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We propose asymptotically optimal algorithms for the job shop scheduling and
packet routing problems. We propose a fluid relaxation for the job shop scheduling
problem in which we replace discrete jobs with the flow of a continuous fluid. We
compute an optimal solution of the fluid relaxation in closed form, obtain a lower
bound C to the job shop scheduling problem, and construct a feasible schedulemax

Ž .from the fluid relaxation with objective value at most C q O C , where the'max max
Ž .constant in the O ? notation is independent of the number of jobs, but it depends

on the processing time of the jobs, thus producing an asymptotically optimal
schedule as the total number of jobs tends to infinity. If the initially present jobs
increase proportionally, then our algorithm produces a schedule with value at most

Ž .C q O 1 . For the packet routing problem with fixed paths the previous algo-max
rithm applies directly. For the general packet routing problem we propose a linear
programming relaxation that provides a lower bound C and an asymptoticallymax
optimal algorithm that uses the optimal solution of the relaxation with objective

Ž .value at most C q O C . Unlike asymptotically optimal algorithms that'max max
rely on probabilistic assumptions, our proposed algorithms make no probabilistic
assumptions and they are asymptotically optimal for all instances with a large

Ž .number of jobs packets . In computational experiments our algorithms produce
schedules which are within 1% of optimality even for moderately sized problems.
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1. INTRODUCTION

The job shop scheduling and the packet routing problems are funda-
mental problems in operations research and computer science. The job
shop scheduling problem is the problem of scheduling a set of I job types
on J machines. Job type i consists of J stages, each of which must bei

Ž .completed on a particular machine. The pair i, j represents the jth stage
of the ith job and has processing time p . The completion time of job i isi, j
the completion time of the last stage J of job type i. Assuming that wei
have n jobs of type i, the objective is to find a schedule that minimizes thei
maximum completion time, called the makespan, subject to the following
restrictions:

1. The schedule must be nonpreemptive. That is, once a machine
begins processing a stage of a job, it must complete that stage before doing
anything else.

2. Each machine may work on at most one task at any given time.

3. The stages of each job must be completed in order.

The classical job shop scheduling problem involves exactly one job from
Ž .each type, i.e., the initial vector of job types is 1, 1, . . . , 1 . The job shop

scheduling problem is a classical NP-hard problem, notoriously difficult to
solve even in relatively small instances. As an example, a specific instance
involving 10 machines and 10 jobs posed in a book by Muth and Thompson
w x11 in 1963 remained unsolved for over 20 years until solved by Carlier

w xand Pinson 2 in 1985.
Ž .The packet routing problem in a communication network V, AA is the

problem of routing a collection of packets from a source node to a
destination node. It takes one time unit for a packet to traverse an edge in
AA, and only one packet can traverse a given edge at a time. As in the job
shop scheduling problem, the objective is to find a schedule that minimizes
the time, called the makespan, that all packets are routed to their destina-
tions. For the case that the paths along which packets need to be routed
are given, the problem can be modeled exactly as a job shop scheduling
problem. However, when we can select the paths along which to route

Žpackets, the problem is more complicated as it involves both routing path
. Ž .selection and sequencing which packet each edge process decisions.

Our overall approach for these problems relies on two ideas from two
distinct communities. First, we consider a relaxation for the job shop
scheduling problem called the fluid control problem, in which we replace
discrete jobs with the flow of a continuous fluid. The motivation for this
approach comes from optimal control of multiclass queueing networks.
Multiclass queueing networks are stochastic and dynamic versions of job
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shops. In recent years there has been considerable progress in solving the
fluid control problem in multiclass queueing networks. Focusing on objec-
tive functions that minimize a weighted combination of the number of jobs
at the various machines, as opposed to makespan, Avram, Bertsimas, and

w xRicard 1 show that by using the Pontryagin maximum principle, we can
find the optimal control explicitly. However, the description of the optimal
control, while insightful for the original problem, involves the enumeration

w xof an exponential number of cases. Luo and Bertsimas 10 , building upon
w xthe work of Pullan 12 , use the theory of continuous linear programming

to propose a convergent numerical algorithm for the problem that can
solve efficiently problems involving hundreds of machines and job types.

ŽFor the objective we consider minimize the length of the schedule, i.e.,
.the maximum completion time the optimal solution of the fluid control

problem can be computed in closed form and provides a lower bound Cmax
w xto the job shop scheduling problem. Weiss 17 has considered and solved

the makespan objective for a fluid control problem with arrivals. Our proof
of the fluid control problem without arrivals follows along similar lines.

The second idea of the paper is motivated by the considerable progress
in the deterministic scheduling community in providing approximation
algorithms for scheduling problems that rounds the solution of a linear
programming relaxation of the scheduling problem. Shmoys, Stein, and

w x w x w xWein 15 , Goldberg et al. 4 , and Feige and Scheideler 3 provide
algorithms that are within a multiplicative logarithmic guarantee from the

w xoptimal solution value. Very recently Jansen, Solis-Oba, and Sviridenko 6
provided a polynomial time approximation scheme. For a review of this

w x w xapproach see Hall 5 and Karger, Stein, and Wein 7 . However, the paper
closest in spirit to the current work is a scheduling algorithm for job shop

w x Ž w x.problems constructed by Sevast’janov 13 see also 14 . Sevast’janov’s
algorithm is based on an interesting geometric method, unrelated to the
methods of the current paper, and produces a schedule with length

Ž .C q O 1 , and as a result, is asymptotically optimal as the number ofmax
jobs tends to infinity. Our algorithm is significantly simpler than
Sevast’janov’s and produces superior bounds for a variety of instances. For

w xexample, for the 10 by 10 instance defined in Muth and Thompson 11
with the same number n of jobs for every job type, then the bound for our
algorithm is always stronger for all n. We compare the bounds given by
our methods and those by Sevast’janov in Section 4.3.

We use the optimal solution of the fluid control problem to construct a
Ž .feasible schedule with the objective value C q O C . If the initially'max max

present jobs increase proportionally, then our algorithm produces a sched-
Ž .ule with a value of at most C q O 1 . Similarly, for the packet routingmax

problem we propose a linear programming relaxation that provides a lower
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bound C and use its solution to construct a feasible schedule withmax
Ž . Ž .objective value C q O C . We note that the constant in the O ?'max max

notation is independent of the number of jobs, but it does depend on the
processing times of the jobs. This implies that as the total number of jobs
Ž .packets, respectively tends to infinity, the proposed algorithm is asymp-
totically optimal. Unlike asymptotically optimal algorithms that rely on
probabilistic assumptions, the above algorithm makes no probabilistic
assumptions, and it is asymptotically optimal for all instances with a large

Ž .number of jobs packets, respectively . The classical result in this area is
w xthe work of Karp 8 , who provided an asymptotically optimal algorithm for

the traveling salesman problem when the points are randomly and uni-
formly distributed in the unit square in the Euclidean plane.

The combinatorial structure of the job scheduling problem makes the
problem very complicated to solve when there is a small number of jobs in
the system. Interestingly, the results of the paper indicate that as the
number of jobs increases, the combinatorial structure of the problem is
increasingly less important, and as a result, a fluid approximation of the
problem becomes increasingly exact. Similarly, the packet routing problem
has an even richer combinatorial structure. The results of the paper also
imply that a continuous approximation to the problem is asymptotically
exact.

The paper is structured as follows. In Section 2, we formulate the job
shop scheduling problem and describe the notation. In Section 3, we
introduce the fluid control problem for the job shop scheduling problem
and solve it in closed form. In Section 4, we present and analyze the
rounding algorithm, called the synchronization algorithm. We also provide
some computational results and contrast our bounds with those by

w xSevast’janov 13 . In Section 5, we address packet routing in communica-
tion networks with fixed paths as an application of job shop scheduling. In
Section 6, we propose an asymptotically optimal algorithm for the general
packet routing problem in communication networks. Section 7 contains
some concluding remarks.

2. PROBLEM FORMULATION AND NOTATION

In the job shop scheduling problem there are J machines, s , s , . . . , s ,1 2 J

which process I different types of jobs. Each job type is specified by the
sequence of machines to be processed on and the processing time on each
machine. In particular, jobs of type i, i s 1, 2, . . . , I, are processed on Ji

machines s i, s i, . . . , s i in that order. Let J s max J . The time to1 2 J max i ii
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process a type i job on machine s i is denoted by p . Throughout thek i, k
paper we assume that p are integers.i, k

The jobs of type i that have been processed on machines s i, . . . , s i
1 ky1

but not on machine s i are queued at machine s i and are called type ik k
jobs in stage k. The set of jobs in stages k G 2 in any specific machine sj
is called a noninitial queue in machine s . In particular, at time zero allj
noninitial queues are empty.

We will also think of each machine s as a collection of all types andj
stage pairs that it processes. Namely, for each j s 1, 2, . . . , J

s s i , k : s s s i , 1 F i F I , 1 F k F J .Ž .� 4j j k i

There are n jobs for each type i initially present at their correspondingi
first stage. Our objective is to minimize the makespan, i.e., to process all
the n s n q n q ??? qn jobs on machines s , . . . , s , so that the time it1 2 I 1 J
takes to process all the jobs is minimized.

Each machine s has a certain processing time required to process jobsj
that eventually come to this machine. Specifically, for machine s this timej
is

C s p n .Ýj i , k i
Ž .i , k gsj

The quantity C is called the congestion of machine s . We denote thej j

maximum congestion by

C ' max C .max j
1FjFJ

The following proposition is immediate.

PROPOSITION 1. The minimum makespan CU of the job shop scheduling
problem satisfies

CU G C .max

Ž .In the next section we consider a fluid fractional version of this
problem, in which the number of jobs n of type i can take arbitraryi
positive real values, and machines are allowed to work simultaneously on

Žseveral types of jobs the formal description of the fluid job shop schedul-
.ing problem is provided in the next section . For the fluid control problem

we show that a simple algorithm leads to a makespan equal to C andmax
therefore is optimal.
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3. THE FLUID JOB SHOP SCHEDULING PROBLEM

In this section, we describe a fluid version of the job scheduling
problem. The input data for the fluid job shop scheduling problem are the
same as for the original problem. There are J processing machines
s , s , . . . , s , I job types, each specified by the sequence of machines s i,1 2 J k
k s 1, 2, . . . , J , and the sequence of processing times p for type i jobs ini i, k
stage k. We introduce the notation m s 1rp which represents thei, k i, k

rate of machine s i on a type i job. The number of type i jobs initiallyk
present, denoted by x , takes nonnegative real values.i

In order to specify the fluid control problem we introduce some nota-
Ž . Ž .tion. We let x t be the total fractional in general number of type ii, k

jobs in stage k at time t. We call this quantity the fluid level of type i in
Ž . istage k at time t. We denote by T t the total time the machine si, k k

w x � 4works on type i jobs in stage k during the time interval 0, t . Finally 1 A
denotes the indicator function for the set A.

The fluid control problem of minimizing makespan can be formulated as
follows:

`

minimize 1 x t 0 dt 1Ž . Ž .ÝH i , k½ 5
0 1FiFI , 1FkFJi

subject to x t s x y m T t , i s 1, 2, . . . , I , t G 0, 2Ž . Ž . Ž .i , 1 i i , 1 i , 1

x t s m T t y m T t ,Ž . Ž . Ž .i , k i , ky1 i , ky1 i , k i , k

k s 2, . . . , J , i s 1, 2, . . . , I , t G 0, 3Ž .i

T t y T t F t y t ,Ž . Ž .Ž .Ý i , k 2 i , k 1 2 1
Ž .i , k gsj

; t , t , t , t G 0, j s 1, 2, . . . , J . 4Ž .2 1 1 2

x t G 0, T t G 0. 5Ž . Ž . Ž .i , k i , k

Ž .The objective function 1 represents the total time that at least one of
the fluid levels is positive. It corresponds to the minimum makespan

Ž . Ž .schedule in the discrete problem. Equations 2 , 3 represent the dynamics
of the system. The fluid level of type i in stage k at time t is the initial

Ž .number of type i jobs in stage k x for k s 1, zero for k / 1 plus thei
w x Žnumber of type i jobs processed in stage k y 1 during 0, t given by

Ž ..m T t , minus the number of type i jobs processed in stage ki, ky1 i, ky1

w x Ž Ž .. Ž .during 0, t given by m T t . Constraint 4 is just the aggregatei, k i, k

feasibility constraint for machine s .j
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Similar to the definition for the discrete problem, we define congestion
in station s asj

C s p x , 6Ž .Ýj i , k i
Ž .i , k gsj

and the maximal congestion as

C s max C . 7Ž .max j
1FjFJ

We next show that the fluid control problem can be solved in closed form.

Ž .PROPOSITION 2. The fluid control problem 1 has an optimal ¨alue equal
to the maximum congestion C .max

Proof. We first show that the maximum congestion C is a lowermax
bound on the optimal value of the control problem. For any positive time t

Ž . Ž .and for each i F I, k F J , we have from 2 , 3 :i

k

x t s x y m T t .Ž . Ž .Ý i , l i i , k i , k
ls1

For each station s we obtainj

k

p x t s p x y T t G C y t ,Ž . Ž .Ý Ý Ý Ýi , k i , l i , k i i , k j
Ž . ls1 Ž . Ž .i , k gs i , k gs i , k gsj j j

where the last inequality follows from the definition of C and constraintj
Ž .4 applied to t s 0, t s t. It follows then, that the fluid levels are1 2
positive for all times t smaller than C . Therefore, the objective value ofj
the optimal control problem is at least max C s C .j j max

We now construct a feasible solution that achieves this value. For each
i F I, k F J and each t F C we leti max

p xi , k i
T t s t ,Ž .i , k Cmax

xi
x t s x y m T t s x y t , i s 1, . . . , I ,Ž . Ž .i , 1 i i , 1 i , 1 i Cmax

x t s 0, k s 2, 3, . . . , J , i s 1, . . . , I.Ž .i , k i

Ž . Ž .For all t G C we set T t s p x , x t s 0. Clearly, this solutionmax i, k i, k i i, k

has an objective value equal to C . We now show that this solution ismax
Ž .feasible. It is nonnegative by construction. Also by construction, Eq. 2 is
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Ž .satisfied for all t F C . In particular, x C s 0, i s 1, 2, . . . , I.max i, 1 max
Moreover, for all i, k s 2, 3, . . . , J and t F C we havei max

m T t y m T t s py1 T t y py1T tŽ . Ž . Ž . Ž .i , ky1 i , ky1 i , k i , k i , ky1 i , ky1 i , k i , k

x xi is t y t s 0 s x t ,Ž .i , kC Cmax max

Ž .and Eq. 3 is satisfied. Finally, for any t - t F C and for any machine1 2 max
s , we havej

p x p xi , k i i , k i
T t y T t s t y tŽ . Ž .Ž .Ý Ýi , k 2 i , k 1 2 1ž /C Cmax maxŽ . Ž .i , k gs i , k gsj j

Cjs t y t F t y t ,Ž .2 1 2 1Cmax

Ž .and constraint 4 is satisfied. Note that for the constructed solution
Ž .x C s 0 for all i F I, k F J . Therefore, the feasibility for timesi, k max i

t G C follows trivially.max

The constructed solution has a structure resembling a processor sharing
policy. It calculates the maximal congestion C and allocates a propor-max
tional effort to different job types within each machine to achieve the
target value C . Such an optimal policy is possible, since we relaxed themax
integrality constraint on the number of jobs and allowed machines to work
simultaneously on several job types. In the following section, we use the
fluid solution to construct an asymptotically optimal solution for the
original discrete job shop scheduling problem.

4. AN ALGORITHM FOR THE JOB SHOP
SCHEDULING PROBLEM

In this section, we consider the original job shop scheduling problem,
described in Section 2. Recall that we are initially given n jobs for eachi
type i, i s 1, 2, . . . , I, where n is some nonnegative integer. Station s hasi j
congestion C given by Ý p n . Again, let C denote the maxi-j Ž i, k .g s i, k i maxj

mal congestion. Let V be a certain positive real value. An exact value for
V will be specified later. For each job type i we let

n Vi
a s . 8Ž .i Cmax
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For each station s letj

U s p .Ýj i , k
Ž .i , k gsj

Namely, U is the workload of station s when only one job per type isj j

present. Finally, let

U s max U . 9Ž .max j
1FjFJ

The proposed algorithm revisits the schedule in time intervals of length
V q U .max

w Ž .THE SYNCHRONIZATION ALGORITHM. For each interval m V q U ,max
Ž .Ž .xm q 1 V q U , m s 0, 1, . . . , of length V q U , each machine s ,max max j

Ž .and each pair i, k g s , machine s processes exactly a jobs of type ij j i

Ž .which takes p a time units and idlesi, k i

V q U y p aÝmax i , k i
Ž .i , k gsj

Ž .time units. If for some i, at time m V q U , the number of type i jobsmax
in machine s is less than a , then machine s processes all the availablej i j
type i jobs and idles for the remaining time.

Note that the synchronization algorithm produces a feasible schedule,
Ž .since for each machine s and each i, k g s , it takes p a time units toj j i, k i

process a jobs of type i. Sincei

n Vi
p a F q 1 p F V q U F V q UÝ Ýi , k i i , k j maxž /CmaxŽ . Ž .i , k gs i , k gsj j

it follows that the schedule is indeed feasible.
Ž . Ž .In the fluid relaxation, each job i, k receives p n rC % of thei, k i max

effort from the corresponding machine. The synchronization algorithm
Ž .over each interval of length V q U allocates time a p on jobs i, k .max i i, k

Ž .Thus, job i, k receives

a p p ni i , k i , k if %
V q U Cmax max

of the effort from the corresponding machine. We used approximation in
the last equality, since in the synchronization algorithm we deal with
discrete jobs. Intuitively, the synchronization algorithm gives essentially
the same amount of effort as in the fluid relaxation.
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The next theorem shows that the algorithm does a good job of synchro-
nizing and pipelining the total workload in the system and achieves
asymptotic optimality.

THEOREM 1. Consider a job shop scheduling problem with I job types and
J machines s , s , . . . , s . Gï en initially n jobs of type i s 1, 2, . . . , I, the1 2 J i

synchronization algorithm with V s C U rJ produces a schedule' max max max
with makespan time C such thatH

UC F C F C F C q 2 C U J q U J , 10Ž .'max H max max max max max max

Ž .where U is defined by 9 . In particular,max

C CH HF ª 1, 11Ž .UC Cmax

as

I

n ª `,Ý i
is1

where CU is the optimal makespan. In addition, all the noninitial queue
lengths at each station s are at mostj

U Cmax max q U . 12Ž .max( Jmax

Ž .Proof. For each i F I, k F J and each integer time t, let N t denotei i, k
Žthe number of type i jobs in stage k waiting to be processed on the

i. Ž . imachine s . Note that N 0 s 0 for all k G 2. For each i, machine sk i, k 1
w xwill process exactly a jobs during the interval 0, V q U .i max

Therefore,

N V q U s n y a , N V q U s a ,Ž . Ž .i , 1 max i i i , 2 max i

N V q U s 0, k G 3.Ž .i , k max

Also, for each i machines s i, s i will process exactly a jobs during the1 2 i
w Ž .xinterval V q U , 2 V q U . Therefore,max max

N 2 V q U s n y 2 a , N 2 V q U s a ,Ž . Ž .Ž . Ž .i , 1 max i i i , 2 max i

N 2 V q U s a , N 2 V q U s 0, k G 3.Ž . Ž .Ž . Ž .i , 3 max i i , k max
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Ž .Similarly, we observe that for each i, k g s , machine s does notj j

Ž .Ž .receive type i jobs until time t s k y 1 V q U , and during eachmax
w Ž . Ž .Ž .xsubsequent interval m V q U , m q 1 V q U , m G k y 1 it re-max max

ceives and processes exactly a jobs of type i, until no new jobs of type ii
arrive. Let

Cmax
T s V q U . 13Ž . Ž .maxV

Then

C n V Cmax i max
N T F n y a F n y s 0 14Ž . Ž .i , 1 i i iV C Vmax

for all i. Therefore, all jobs leave the initial stage during the time interval
w x0, T .

We next estimate the time to process all ÝI n jobs initially present inis1 i
Ž .the system. We tag a given job u of type i. This job, as shown in 14 ,

Ž .leaves the first stage i, 1 at some time not bigger than T.
Given any k F J , suppose job u arrives at the kth stage at some timei

wŽ .Ž . Ž .xinterval m y 1 V q U , m V q U . All the type i jobs that ar-max max
Ž .Ž .rived at stage k before time m y 1 V q U have been processed, andmax

Ž i.job u is one of the a jobs of type i that arrived at stage k machine si k
wŽ .Ž . Ž .xduring the time interval m y 1 V q U , m V q U , from the pre-max max

w Ž . Ž .Ž .xvious stage. During the time interval m V q U , m q 1 V q Umax max
machine s i processes a jobs of type i, so job u is in stage k q 1 at timek i
Ž .m q 1 V. We conclude that the delay for job u between leaving the first

i Ž .Žstage and being processed at the last machine s is at most J y 1 V qJ ii
. Ž .Ž .U F J y 1 V q U .max max max

Ž .Combining this with 14 , we conclude that the total delay for the job u
is at most

T q J y 1 V q UŽ . Ž .i max

Cmaxs V q U q J y 1 V q UŽ . Ž . Ž .max i maxV

CmaxF q 1 V q U q J y 1 V q UŽ . Ž . Ž .max max maxž /V

U Cmax maxs C q J U q q J V .max max max maxV

Recall that we have not specified the value of V. We now select V to be
the minimizer of the expression above; i.e.,
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U Cmax max
V s .( Jmax

Therefore, the total makespan time under the algorithm is at most

C F C q 2 C U J q U J .'H max max max max max max

Ž .This proves the bound 10 .
Notice that the maximum congestion C tends to infinity, as the initialmax

total number of jobs ÝI n tends to infinity. Therefore,is1 i

CH ª 1
Cmax

as ÝI n ª `. From Proposition 1, C is a lower bound on the optimalis1 i max
U Ž .makespan time C . Therefore, 11 follows, i.e., the synchronization algo-

rithm is asymptotically optimal.
Finally, as we have seen, the number of type i jobs in machine s i isk

never more than a for k G 2. As a result, the noninitial queue length ini
machine s is at mostj

a .Ý i
Ž .i , k gs , kG2j

From the integrality of processing times, it follows that the noninitial
queue length in machine s is at mostj

n U Ci max max
a p F p q p(Ý Ýi i , k i , k i , kž /C JmaxŽ . Ž .i , k gs , kG2 i , k gs , kG2j j

U Cmax maxF q U .( maxJ

Ž .This proves 12 .

Note that the makespan C of the synchronization algorithm satisfiesH

C s C q O C .'ž /H max max

4.1. The Proportional Case

In this section, we address the case with n s b n, and b are integers. Ini i i
this case, we let V s max Ý p b . Then C s nV. We modifyj Ž i, k .g s i, k i maxj

slightly the synchronization algorithm in this case: For each interval
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w Ž . xmV, m q 1 V , m s 0, 1, . . . , of length V, each machine s , and eachj

Ž . Žpair i, k g s , machine s processes exactly b jobs of type i which takesj j i

.p b time units and idlesi, k i

V y p bÝ i , k i
Ž .i , k gsj

time units.
By following the same analysis as in Theorem 1, we show that the

modified synchronization algorithm produces a schedule with makespan at
most

C q J y 1 V s C q O 1 .Ž . Ž .max max max

4.2. Computational Results

We have implemented three algorithms for the job scheduling problem.
ŽThe first algorithm is the synchronization algorithm called original fluid

.tracking heuristic in Figs. 1 and 2 , the second is the modified synchroniza-
Žtion algorithm outlined in the proportional case called new heuristic for

.uniform N in Figs. 1 and 2 , and the third is a final modification of the
synchronization algorithm, in which the machines do not idle if they do not

Ž .have work to do called variable omega heuristic in Figs. 1 and 2 . We run
w xthese algorithms on the 10 by 10 instances in Muth and Thompson 11

with n s N jobs present and varied N. Figure 1 shows the performance ofi
the synchronization algorithm and its modification for N F 50, while Fig. 2
shows the performance of all three algorithms for N F 2500. It is interest-
ing that for N G 500, the variable V heuristic produces solutions within
1% from the lower bound.

4.3. Comparison with Se¨ast’ jano¨ ’s Algorithm

w xSevast’janov 13 has constructed a scheduling algorithm with makespan
Ž .Ž 2 .time not exceeding C q J y 1 J J q 2 J y 1 p , where pmax max max max max max

� 4' max p is the maximal processing time of a single job. We nowi, k
compare this performance bound with the one given by Theorem 1.

Ž . ŽŽPROPOSITION 3. a If the total number of jobs n satisfies n F n s J0 max
2.Ž ..y 1 J J q 2 J y 1 r3 J , then'max max max

C q 2 C U J q U J'max max max max max max

F C q J y 1 J J 2 q 2 J y 1 p ; 15Ž . Ž .Ž .max max max max max

i.e., the upper bound on the makespan time C corresponding to the synchro-H
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FIG. 1. The performance of the synchronization algorithm and its modification for
N F 50.

nization algorithm is superior to the upper bound on the Se¨ast’ jano¨ schedul-
ing algorithm.

Ž .b If all job types ha¨e the same number n of jobs initially present,
there are at most J job types, and each job type is processed by any gï enmax
machine at most once, then the bound gï en by the synchronization algorithm
is always stronger than the bound gï en by Se¨ast’ jano¨ ’s scheduling algo-
rithm.

Ž .Proof. a Trivially, U F C F np . Then, the left hand side ofmax max max
Ž .15 is smaller than

C q 2np J q np J .'max max max max max

Ž .Therefore, the left hand side of 15 is smaller than

C q 2np J ,max max max

which is less than or equal to

C q J y 1 J J 2 q 2 J y 1 p ,Ž . Ž .max max max max max

if n F n .0
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FIG. 2. The performance of all three algorithms for N F 2500.

Ž .b If all job types have the same number n of jobs initially present,
i.e., n s n, the performance bound of the synchronization algorithm isi

C q J y 1 U .Ž .max max max

If there are at most J job types, and each job type is processed by anymax
given machine at most once, then U F J p , and thus the boundmax max max
given by the synchronization algorithm is always stronger.

For example, for the 10 by 10 instance defined in Muth and Thompson
w x11 with the same number n of jobs for every job type, then the bound for
the synchronization algorithm is always stronger for all n.

5. THE PACKET ROUTING PROBLEM WITH FIXED PATHS

In this section, we apply our results on the job shop scheduling problem
to the problem of packet routing in communication networks. Given a

Ž .directed graph V, AA that represents a communication network, there is a
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collection of packets that needs to be sent from a source node to a
destination node along given paths. Each packet is given with a prespeci-

Ž .fied simple path each node visited at most once , connecting the source to
Ž .the destination, i.e., each packet is represented by the triplet s , t , P ,k k k

where s is the source node, t is the destination node, and P is thek k k
prespecified simple path. It takes one time unit for a packet to traverse an
edge in AA, and only one packet can traverse a given edge at a time. We
will consider two versions of the packet routing problem: in this section,
we address the problem where the paths are given, and in the next section,
we address the problem where we need to select the paths. For the packet
routing problem with fixed paths there are n packets that need to be sentP
along path P, for each simple path P. Let PP denote the collection of all
simple paths, for which n ) 0.P

A scheduler decides which packets traverse any given edge and which
packets wait in queue. The goal is to find a schedule which routes all
packets from their sources to their destinations in minimal possible
Ž .makespan time, given the initial number of packets n for each simpleP
path P.

ŽExtensive research has been conducted on this problem see Leighton
w x.9 . It is easy to see that the packet routing problem with fixed paths is a
special case of the job shop scheduling problem. Each edge can be seen as

Ž .a processing machine. Each path is a sequence of machines edges that
Ž . Ž .jobs packets need to follow. All the processing traversing times are

equal to one. The job types correspond to paths in PP, and the stages
correspond to edges within the path. Also, the quantity

pÝ i , k
Ž .i , k gsj

in the job shop scheduling problem corresponds simply to the number of
< <paths crossing any given edge e. The number is at most PP . The conges-

tion C of a given edge e g AA is simply the number of packets thate
Ž .eventually cross e the corresponding paths contain e :

C s n .Ýe P
P : egP

The maximal congestion C is max C and is clearly a lower bound onmax e e
the optimal makespan time.

Applying the synchronization algorithm for the job shop scheduling
problem we obtain the following result.
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Ž .THEOREM 2. Gï en a directed graph V, AA , suppose for each P g PP

there are n packets that need to follow path P. There exists a schedule thatP
brings all the packets to their destinations in time C at mostH

< < < <C q 2 C PP L q PP L,'max max

< <where PP is the cardinality of the set PP and L is the size of the longest simple
path in the graph. In particular,

CH ª 1UC

as

n ª `,Ý P
PgPP

and CU is the optimal makespan time.

6. THE PACKET ROUTING PROBLEM WITH
PATH SELECTION

In this section, we consider a more general version of the packet routing
problem in which the collection of paths is not given a priori, but needs to

Ž .be determined. Given a directed network V, AA , for each pair of nodes
Ž Ž ..k, l g V there is a number of packets n called packets of type k, lk l

that need to be routed from source k to destination l via some path in the
network. Let PP denote the collection of all types in the network

P s k , l : n ) 0 .� 4Ž . k l

The scheduler is free to choose a path for each packet. The objective is to
Žconstruct a schedule which selects paths and chooses packets to traverse

.any given edge so as to minimize the total time it takes to route all the
w xpackets to their destinations. Srinivasan and Teo 16 provide an algorithm

that uses a linear programming problem that finds a schedule within a
constant factor from the minimum makespan.

In this section, we construct a schedule that has makespan C F CU qH
U U'Ž .O C , where C denotes the minimum makespan time. Therefore, our

algorithm is asymptotically optimal as the total number of packets in-
creases to infinity.

In the previous sections we used a dynamic fluid relaxation to construct
a schedule. We will now use a static multicommodity flow relaxation of the
problem. For any feasible schedule, we define decision variables x k l to bei j
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Ž . Ž .the total number of type k, l packets that traverse the edge i, j . We can
assume without loss of generality that origin and destination nodes are not
revisited by any packet. In particular, x k l s x k l s 0 for all k, l, i, j g V.i k l j

Ž .For each edge i, j g AA the value

C s x k l 16Ž .Ýi , j i j
Ž .k , l gPP

Ž .represents the total time that edge i, j is processing packets. Clearly, the
optimal makespan time CU is at least max C . Therefore, theŽ i, j.g AA i, j
following multicommodity flow problem provides a lower bound on CU :

minimize C 17Ž .max

subject to x k l s n , k , l g PP, 18Ž . Ž .Ý k i k l
Ž .i : k , i gAA

x k l s n , k , l g PP, 19Ž . Ž .Ý i l k l
Ž .i : i , l gAA

x k l s x k l , k , l g PP, i / k , l ,Ž .Ý Ýji i r
Ž . Ž .j : j , i gAA r : i , r gAA

20Ž .

C s x k l , i , j g AA, 21Ž . Ž .Ýi , j i j
Ž .k , l gPP

C F C , i , j g AA, 22Ž . Ž .i , j max

x k l , C G 0, i , j g AA, k , l g PP.Ž . Ž .i j i j

23Ž .

Ž . Ž .Eqs. 18 ] 20 represent conservation of flow. The objective function value
of this linear programming problem, denoted also by C , is clearly amax
lower bound on the optimal makespan time CU. The linear programming

< < < < < < < < < <problem has AA PP variables and V PP q AA constraints. Thus, it can
be solved in polynomial time even if the n are large. We next propose ank l
algorithm that constructs a schedule with performance close to C whenmax
the number of packets is large.

PACKET ROUTING SYNCHRONIZATION ALGORITHM

1. Calculate the optimal value of C of the linear programmingmax
Ž .problem 17 .

2. Let V be a positive real value, to be specified later. For each
w Ž . x u v Ž .interval mV, m q 1 V , m s 0, 1, . . . , C rV y 1, each edge i, jmax
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processes

k lx Vi jk la s 24Ž .i j Cmax

Ž .packets of type k, l g PP and idles the remaining time. If there are less
k l Ž .than a jobs of type k, l available, then all available packets arei j

processed and the rest of the dedicated time the edge idles, i.e., the edge
does not process other packets.

3. At time

Cmax
T ' V F C q V , 25Ž .maxV

we process all remaining M packets sequentially, taking MP time units,max
where P is the length of the maximal simple path in the network.max

Note that the last step is inefficient, but as we will see the number of
packets left in the network after time T is small. Let us first show that the

Ž .algorithm is feasible. For each edge i, j g AA we have

x k lV C Vi j i , jk la F s F V .Ý Ýi j C Cmax maxŽ . Ž .k , l gPP k , l gPP

We will show first that the number of packets left in the network at time T
Ž . Ž .is O C , by selecting V appropriately. For each node i, let d i' max

denote the outdegree of node i

PROPOSITION 4. Let

< <V s C PP .' max

Then the total number of packets present in the network at time T defined in
Ž .25 is at most

< < < < < < <2 AA C PP q AA PP .' max

Ž .Proof. We first show that for each k, l g PP, the total number of
Ž .packets of type k, l present in node k at time T is not bigger than

Ž .Ž . w Ž . xd k C rV . During each interval mV, m q 1 V , m s 0, 1, 2, . . . ,max
u v Ž .C rV y 1, the number of type k, l packets processed from node k ismax
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equal to

x k lV n Vk i k lk la G y 1 G y d k ,Ž .Ý Ýk i ž /C Cmax maxŽ . Ž .i : k , l gAA i : k , i gAA

Ž .where the second inequality follows from 18 . Therefore, the number of
Ž . u vtype k, l packets present in node k at time T s C rV V is at mostmax

n V C Ck l max max
n y y d k s d k .Ž . Ž .k l ž /C V Vmax

Ž .We next consider any node i g V and any type k, l such that i / k.
Ž .Initially, there are no type k, l packets at node i. Let m be the largest0

Ž .integer such that there are no type k, l packets at node i at time m V.0
Ž . w ŽThe total number of type k, l packets that arrive into i during m V, m0 0

. xq 1 V is at most

x k lVjik la F . 26Ž .Ý Ýji CmaxŽ . Ž .j : j , i gAA j : j , i gAA

w Ž . xDuring each subsequent interval mV, m q 1 V , m G m the total num-0
Ž . w Ž . xber of type k, l packets that arrive into i during mV, m q 1 V is also

at most

x k lVji
.Ý CmaxŽ .j : j , i gAA

The schedule will allocate at least

x k lV x k lVi j i jk la G y 1 s y d iŽ .Ý Ý Ýi j ž /C Cmax maxŽ . Ž . Ž .j : i , j gAA j : i , j gAA j : i , j gAA

Ž . w Ž . xtime units to type k, l during each interval mV, m q 1 V , m G m q 1.0
w Ž . xThus, during each subsequent interval mV, m q 1 V , m s m q 1, m0 0

Ž .q 2, . . . the number of type k, l packets in node i increases by at most

x k lV x k lVji jiy q d i s d i ,Ž . Ž .Ý ÝC Cmax maxŽ . Ž .j : j , i gAA j : i , j gAA

Ž . Ž .where the equality follows from 20 . Combining with 26 , the total
Ž .number of type k, l packets at node i at time T is at most
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k l k lC x V C x Vmax ji max ji
d i q F d i q d i q .Ž . Ž . Ž .Ý Ý

V C V Cmax maxŽ . Ž .j : j , i gAA j : j , i gAA

Ž .By summing over all nodes i g V and types k, l g PP, we obtain that the
total number of packets in the network at time T is at most

C x k lVmax ji
d i q d i qŽ . Ž .Ý Ý Ýž /V CmaxigV Ž . Ž .k , l gPP j : j , i gAA

C C Vmax j , i
< < < <s q 1 AA PP q Ýž /V CmaxŽ .j , i gAA

Cmax
< < < < < <F q 1 AA PP q AA V .ž /V

We now select V to minimize the quantity above. Namely, set V
< <s C PP . Then the total number of packets in the network at time T' max

is at most

< < < < < < <2 AA C PP q AA PP .' max

We next apply Proposition 4 to obtain an upper bound on the makespan
time realized by the algorithm.

THEOREM 3. The packet routing synchronization algorithm routes all nk l
packets with origin k and destination l in time C satisfyingH

U < < < < < < < < < < < < < <C F C F C F C q C PP q 2 AA C PP V q AA PP V ,' 'max H max max max

where CU is the optimal makespan time. In particular,

C s C q O C ,'ž /r m H max max

and

C CH HF ª 1UC Cmax

as

n ª `.Ý k l
Ž .k , l gPP
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Proof. From Proposition 4, at time T we have at most

< < < < < < < <2 AA C PP q AA PP' max

packets in the network. These packets can be routed to their destination
Ž .by any trivial algorithm as in Step 3 of the algorithm within time at most

< < < < < < < <2 AA C PP q AA PP P ,'ž /max max

where P is the length of the maximal simple path in the network. Sincemax
< <P F V , we obtain that the total makespan time of the algorithm is,max

Ž .using the bound 25 , at most

< < < < < < < < < <T q 2 AA C PP q AA PP V'ž /max

< < < < < < < < < < < < < <F C q C PP q 2 AA C PP V q AA PP V .' 'max max max

7. CONCLUDING REMARKS

We presented algorithms for the job shop scheduling and packet routing
Žproblems that are asymptotically optimal as the number of jobs packets,

.respectively in the system approaches infinity. Unlike asymptotically opti-
mal algorithms that rely on probabilistic assumptions, the proposed algo-
rithms make no probabilistic assumptions, and they are asymptotically

Ž .optimal for all instances with a large number of jobs packets, respectively .
The algorithm for job shop scheduling and its analysis underscores the

importance of the fluid control problem and it shows that for instances of
the problem with a large number of jobs, it is the dynamic and not the
combinatorial character of the problem that dominates. Interestingly, the
dynamic character of the problem that can be captured by the fluid control
problem has a very simple structure. The algorithm for packet routing
underscores the importance of the idea already observed in other discrete
optimization problems that continuous relaxations carry information about
the discrete optimization problem that can be used to construct near
optimal solutions.

Finally, the results of the paper imply that in the limit of a large number
Ž .of jobs packets the combinatorial structure of the problems, which is the

essential difficulty of the problems, becomes increasingly unimportant as
both problems are well approximated by continuous relaxations that are
efficiently solvable.
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