of levels always

exhibit the best effects, outperforming the optimized solution

with all levels by about 5-10% in general. The single level

checkpoint effect approaches the optimal-selection solution

in Figure 6 (a) due to comparative checkpoint overheads

among different levels. For example, as shown in Table II,

when using 256 cores to run the program, the checkpoint

overheads among levels are not largely different; the check-

point overhead at level 4 is even smaller than that of level

3. This will cause the optimal solution will only select one

or two levels eventually based on our algorithm.
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Figure 6. Evaluation Results on A Real Cluster

VI. RELATED WORK

With ever-increasing demand on large scale or even exas-

cale systems, the fault tolerance issue has been extensively

studied recently [7], [8], [9], [31], [18]. Checkpoint-restart

[9], [16], [15] is still a classic and effective model, as long

as the checkpoint overheads can be properly controlled, e.g.,

diskless checkpoint [14], [18]. In addition to checkpoint-

restart model, an alternative in attaining exascale computing

fault tolerance is process replication [31], which generates

multiple replica processes or machine states in case of

failures. These two models are relatively orthogonal to each

other, which means that one can combine them in practice.

In this paper, we focus on checkpoint/restart model and

optimize checkpoint intervals for multiple levels.

SCR [15] is the first library based on multi-level check-

point/restart mechanism and also explores a Markov model

to fit it. There are four differences between SCR and our

work. (1) The Markov model used by SCR assumes that the

failure rates at different checkpoint levels are completely

independent, while the failure probabilities among check-

point levels (i=2,· · · ,L) are actually correlated to a certain

extent, as we discussed in Section IV-D. For example, the

RS-encoding level can only cope with the failure cases

that partner-copy level cannot take over. (2) SCR assumes

that the failure rates at different levels are all pre-known

beforehand, while we analyze the failure probability for each

level and expected number of failure events belonging to dif-

ferent levels in depth. (3) We propose a more generic multi-

level checkpoint/restart model which can suit the checkpoint

demand with various numbers of simultaneous node failures,

and also optimize the checkpoint intervals for each level

via a very effective iterative method. (4) We optimize the

selection of levels to further improve the performance.

There are some other models [20], [21] related to multi-

level checkpoint/restart mechanism, and they mainly focus

on the advantage of combining the periodic checkpoint

and proactive checkpoint (a hybrid model). In our previous

work [20] and Aupy et al.’s work [21], optimal proactive

checkpoint locations are derived based on such a hybrid

model. However, both works did not discuss how to optimize

the periodic checkpoint intervals for different levels, but

just adopt Young’s formula [5] for simplicity. In our paper,

we prove that Young’s formula used on different levels

separately is just a sub-optimal approach with higher total

overheads than our solution.

VII. CONCLUSION AND FUTURE WORK

In this paper, we devised a novel multi-level periodic

checkpoint model based on various types of location-

unpredictable failures and proposed an iterative method to

find optimal checkpoint intervals. We confirm our iterative

method can converge very quickly with only a few iterations.

We also optimize the selection of checkpoint levels to further

improve the performance. We not only studied a real-world

case - FTI, but also analyzed in depth the expected number

of simultaneous/correlated failure events in the course of

task execution. Some key findings about our experiments

are listed below.

• Our iterative optimal solution outperforms Young’s

formula by 1.92-8%. The performance gains differ with

checkpoint overheads and application length.

• The optimization of the selection of levels can further

improve the performance by 10-20% based on FTI

scenario, and by up to 50% based on 8-level check-

point/restart model.

• Using a real experiment on a cluster environment with

512 cores and 1024 cores, our solution outperforms

others by 5-10% in general, which strongly confirms

the validity of our solution in practice.

In the future, we plan to evaluate our optimal methods using

more types of Peta-Flop parallel applications on various real

supercomputers with larger scales.
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