
1

Fault Modeling of Extreme Scale Applications
using Machine Learning

Abhinav Vishnu #1, Hubertus van Dam #2, Nathan R. Tallent #3, Darren J. Kerbyson #4, and Adolfy Hoisie #5

#1,3,4,5 Pacific Northwest National Laboratory, Richland, WA 99352
#2 Brookhaven National Laboratory, Upton, NY 11973

Abstract—Faults are commonplace in large scale systems.
These systems experience a variety of faults such as transient,
permanent and intermittent. Multi-bit faults are typically not
corrected by the hardware resulting in an error. This paper
attempts to answer an important question: Given a multi-bit
fault in main memory, will it result in an application error —
and hence a recovery algorithm should be invoked — or can it
be safely ignored?

We propose an application fault modeling methodology to
answer this question. Given a fault signature (a set of attributes
comprising of system and application state), we use machine
learning to create a model which predicts whether a multi-
bit permanent/transient main memory fault will likely result
in error. We present the design elements such as the fault
injection methodology for covering important data structures,
the application and system attributes which should be used for
learning the model, the supervised learning algorithms (and
potentially ensembles), and important metrics. We use three
applications — NWChem, LULESH and SVM — as examples for
demonstrating the effectiveness of the proposed fault modeling
methodology.

I. INTRODUCTION

Faults are a norm in large-scale systems [1], [2], [3]. A
fault in a device may result in a failure, which may potentially
corrupt application data, resulting in an error. Modern systems
experience various types of faults, such as transient, intermit-
tent and permanent. Recent literature suggests that devices
such as main memory suffer from various types of faults [4],
[1], [2]. While single-bit faults are automatically detected
and corrected, multi-bit faults are detected but not corrected.
Several application writers have attempted to handle faults
in these systems by proposing techniques for fault detection
(such as correctness assertions/invariants) and implementing
customized recovery algorithms [5], [6], [7], [8]. These algo-
rithms dramatically reduce the impact of various fault types
on the application correctness.

Let us consider an application, which observes a permanent
main memory fault during its execution. Modern x86 proces-
sors provide Enhanced Machine Check Architecture (EMCA)
to notify the occurrence of a hardware fault (both correctable
and uncorrectable), as shown in Figure 1. Naturally, a fault
which is automatically corrected by the hardware (blue box
in Figure 1) does not require a corrective step(s) from the
application. Uncorrectable faults at hardware are forwarded to
OS/VMM layer. Faults which are uncorrectable at OS/VMM
layer are eventually forwarded to the application layer.

A conservative approach to handling uncorrectable faults is
to execute a recovery algorithm. The overhead of executing

Applica'on	
Layer	

OS/VMM	
Layer	

Fault	
Detected	
In	 HW	

Normal	
Execu'on	

HW Fault

Correctable Un-correctable

Fault	
Model	 Error, take

Corrective
action

Innocuous,
No-op

Contributions

Fig. 1. Faults detected at HW, OS and Application Layer. Correctable faults
are automatically fixed and uncorrectable faults result in using a recovery
algorithm

a recovery algorithm is non-negligible, and becomes increas-
ingly prohibitive with escalating fault rates. However, not all
uncorrectable hardware faults result in an application error —
and thus executing a recovery algorithm is potentially wasteful.
Hence the important question is: Given a multi-bit fault
in main memory, will it result in an application error —
and hence a recovery algorithm should be executed — or
can it be safely ignored?

A. Contributions

We make the following contributions in this paper:
• We cast the problem of classifying a fault signature

(set of attributes comprising of system and application
state) of a system and application as innocuous or error
using machine learning methodology. Primarily, we use
supervised learning methodology to create a fault model
of several applications. Supervised learning methodology
requires a training set (a set of samples) with a label
(innocuous/error) for each sample. Each label represents
the ground truth for the sample.

• To create a training set with ground truth, we inject
permanent and transient multi-bit faults in the appli-
cations and observe the outcome of the fault. Unlike
existing techniques — which typically use random fault
injection — we record precise semantic information.
The semantic information (which captures the temporal
and spatial aspects) is then translated to a feature set.
The combinatorial space of spatial (data structures in an
application) and temporal (operations on data structures
during the execution) aspects is very large. We propose
techniques to prune this fault injection space.

• Another critical design element is feature engineering. We
provide an in-depth discussion on selecting application-
independent features — which makes the proposed

2

methodology attractive for other applications.
• We consider a total of seven supervised learning al-

gorithms (Support Vector Machines (SVM), k-Nearest
Neighbors) and ensemble methods (Adaboost, Bagging,
Gradient Boosted Decision Trees, Random Forest, Extra
Trees) for creating application fault models.

• We present solutions to addressing the issue of imbalance
due to low cardinality of error samples in the datasets
by using under-sampling and over-sampling techniques.
The pivotal metric is the classification accuracy of error
samples. We propose imbalanced mixing of error and
innocuous samples for this purpose.

• We use several applications — Computational Chemistry
(NWChem) [9], Shock Hydrodynamics (LULESH) [10]
and Machine Learning (Support Vector Machines) [11]
— as use cases of our fault modeling methodology. We
observe that while the fault model is application specific,
the methodology is generic and readily applicable to other
applications.

Our evaluation using 4096 cores shows that the fault models
for these applications can readily classify 97% error cases cor-
rectly (with 99% in several cases) and 82% of the innocuous
cases correctly.

We expect the extreme scale application designers to benefit
substantially from the proposed fault modeling methodology.
An application writer can choose conservative/aggressive fault
model depending upon fault rates and application properties.
In many cases, the fault models will prevent unnecessary ex-
ecution of a recovery algorithm — reducing time to scientific
discovery.

The rest of the paper is organized as follows: In section II,
we present a description of our problem and present a case for
machine learning based fault modeling and a fault injection
methodology. In section III, we present a brief description of
three applications considered in this paper and fault injection
methodology in section IV. In sections V and VI, we present
a discussion on selecting important features and machine
learning algorithms for generating the fault model. We present
an evaluation of the proposed techniques in section VII, related
work in section VIII and conclusions in section IX.

II. PROBLEM DEFINITION

In this section, we present a detailed description of our
problem. We argue that a multi-bit fault in an application’s
(A) data structure (d) at an instance (t) will either result in
an error or a no-op (innocuous). Previously, researchers have
considered dividing these outcomes in other categories [5],
[7]. As an example — for an iterative application solving a
convergence problem (such as energy calculation in NWChem)
— the outcome can be divided further in other categories.
As shown in the figure 2, the top-left quadrant represents
the innocuous category and the bottom quadrants show error
categories. The top-right quadrant can itself be further sub-
divided. Let us consider triple-modulo-redundancy (TMR) as
the baseline for handling multi-bit memory faults. Hence, an
instance in top-right quadrant could actually be classified as
an error, if its execution time exceeds 2x the execution time
of the innocuous case.

No	 Error	

No	 Error	
but	

Greater	
Time	

Incorrect	
Result	 	

Crash/	
Other	
Errors	

+1	

(<2x)
+1	

-‐1	 -‐1	

(>2x)	
-‐1	

(a) (b)

Fig. 2. (a) Possible outcomes of fault injection. (b) Annotation of each
category as +1 (innocuous) or -1 (error/execution time > 2x).

For generating an application fault model, we classify the
quadrants using class labels. One possibility is to consider
four classes (one-each for the quadrant shown in figure 2(a)).
However, in practice, the cardinality of error cases is much
smaller than of the innocuous cases [5], [6], [7]. Hence,
we convert the four-class problem as a binary classification
problem, as shown in figure 2(b) (the area occupied by each
class also reflects a practical observation of errors in these
classes). With this annotation, we define the problem of an
application fault modeling as a machine learning problem
on a collection of observations (dataset) with innocuous
(+1) and error (-1) outcomes.

This problem definition leads to several important questions:
1) Where should the faults be injected? 2) How should the
faults be injected — such that they resemble a multi-bit
memory fault? 3) When should the faults be injected? 4) How
to reasonably prune the combinatorial space of 1), 2) and 3),
such that the dataset can be collected in a reasonable time?
5) What are the important features (application and system
specific), which should be used for learning the fault model?
and 6) What are the machine learning algorithms, which
should be used while addressing the problem of imbalance
in the dataset (due to lower cardinality of the error samples?)

We address these questions in the upcoming sections of the
paper. We begin with a description of the three applications,
which we have considered for evaluation in this paper —
NWChem [9], [12], LULESH [10] and Support Vector Ma-
chines (SVM) [11], [13], [3].

III. APPLICATIONS

A. NWChem

Northwest Chemistry (NWChem) [9] is a massively parallel
general purpose computational chemistry application. It imple-
ments high accuracy algorithms such as Self-consistent Field
(SCF), and Coupled Cluster (CC) methods. In this paper, we
focus on the SCF algorithm — the de facto quantum chemistry
algorithm.

There are eight primary data structures in SCF: Basis set,
Geometry, Density Matrix, Integrals, Fock Matrix, Matrix
Exponential, Orbital transform, and Orbital Orthonormaliza-
tion. Let n represent the size of the molecule (the size of
molecule is calculated using number of basis sets). The space
complexity of Basis Set and Geometry is Θ(n), and hence
they are replicated across processes. Other data structures are

3

distributed across processes. The Density Matrix, Fock matrix,
the Matrix Exponential, the Transformed and Orthonormalized
orbitals are square matrices and their space complexity is
Θ(n2). The Integrals form a fourth order tensor, resulting in
a space complexity of Θ(n4).

The majority of operations on these data structures are
matrix transformations which have Θ(n3) time complexity.
However, as the molecule increases in size (more atoms) the
average distance between atoms increases (figure 5) and the
matrices become increasingly sparse. SCF uses an upper bound
to eliminate the small integrals (generated using Gauchy-
Schwarz inequality), which results in Θ(n2) time complexity
for the Integral calculation of large molecules. The overall time
complexity for large molecules is Θ(n3). We use a divergence
in energy greater than 10−6 as an error.

B. LULESH
Livermore Unstructured Lagrangian Explicit Shock Hydro-

dynamics (LULESH) [10] is a proxy application for ALE3D
full application code. It is one of the Department of Energy
(DOE) co-design centers.

As shown in figure 3(a), LULESH implements the Se-
dov blast problem in three-dimensional space. The mesh is
partitioned in domains — logically-rectangular collection of
elements. Each element has eight corner points (also known
as nodes). In LULESH, each node and element has specific
properties. Each node has mass, acceleration, velocity and
position in the Cartesian space. Each element has properties
such as pressure, viscosity, energy and relative volume. Let s
denote the problem size (input parameter to LULESH). For
p processes (p is required to be cubic), we observe that the
space-complexity of the nodes and elements is Θ(s3 · p).

Initially (at t = 0), a force is deposited at the origin. The
objective of the algorithm is to calculate the energy by time-
stepping. Specifically, at each time-step, LagrangeNodal (a set
of functions to update nodes) and LagrangeElements (a set of
functions to update elements) are executed. The application
reports the final origin energy at the completion. We use
energy divergence greater than 10−8 as an error (more details
in LULESH document [10]).

(a) (b)

Deformation Force deposited at
Origin

Fig. 3. (a) Deformation of hexahedrons in LULESH [10]. (b) Hyper-plane
(solid line) and Support vectors in SVM. Green and Red points are samples
in the two-dimensional Cartesian space.

C. Machine Learning: Support Vector Machines
Large scale Machine Learning algorithms are becoming

popular in analyzing exorbitant volumes of data. Supervised

algorithms — which perform classification/regression using
a labeled dataset — are applied in many science domains.
We specifically focus on SVM, since they provide very high
accuracy — especially on non-linearly separable datasets.

We use a distributed memory SVM algorithm publicly
available with Machine Learning Toolkit for Extreme Scale
(MaTEx) [11]. MaTEx SVM is distributed Sequential Minimal
Optimization (SMO) [14] — the most widely used SVM algo-
rithm. There are several important data structures in SMO: The
dataset (read-only), row-pointer (read-only with compressed
sparse row (CSR) representation), α (Lagrange multiplier), y
(label), s (set-info based on KKT conditions) and γ (gradient).
Let us consider a dataset with m samples and n features.
Let navg represent the average number of non-zeros in each
sample. The space complexity of the dataset is Θ(m · navg);
and row-pointer, α, y, s and γ are Θ(m). Row-pointer, set-
info, y and column-value in CSR representation are stored as
integers and other data structures are stored as doubles.

There are two main functions in SMO: takestep (performs
gradient descent to find the Lagrange multipliers for next
step) and update-gradient (use the Lagrange multipliers for
updating gradient). The update-gradient function is the most
computationally expensive part of the calculation. It conducts
a series of compute intensive kernel-function calculations:
(Φ(x, y) = e

−1

2·σ2 ·||x−y||
2

). At each iteration, every sample
is accessed (read-only) using row-pointer, and γ is updated.
α and s are updated infrequently. The algorithm reports a
convergence threshold (β). We use a divergence greater than
10−3 as an indicator of incorrect convergence.

IV. FAULT INJECTION METHODOLOGY

Most researchers conduct software based fault injection for
emulating the impact of faults in main memory hierarchy.
Recently proposed tools such as Low level Fault Injector
(LLFI) [15] provide compiler-based fault injection. Dynamic
fault injectors such as Pin Fault Injector (PinFI), and BI-
FIT [16], (based on Intel Pin) [17] provide dynamic instrumen-
tation based fault injection. Virtualization based fault injectors
such as F-SEFI [18] provide fault injection without applica-
tion code changes. Several other researchers have considered
application-specific fault injection techniques [8], [7], [5].

We considered each of these approaches for fault in-
jection in our applications. While parts of the previously
presented approaches were applicable to our use cases, we
observed a few limitations. As an example, F-SEFI is based
on QEMU hypervisor — which is not supported on high
performance platforms. LLFI allows a user to specify precise
code lines/functions for fault injection. However, it is restricted
to gcc and does not capture the temporal aspect (when to inject
a fault) effectively. BIFIT and PinFI are dynamic instrumen-
tation based fault injectors. Dynamic instrumentation based
tools can possibly incur non-negligible overhead. In several
cases, the overhead can create a false positive by increasing
the execution time to be greater than 2x (figure 2). In addition
to these limitations, these fault injectors consider only random
bit-flips (one or more) during one execution.

Furthermore, we are interested in capturing precise se-
mantic information (state of the data structures and

4

temporal information) by inserting main memory multi-
bit flips, which is not considered by existing fault injection
tools. Given these limitations, we develop a low-overhead
application-specific fault injector, similar to previously pro-
posed approaches [8], [7], [5].

A scalable fault injector should have the following proper-
ties: It should cover the spatial (data-structures and functions
which operate on the data structures) and temporal (when the
fault is injected) effectively. At the same time, the parameter
sweep due to a combination of spatial and temporal aspects
should be pruned — such that the collection of observations
(dataset) can be collected in a realistic time. We consider each
of these design challenges in next sections.

A. Fault Injection: Capturing Data Structures (Spatial As-
pects)

An important design element of our fault injection method-
ology is to capture an application’s spatial aspects by fault
injection in the data structures. The spatial aspects include the
data structures and operations (as part of various functions)
on these data structures. As presented earlier in section II,
each application considered in this paper has several key data
structures. For example, SVM has six key data structures,
NWChem has eight key data structures and LULESH has
a total of fourteen key data structures. The proposed fault
injection code considers perturbation in each of these data
structures.

For each data structure, a perturbation is possible in any ele-
ment. In the parallel implementations of the applications — as
considered in this paper — this would refer to a perturbation in
an index of a data structure within a process. For each element,
there are 32/64 bits in which a perturbation is possible. Each
application uses several functions to read/update one or more
data structures. To capture the effect of different functions, a
perturbation may be needed in each of these functions.

Hence, for an application (A) with (N) data structures, let
ni denote the size and bi represent the number of bits in i-
th data structure. Let fi denote the number of functions in
which a data structure can be updated. Hence the size of the

combinatorial space for perturbation is
N∑
i=1

ni · bi · fi. Clearly,

this perturbation space is huge, and we need to prune this
search space to collect the observations in a realistic time,
while minimizing the impact of pruning.

B. Fault Injection: Capturing Temporal Aspects

Another important element of fault injection is — When to
inject the fault? — in terms of relative time spent in executing
the application. To address this problem, we first classify the
applications in two categories: convergence and time-stepping.

A convergence problem executes till the convergence cri-
teria are satisfied. Many high-end computing problems fall in
this category, such as NWChem, Partial Differential Equations
(PDEs), Machine Learning algorithms such as SVM, Page-
Rank and k-means. A time-stepping problem executes for a
pre-defined number of steps. As an example, LULESH is a
time-stepping problem.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1
3

1
2
9

1
4
5

1
6
1

1
7
7

1
9
3

2
0
9

2
2
5

2
4
1

2
5
7

2
7
3

2
8
9

3
0
5

3
2
1

3
3
7

3
5
3

3
6
9

3
8
5

Iterations

δ

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1
3

1
2
9

1
4
5

1
6
1

1
7
7

1
9
3

2
0
9

2
2
5

2
4
1

2
5
7

2
7
3

2
8
9

3
0
5

3
2
1

3
3
7

3
5
3

3
6
9

3
8
5

(a) (b)

Fig. 4. A line-plot of δ with iterations for CERN’s Higgs Boson Machine
Learning Challenge Dataset. The curve can be approximated as an exponential
decay function (shown with dotted black line). The time per iteration is
constant (b) shows the bucketization of δ in seven buckets, as proposed in
this paper

Let tend represent the execution time of an application.
Hence, it is possible to inject a multi-bit fault at any point from
(t = 0 . . . tend). However, using time as a variable for fault
injection requires an application model to predict the execution
time — which is difficult for many convergence problems.
Hence, using time as a variable will generate inaccuracies in
fault modeling.

We propose an alternative to solving this problem. We
use δ — the current deviation from solution (An example
using CERN Higgs Boson dataset with SVM is shown in
Figure 4(a)) — for capturing temporal aspects. We divide the
current value of δ to the solution (for example 10−3 for SVM).
The primary advantage of this approach is that we do not
need to rely on performance prediction to capture the temporal
aspect of an application. For time-stepping algorithms — such
as LULESH — the number of iterations are calculated before
the time-stepping or provided as an input, which can be used
as an indicator of temporal aspects.

C. Pruning the Fault Injection Space

As observed in the previous sections, the combinatorial
space of spatial and temporal aspects is very large. For an
application which executes for a very long period of time,
it may be infeasible to explore each possibility. We consider
pruning of spatial and temporal space, as presented in the
upcoming sections.

1) Pruning Spatial Aspects: Assuming bi bits in a data
structure, there are bi fault injection points (not considering the
temporal aspects). We consider pruning the spatial aspects by
selecting a few elements — randomly — in each data structure.
We first randomly select a process and then randomly select
an element within the process for a multi-bit fault injection.
For each data structure, this provides a method to collect
a significant number of samples, which represent a fault
injection in the data structure.

For the applications considered in this paper, we observed
that data structures are stored as doubles/long — implying
64-bits for fault injection. We discretize the 64-bits in several
bit-buckets. As an example, we use four buckets of 16-bits
each, such that we can capture the effects of least and most
significant bits effectively. Specifically for doubles, 11-bit
exponent and sign-bit are captured as a part of one bucket
(along with 4-bits of mantissa). For each application we

5

consider several input decks. As an example, we considered
seven datasets for SVM, and five each for NWChem and
LULESH.

2) Pruning Temporal Space: For convergence problems,
we considered discretization using δ-buckets. We observed
an interesting trend in δiter (value of δ at an iteration) for
NWChem and SVM. Using CERN’s Higgs Boson Dataset, we
observed that the δiter follows an exponential decay function
(Figure 4(b)). Similar trends were observed for NWChem.
Hence, we pruned by the search space by defining the buckets
using a boundaries of (δ, 2 · δ . . . 128 · δ). This allows us to
prune the temporal space in a logarithmic number of buckets.
For time-stepping problems, we simply divide the temporal
space using equal size iteration-buckets. As an example, with
LULESH, we use four iteration buckets.

D. Putting it All Together

An important concern with pruning is the possible elim-
ination of an important observation. We argue that with
the current pruning methodology, we are able to collect a
statistically significant number of observations. For example,
in SVM with seven δ-buckets and four bit-buckets, we are
able to consider at least 28 fault injections for each data
structure. Similarly for each δ-bucket, we are able to consider
at least 24 fault injections in the SVM applications. With these
combinations of fault injections, we are likely to capture the
statistically significant samples, and corner cases as well.

V. FEATURE ENGINEERING

A critical part of proposed fault modeling methodology
is feature engineering. For fault modeling, we consider two
feature categories, which are application-independent and
application-dependent. Ideally, we would like an application
to be mostly dependent up on application-independent features
— so that the proposed fault modeling methodology can be
applied directly to other applications. However, application-
dependent features can play an important role in fault model-
ing.

A. Application-Independent Features

In the previous section, we considered spatial and temporal
aspects of applications for fault-injection. Within spatial fea-
tures, we considered fault injection in the data structures and
a bit within a randomly selected index of the data structure.
Hence, we propose to use two features — data structure
index and bit-bucket — as features for fault modeling. As
an example, with LULESH there are fourteen data structures.
Hence, the cardinality of data structure index feature for
LULESH is fourteen. Similarly, we consider bit-bucket as
another feature with a cardinality of four (one bucket for 16-
bits each).

We propose to use another feature corresponding to δ-
bucket, which captures the temporal aspect of the applications.
For LULESH, the cardinality of δ-bucket is four (equally di-
viding the number of iterations in four equal size buckets). For
convergence problems — NWChem and SVM — the δ-bucket

is seven (by using an exponential decay function). Hence, there
are a total of three application-independent features for fault
modeling.

B. Application-Dependent Features

In this section, we consider application-specific features. In
practice, it is not possible to define the only set of features,
which should be used for learning the fault model. We sub-
stantiate application-dependent feature selection using intuitive
reasoning.

1) NWChem: In NWChem [9], we consider two appli-
cation specific-features: sparsity and index-classification. In
NWChem, sparsity is defined as the number of non-zeroes
in the Overlap matrix of an input deck. To understand the
importance of sparsity visually, let us consider the molecular
structure of the five input decks we have used for fault
modeling of NWChem. These structures are shown in figure 5.
Let us consider the diamond molecular structure. We observe

Alkane

Diamond

Water

Carbon-240 Porphyrin

Fig. 5. NWChem Input decks considered in this paper with different sparsity
patterns

that the the structure is very compact resulting in a high
number of bonds per atom. As the other extreme case —
considering the alkane molecule — we observe that the
molecular structure is linear, resulting in higher sparsity in
comparison to the diamond structure. The intuition is that
sparsity of a molecule can play an important role in the impact
of fault injection on the overall energy calculation. Since these
are rather extreme cases of sparsity, we use three other input
decks to cover intermediate sparsity patterns, readily observed
in other molecules such as Porphyrin, Carbon-240 and Water.

The other feature specific to NWChem is index-
classification. In several data structures within NWChem, an
index can be classified as a diagonal, off-diagonal or not-
applicable (since it is a vector). In several parts of the
calculation, diagonal elements are treated differently than non-
diagonal elements. It is intuitive to use this as a feature for
learning the fault model of an application. Hence, including
the application-independent features, we use a total of five
features for fault modeling of NWChem.

2) SVM: Unlike NWChem, the SVM application operates
on sparse representations of the dataset (we specifically use
compressed sparse row (CSR) format). Since SVM operates
of a collection of observations, it is intuitive to consider two
features corresponding to the input — number of samples and

6

dimensionality. Using these two as separate features allows us
to capture the problem size indirectly.

However, dimensionality of a dataset is not an accurate
reflection of the number of non-zeros in a sample. As an
example, the dimensionality of malicious URL dataset is 3.2
million. However, the maximum number of non-zeroes in a
sample is less than ten thousand. In other datasets such as
CERN Higgs Boson Machine Learning Challenge dataset [19],
the number of dimensions is 32, and the dataset is dense. A
simple feature to capture both sparse and dense datasets is to
use the maximum number of non-zeroes in the dataset. We
use this as the feature for fault modeling of SVM.

3) LULESH: Similar to NWChem, LULESH operates on
dense data structures, which are represented in domains,
each having several elements and nodes. However, unlike
NWChem, the sparsity is not evident in LULESH. The typ-
ical input deck usually conducts the sedov blast simulation
on a uniformly distributed material. Unlike NWChem, the
simulation does not provide special properties to the diagonal
elements. However, an important feature to consider is the
problem size of the application. We use this as the additional
feature for fault modeling of LULESH.

VI. LEARNING THE FAULT MODEL USING MACHINE
LEARNING

An important element of our fault modeling methodology
is to use machine learning (ML) algorithms for generating the
fault models. We have considered several supervised ML al-
gorithms (base and ensembles) and one unsupervised learning
algorithm. The objective of this section is to apply these ML
algorithms to the datasets collected in the previous sections.
While these algorithms are applied to the three applications
considered in this paper, the properties of the datasets are
observed with other applications as well [7].

Figure 6 shows the steps in generating the datasets using
fault injection experiments. Specifically, we collect the dataset
(Figure 6(b)) by fault injection (figure 6(a)) and then shuffle
the dataset to remove any bias due to the ordering in fault in-
jection experiments (figure 6(c)). Supervised machine learning
algorithms — the backbone of fault modeling in this paper —
typically use a training set and a testing set. Figures 6(d-g)
show several possibilities of splitting the datasets in training
and testing sets. In figure 6(d), we split the shuffled dataset
such as by using 20% of the samples for training and 80% for
testing sets. Figure 6(e) shows the case, where we select equal
number of innocuous (green) and error (red) observations for
training and testing sets, respectively. The splits shown here
are just a few possibilities. An application writer may decide
to use other splits, as necessary.

Figure 6(f) shows the case, where the testing set consists of
only the error cases. For fault modeling, the pivotal metric is
how accurately can the fault model predict the error-cases?
Another important aspect is the accuracy of prediction on the
innocuous cases. A very conservative classifier can accurately
classify all the error cases, while also classifying the innocuous
cases as error — which is not attractive. Hence, we define the
metric to be the high accuracy of predicting error cases

(true positives), while minimizing the mis-classification of
innocuous cases.

Fault
Injection

Experiments

Dataset
(Collection of
Observations)

Shuffle

Possible Splits in Training and Testing Sets

Train

Test

(a) (e) (g) (f) (b) (d) (c)

Fig. 6. The steps in fault injection, data collection, shuffling and splits of
the datasets collected using fault injection experiments

A. Machine Learning Algorithms

In this section, we provide a brief overview of the machine
learning algorithms we have used for learning the fault models.

1) Support Vector Machines (SVM): SVM is the de facto
ML algorithm. It works well on non-linearly separable
datasets, is independent of dimensions, and provides excellent
accuracy.

2) k-Nearest Neighbors (KNN): k-nearest neighbors is one
of the classical ML algorithms, which classifies a sample using
the majority class of its neighbors. After finding k nearest
neighbors, the algorithm selects the most frequent class of
these neighbors.

3) AdaBoost: This ML algorithm iteratively improves the
accuracy by providing more weights to the mis-classified
samples. Since our datasets are imbalanced, AdaBoost has the
potential to generate a better classifier, since it can give better
weight to mis-classified samples.

4) Bootstrap Aggregation Techniques (Bagging): Bagging
is an ensemble technique, where a dataset is randomly par-
titioned and separate classifiers are created using these parti-
tions. These individual classifiers are then combined (using
averaging/voting) to select the best classifier. We consider
bagging with SVM as the base classifier.

5) Gradient Boosted Decision Trees (GB): GB is an en-
semble technique which allows several weak learning based
models to be combined together. Since this method allows the
use of an arbitrary cost function, it has the potential to find a
better classifier than simple boosting/bagging.

6) Random Forests (RF): A classical issue with ML algo-
rithms is over-fitting — fitting the classifier very closely to the
training set. Randomized forest address this issue by creating
a set of decision tree based classifiers and averaging them.
We consider this to be an important ML algorithm, since our
testing set has slightly different properties than the training
set.

7) Extremely Randomized Trees (Trees): Unlike Random
Forests, this classifier uses randomized decision trees as the
base classifier. A randomized decision tree can improve the

7

classification accuracy, especially if the cardinality of each
feature is different. For example, in LULESH, the cardinality
of data structure index is fourteen while δ-bucket is four. ET
creates several individual classifiers, and then uses averaging
to combine the individual classifiers.

8) One-Class Support Vector Machines (One-Class): Up to
now, we have only considered supervised learning algorithms
for fault modeling. One-class SVM is an unsupervised learning
algorithm, which creates a decision surface assuming that the
training set has only one class.

While it is counter-intuitive to use an unsupervised method
— when the ground truth is available — there is a significant
advantage to using one-class SVM. Specifically, this method
can generate a conservative classifier surface by training on
the error samples. We refer to this as a conservative classifier,
since it can readily classify the error samples correctly, while
potentially resulting in an accuracy loss for innocuous samples.

VII. EVALUATION

A. Preliminaries

1) Experimental Testbed: We use the PNNL Cascade Su-
percomputer [20], which is equipped with Intel Sandybridge
CPU and InfiniBand FDR interconnect. The performance
evaluation uses up to 4096 cores (256 compute nodes). We
use MVAPICH2-2.0.1 for performance evaluation.

B. Fault Types and Handling Class Imbalance

We demonstrate the results by emulating double-bit perma-
nent and transient faults in the main memory hierarchy.

We observed that for NWChem, LULESH and SVM, the
total number of error cases is less than 5% of the innocu-
ous cases. Typically, ML algorithms work well on balanced
datasets, where the number of samples of each class are
roughly equal. We use two techniques to address this problem:
under-sampling and over-sampling of samples in the dataset.
In under-sampling, we use a subset of the dataset, which has
roughly equal number of error and innocuous cases for the
training set. In over-sampling, we consider an imbalanced
mixing of the samples.

Specifically, we are interested in very high accuracy for
the error samples — potentially at the loss of accuracy for
innocuous samples. Hence, we consider several imbalanced
mixes such as 20-80 (20% innocuous samples and 80% error
samples in the training set), such that the classifier is biased
towards the error cases. We consider other imbalanced mixes
such as 30-70 and 40-60 as well. We use the ML algorithms
publicly available in scikit [21] for learning the fault
models.

1) Basic Performance: We observed that for each ap-
plication, generating the fault model takes ≈ 10 seconds
and classification takes ≈ 3 seconds. We also observed that
emulating a multi-bit fault did not incur overhead, because a
majority of fault injections were innocuous and did not affect
the execution time of the application. Hence, we can attribute
the degradation of execution time to the application properties
only.

TABLE I
INPUT DECKS FOR SVM AND HYPER-PARAMETER SETTINGS

Name Training Size Testing Size C σ2

Forest 581012 N/A 10 4
Higgs 250000 N/A 10 4

real-sim 72309 N/A 10 4
MNIST 60000 10000 10 25
cod-rna 59535 271617 32 64

Adult-9 (a9a) 32561 16281 32 64
Web (w7a) 24692 25057 32 64

For NWChem using multi-bit permanent faults, we observed
that 15% of the overall cases resulted in an execution time
of up to 20x, while still converging correctly. For multi-
bit transient faults, the trend was observed for 11% of the
overall cases. On further inspection, we observed that the fault
injection caused the application to diverge significantly from
the optimal solution, and each iteration took longer due to
additional internal checks in NWChem. We classified these
samples as error, as discussed earlier in section II. We did not
observe these cases for SVM and LULESH.

C. Detailed Applications Results

1) SVM: Table I shows the datasets which we have used for
fault injection in SVM. Figures 7 and 8 shows the classification
accuracy for SVM using the ML algorithms (1 is the highest
possible accuracy). We show the results with 20-80 mix,
since they provided the best overall classification accuracy.
We observe that for several ML algorithms can achieve 99%
accuracy for error classification, and 78% accuracy for innocu-
ous cases with RF (permanent faults). For multi-bit transient
transient faults, the peak accuracy is 99% and 63%. This is
largely because the number of error cases with transient faults
are lesser than permanent faults. With imbalanced mixing,
the classifier mis-classifies more innocuous cases as error.
However, with the fault models, many multi-bit cases can
still be classified as innocuous — avoiding execution of costly
recovery algorithm.

We anticipated a few trends such as a multi-bit fault
injection in an integer data structure would result in an error.
However, this trend was not evident, with an exception of row-
pointer, where the application would terminate abruptly. We
also expected that multi-bit fault injections (both permanent
and transient) higher bit-buckets (which include exponent) to
always result in an error. We did not observe this pattern as
well. In many cases, a fault injection in higher order bit-
buckets simply resulted in mis-classification of a sample as
a non support vector, which did not affect the convergence
criteria.

2) NWChem: Figures 9 and 10 show the results for
NWChem with double-bit permanent and transient faults,
respectively. We used five input decks with different sparsity
patterns as shown in figure 5. We observed that most of the ML
algorithms provide 99% accuracy for error cases (GB provides
excellent accuracy for both fault types). For innocuous cases,
the observed accuracy is ≈ 65%, which implies that the
recovery algorithm is needlessly executed for roughly 35%
of the innocuous faults.

8

0.95 0.91
0.98 0.97 0.99 0.99 0.98 0.95

0.71

0.55

0.34
0.43

0.56

0.78
0.66

0.12

SVM KNN Adaboost Bagging GB RF Trees One-Class

Classification Accuracy (Permanent) on SVM

Error Innocuous

Fig. 7. Classification accuracy of ML algorithms on SVM using 20-80
imbalanced mixing of samples. 1 is the highest possible accuracy.

0.89
0.97 0.99 0.97 0.95

0.99 0.98 1

0.76

0.66
0.61

0.39

0.59
0.63

0.55

0.12

SVM KNN Adaboost Bagging GB RF Trees One-Class

Classification Accuracy (Transient) on SVM

Error Innocuous

Fig. 8. Classification accuracy of ML algorithms on SVM using 20-80
imbalanced mixing of samples.

From SVM and NWChem results, we can conclude that it
is difficult to predict apriori the suitability of an ML algorithm
for fault modeling of an application. (For example RF provides
best accuracy for SVM, however the best ML algorithm for
NWChem is GB). This justifies using several ML algorithms
for generating the fault models. In many cases, it is the
property of the dataset, which identifies its applicability to
the machine learning algorithm.

0.91
0.97 0.99 0.98 0.99 0.97 0.98 1

0.29

0.59 0.61

0.44

0.68 0.65
0.71

0.002

SVM KNN Adaboost Bagging GB RF Trees One-Class

Classification Accuracy (Permanent) on NWChem

Error Innocuous

Fig. 9. Classification accuracy of ML algorithms on NWChem using 20-80
imbalanced mixing of samples.

0.88
0.99

0.91 0.95 0.99 0.97 0.98 1

0.78

0.62 0.57
0.49

0.63 0.58 0.61

0.033

SVM KNN Adaboost Bagging GB RF Trees One-Class

Classification Accuracy (Transient) on NWChem

Error Innocuous

Fig. 10. Classification accuracy of ML algorithms on NWChem using 20-80
imbalanced mixing of samples.

3) LULESH: Figures 11 and 12 shows the classification
accuracy of LULESH for double-bit permanent and transient
faults, respectively. We have use three input (203, 303, 403)
in weak scaling mode (64 - 4096 processes). We observe that
GB performs the best for permanent faults and transient faults,
while providing an accuracy of 69% and 62%, respectively.

Across the three applications, we observe that it is hard to
predict the efficacy of an ML algorithm, it depends up on
the properties of the dataset itself. Typically ensemble based
techniques perform better than base-classifiers, as we have
readily observed for several applications.

0.89
0.95 0.94 0.96 0.99 0.99 0.99 1

0.53 0.55

0.74
0.63

0.74
0.69

0.8

0.03

SVM KNN Adaboost Bagging GB RF Trees One-Class

Classification Accuracy (Permanent) on LULESH

Error Innocuous

Fig. 11. Classification accuracy of ML algorithms on LULESH using 20-80
imbalanced mixing of samples.

0.97 0.96 0.99 0.99 0.99 0.97 0.98 0.99

0.4

0.64

0.39

0.51
0.62

0.57

0.71

0.05

SVM KNN Adaboost Bagging GB RF Trees One-Class

Classification Accuracy (Transient) on LLUESH

Error Innocuous

Fig. 12. Classification accuracy of ML algorithms on LULESH using 20-80
imbalanced mixing of samples.

4) Feature Importances: An important aspect of our evalu-
ation is the importance of different features in fault modeling.
Figure 13 shows these results. We observe that for SVM and
NWChem, the data structure (black bar) is the most important
feature. For NWChem, application sparsity — as discussed in
section V is very important, with bit-bucket being the third
most important feature. In NWChem, typically a contribution
to a matrix (such as Fock Matrix) is a contribution from
several matrices. With increasing sparsity — readily observed
for larger molecules — the fault injections in elements for
sparse molecules will not result in a significant change to the
outcome of the energy. However, for more dense molecules,
such as diamond, a fault injection could possibly result in a
significant error.

For LULESH, problem size turns out to be the most
important feature. In general, but not necessarily, the effect
of permanent faults with increasing problem size was reduced.
We observe that the impact of other features such as bit-bucket
and δ-bucket is much lesser for LULESH.

5) Discussion on Bit-bucket: In modern architectures, an 8-
bit ECC is provided for each 64-bits. Essentially, in practice,
bit-bucket is not available. While we initially considered this
to be a major issue, as shown in figure 13, bit-bucket is rarely

9

the most important feature for fault modeling of applications.
Hence, we do not expect the unavailability of bit-buckets to
significantly affect the accuracy of the proposed fault modeling
methodology.

0

0.2

0.4

0.6

0.8

1

1.2

SVM-GB (Per) SVM-RF (Tra.) LULESH-GB
(Per.)

LULESH-GB
(Tra.)

NWChem-GB
(Per.)

NWChem-GB
(Per.)

Feature Importances

App-Dependent

App-Dependent

Temporal

Bit-Bucket

DS-Index

Fig. 13. Importances of different features in the three applications. Data
structure index is an important feature, while several application-dependent
features are important as well (problem size in LULESH and sparsity in
NWChem)

D. Discussion
We consider the results from fault modeling to be very

encouraging. The methodology and experimentation described
can be used for other applications for creating a series of fault
models such as aggressive (as discussed in previous sections)
and conservative by an imbalanced mixing of samples from
error and innocuous class.

Applica'on	
Layer	

OS/VMM	
Layer	

Fault	
Detected	
In	 HW	

Normal	
Execu'on	

HW Fault

Fault	
Model	 Error, take

Corrective
action

Innocuous,
No-op

Application Specific
Feature Vector

Fig. 14. A practical execution of the fault models generated using the
proposed methodology

In Figure 14, we demonstrate a practical usage of the
fault models using EMCA, which automatically corrects faults
using hardware based techniques. However, if a fault is uncor-
rectable, it is forwarded to the OS/VMM layer, and eventually
to the application layer, if uncorrectable at OS/VMM layer.
Consider a fault handler, which handles the uncorrectable
faults at an application layer. When the handler is invoked,
the physical address of the fault is passed as a parameter,
which can be readily converted to the virtual address (assum-
ing no-swap and intact virtual-physical address translation).
Hence, we can calculate the data-structure index from this
translation. Other features such as δ-bucket, and application-
dependent features (section V) can be calculated as well. We
can create a feature vector using these values and apply one
(or possibly more) fault models. These fault models can be
used to determine, whether a corrective action needs to be
taken or it can be ignored, as shown in figure 14.

VIII. RELATED WORK

Several researchers have considered fault tolerance for large
scale systems [22], [3], [23], [24]. We specifically focus on

fault injection and fault modeling research.
Many researchers have considered fault injection tools such

as LLFI [15], PinFI [17], [15], BIFIT [16], F-SEFI [18].
LLFI provides compiler based fault injection which allows
a user to inject faults at specific functions/operations in a
compiler. F-SEFI uses QEMU (a hypervisor) for fault injection
— which is not necessarily available for high-end systems.
BIFIT and PinFI provide dynamic instrumentation based fault
injection. BIFIT and PinFI lose semantic information, which
is required for fault modeling methodology proposed in this
paper. Other researchers have considered application-specific
fault injection [5], [25], [26], [27], [28], [29], [30], [31], which
is similar to the approach presented in this paper.

Several other researchers have considered fault modeling
at program [32], data [33] and architectural level [34] . For
example, program vulnerability factor (PVF) [32] defines
vulnerability of a software resource given a fault in a hardware
resource. An application writer can use PVF to understand the
relative vulnerability of the application to other applications.
While PVF is an indicator of program’s vulnerability to soft
errors — being a scalar — it does not capture the multiple
dimensions such as application-independent and dependent
features, like considered in this paper. Data Vulnerability
Factor (DVF) [33] calculates the vulnerability of individual
data structures in an application. However, it relies indirectly
on access patterns of various data structures to calculate
vulnerability. We argue that access patterns is not a complete
indicator of vulnerability of an application to a fault. For
example, in the SVM application considered in this paper,
a fault in the row-pointer data structure will likely result
in an error, while a fault in the SVM dataset is less likely
to cause an error, although, row-pointer is smaller in size,
accessed similarly during the kernel calculations. Architecture
vulnerability factor (AVF) [34] calculates the probability that
a fault in a hardware structure will result in an error. Unlike
AVF — which is a scalar — we consider several dimensions
— referred to as features in this paper for computing a fault
model, which can be used for classifying a fault as an error
or innocuous.

IX. CONCLUSIONS

In this paper, we have created fault models to answer an
important question: Given a multi-bit fault in main memory,
will it result in an error or can it be safely ignored? We have
used a machine learning methodology to answer this question.
There are several important elements in this methodology
such as considering spatial and temporal fault injection space
and pruning it such that a collection of observations can be
obtained in a realistic time. We have presented the limitations
of the existing fault injection tools, which are not able to
capture the critical semantic information required for our
fault modeling. We have considered other aspects such as the
important features — application-independent and application-
dependent — which should be used for learning the model. We
have looked at the properties of the applications considered
in this paper, and provided an intuitive justification of the
features. We have considered the imbalance problems in

10

the datasets and proposed to use under-sampling and over-
sampling techniques to address them. We have considered
seven supervised learning algorithms (base and ensembles)
and one unsupervised learning algorithm for our purpose. We
have evaluated our methodology using three applications —
NWChem (computational chemistry), LULESH and Support
Vector Machines on 4096 processes. We have used several
input decks ranging in molecule sparsity for NWChem, several
problem sizes for LULESH and datasets such as CERN’s
Higgs Boson Machine Learning Challenge dataset and Forest
Cover for SVM.

By imbalanced mixing of the error (fault injections that
result in an error) and innocuous (fault injections that do not
result in an error) cases — such that the classifier is biased
towards error cases — we are able to classify 99% of the
error cases correctly for multi-bit permanent and transient
faults, while classifying more than 60% of the innocuous cases
correctly. This implies that when a double-bit fault occurs, the
application needlessly executes a recovery algorithm only 40%
of the time, in contrast to unconditionally executing a recovery
algorithm at every double-bit fault in main memory.

We expect the contributions from this paper to benefit
the large scale application researchers immensely. Using the
proposed methodology, the application researchers can create
fault models of their applications (both conservative and
aggressive) and use them to classify a multi-bit memory fault
as error/innocuous at runtime. In many cases, the fault models
will prevent unnecessary execution of a recovery algorithm —
significantly reducing the time to scientific discovery.

X. ACKNOWLEDGEMENT

We would like to thank Analysis in Motion (AIM) Labo-
ratory Directed Research and Development (LDRD) initiative
for supporting this research.

REFERENCES

[1] V. Sridharan and D. Liberty, “A study of dram failures in the field,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’12, 2012, pp.
76:1–76:11.

[2] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and
S. Gurumurthi, “Feng shui of supercomputer memory: Positional
effects in dram and sram faults,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, ser. SC ’13. New York, NY, USA: ACM, 2013, pp. 22:1–
22:11. [Online]. Available: http://doi.acm.org/10.1145/2503210.2503257

[3] A. Vishnu, H. Van Dam, W. De Jong, P. Balaji, and S. Song, “Fault Tol-
erant Communication Runtime Support for Data Centric Programming
Models,” in International Conference on High Performance Computing,
2010.

[4] B. Schroeder and G. A. Gibson, “A large-scale study of failures
in high-performance computing systems,” in Proceedings of the
International Conference on Dependable Systems and Networks, ser.
DSN ’06. Washington, DC, USA: IEEE Computer Society, 2006, pp.
249–258. [Online]. Available: http://dx.doi.org/10.1109/DSN.2006.5

[5] H. J. J. van Dam, A. Vishnu, and W. A. de Jong, “A case for soft
error detection and correction in computational chemistry,” Journal of
Chemical Theory and Computation, vol. 9, no. 9, 2013.

[6] H J. J. van Dam, A. Vishnu and W. A. de Jong, “Designing a scalable
fault tolerance model for high performance computational chemistry: A
case study with coupled cluster perturbative triples,” Journal of Chemical
Theory and Computation, vol. 7, no. 1, pp. 66–75, 2011.

[7] M. Casas, B. R. de Supinski, G. Bronevetsky, and M. Schulz, “Fault
resilience of the algebraic multi-grid solver,” in Proceedings of the
26th ACM International Conference on Supercomputing, ser. ICS ’12.
New York, NY, USA: ACM, 2012, pp. 91–100. [Online]. Available:
http://doi.acm.org/10.1145/2304576.2304590

[8] T. Davies and Z. Chen, “Correcting soft errors online in lu
factorization,” in Proceedings of the 22Nd International Symposium on
High-performance Parallel and Distributed Computing, ser. HPDC ’13.
New York, NY, USA: ACM, 2013, pp. 167–178. [Online]. Available:
http://doi.acm.org/10.1145/2462902.2462920

[9] R. A. Kendall, E. Aprà, D. E. Bernholdt, E. J. Bylaska, M. Dupuis,
G. I. Fann, R. J. Harrison, J. Ju, J. A. Nichols, J. Nieplocha, T. P.
Straatsma, T. L. Windus, and A. T. Wong, “High Performance Compu-
tational Chemistry: An Overview of NWChem, A Distributed Parallel
Application,” Computer Physics Communications, vol. 128, no. 1-2, pp.
260–283, June 2000.

[10] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,”
Tech. Rep. LLNL-TR-641973, August 2013.

[11] MaTEx, “Machine Learning Toolkit for Extreme Scale ,”
http://hpc.pnl.gov/matex.

[12] E. Aprà, A. P. Rendell, R. J. Harrison, V. Tipparaju, W. A. deJong, and
S. S. Xantheas, “Liquid Water: Obtaining The Right Answer For The
Right Reasons,” in SuperComputing, 2009.

[13] A. Vishnu, M. Koop, A. Moody, A. Mamidala, S. Narravula, and D.
K. Panda, “Topology Agnostic Hot-Spot Avoidance with InfiniBand,” in
Concurrency and Computation: Practice and Experience, Special Issue
of Best Papers from CCGrid ’07, 2008.

[14] J. C. Platt, “Advances in kernel methods,” 1999, ch. Fast Training of
Support Vector Machines Using Sequential Minimal Optimization.

[15] M. R. Aliabadi, K. Pattabiraman, and N. Bidokhti, “Soft-llfi: A com-
prehensive framework for software fault injection,” in 25th IEEE In-
ternational Symposium on Software Reliability Engineering Workshops,
ISSRE Workshops, Naples, Italy, November 3-6, 2014, 2014, pp. 1–5.

[16] D. Li, J. Vetter, and W. Yu, “Classifying soft error vulnerabilities
in extreme-scale scientific applications using a binary instrumentation
tool,” in High Performance Computing, Networking, Storage and Anal-
ysis (SC), 2012 International Conference for, 2012.

[17] G. Lueck, H. Patil, and C. Pereira, “Pinadx: An interface for customiz-
able debugging with dynamic instrumentation,” in Proceedings of the
Tenth International Symposium on Code Generation and Optimization,
ser. CGO ’12, 2012.

[18] Q. Guan, N. Debardeleben, S. Blanchard, and S. Fu, “F-sefi: A fine-
grained soft error fault injection tool for profiling application vulnera-
bility,” in Parallel and Distributed Processing Symposium, 2014 IEEE
28th International, 2014.

[19] HiggsML, “Higgs Boson Machine Learning Challenge,”
http://kaggle.com/c/higgs-boson.

[20] PNNL Cascade Supercomputer, “EMLS,” cascade.emsl.pnl.gov.
[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[22] W. Gropp and E. Lusk, “Fault Tolerance in Message Passing Interface
Programs,” International Journal on High Performance Computing
Applications, vol. 18, no. 3, pp. 363–372, 2004.

[23] Network-Based Computing Laboratory, “MVAPICH/MVAPICH2:
MPI-1/MPI-2 for InfiniBand and iWARP with OpenFabrics,”
http://mvapich.cse.ohio-state.edu/.

[24] OpenMPI, “Open Source High Performance Computing,”
http://www.open-mpi.org/.

[25] G. Bronevetsky and B. de Supinski, “Soft error vulnerability of iterative
linear algebra methods,” in Proceedings of the 22Nd Annual Interna-
tional Conference on Supercomputing, ser. ICS ’08, 2008.

[26] M. Shantharam, S. Srinivasmurthy, and P. Raghavan, “Characterizing
the impact of soft errors on iterative methods in scientific computing,”
in Proceedings of the International Conference on Supercomputing, ser.
ICS ’11, 2011.

[27] A. Moody, G. Bronevetsky, K. Mohror, and B. Supinski, “Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System,” in SuperComputing, 2010.

[28] A. Vishnu, A. Mamidala, S. Narravula, and D. K. Panda, “Automatic
Path Migration over InfiniBand: Early Experiences,” in Proceedings
of Third International Workshop on System Management Techniques,
Processes, and Services, held in conjunction with IPDPS’07, March
2007.

[29] A. Vishnu, P. Gupta, A. R. Mamidala, and D. K. Panda, “A Software
Based Approach for Providing Network Fault Tolerance in Clusters with
uDAPL Interface: MPI Level Design and Performance Evaluation,” in
SuperComputing, 2006, pp. 85–96.

11

[30] A. Vishnu, S. Song, A. Marquez, K. Barker, D. Kerbyson,
K. Cameron, and P. Balaji, “Designing energy efficient communication
runtime systems: a view from pgas models,” The Journal of
Supercomputing, vol. 63, no. 3, pp. 691–709, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s11227-011-0699-9

[31] ——, “Designing energy efficient communication runtime systems
for data centric programming models,” in Proceedings of the
2010 IEEE/ACM Int’L Conference on Green Computing and
Communications & Int’L Conference on Cyber, Physical and
Social Computing, ser. GREENCOM-CPSCOM ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 229–236. [Online]. Available:

http://dx.doi.org/10.1109/GreenCom-CPSCom.2010.133
[32] V. Sridharan and D. R. Kaeli, “Quantifying software vulnerability,”

in Proceedings of the 2008 Workshop on Radiation Effects and Fault
Tolerance in Nanometer Technologies, ser. WREFT ’08, 2008.

[33] L. Yu, D. Li, S. Mittal, and J. S. Vetter, “Quantitatively modeling
application resilience with the data vulnerability factor,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’14, 2014.

[34] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“Measuring architectural vulnerability factors,” IEEE Micro, vol. 23,
no. 6, pp. 70–75, Nov. 2003.

