
From high-level parallel programming
to high-level grid programming

Marco Aldinucci
Dept. of Computer Science, University of Pisa, Italy

& ISTI - CNR, Pisa, Italy

ENS Lyon, France 29 March 2006

1

From high-level parallel programming
to high-level grid programming

Marco Aldinucci
Dept. of Computer Science, University of Pisa, Italy

& ISTI - CNR, Pisa, Italy

ENS Lyon, France 29 March 2006

1

Préparation

Je suis Italien
je ne parle pas Français ... je le compris a petit, pardonnez moi

Fatalement, l’Anglais est le langage des conférences
d’informatique ...

 ils est important pour connaître autres pays et autres expériences
les prochaine diapo en Anglaise ... peut-être ...

2

how many mistakes?

2

Pisa, où il est?

3

Leonardo Fibonacci (1170 - 1250)
MCLXX -> 1170; 0,1,1,2,3,5,8 ...

Galileo Galilei (1564 - 1642)
falling bodies, telescope, ...

just 100.000 people,
40.000 are students
(they enjoy a lot)

Ulisse Dini (1845 - 1918)
F(x,y)=0 -> y=f(x) (locally)

Enrico Fermi (1901 - 1954)

Napoleon (1769 - 1821)
founded ENS Pisa
(just one in Italy,

just 20 students every year,
2 of them in Computer Science)

1810

CEP, Pisa, Italy, 1957,
first computer built in Italy

CPU

3

The MIM seminar
Part 0: kidding, up to now

just to make you aware I speak another language or two, but not French

Part I: a very short introduction
no prerequisites, almost all of you already know what I’ll say

Part II: high-level parallel programming
little prerequisites, some of you might know what I’ll say

might give you some hints for your research

Part III: high-level parallel programming in Grid with dynamic
Quality of Service control

conference level, technical, ASSIST environment (our research)

lot of open problems both theoretical and practical (not sure I will have the
time to present them)

4
4

Part I

Parallel programming
very short introduction
low-level mechanisms & libraries

I’ll run quite fast here
stop me in any moment if needed
pleeease don’t be timid

5
5

Traditional // prog. models

In charge to the programmer:
Defining logically/physically parallel activities
Scheduling and mapping of parallel activities
Communication / shared memory access handling
Synchronization
...
Load balancing
Fault tolerance

6
6

Defining parallel activities
Goal: define {// activities} potentially parallel

Concurrent activities ☞ parallel

Logically shared data ☞ shared data/communications

Implicit models
Derive parallel activities from plain sequential code
Data flow analysis ☞ independent activities

Explicit models
Threads
Processes

7
7

Interaction models

Shared memory
Synchronization (locks, semaphores, monitors, …)
“Native” data representation

Message passing
Synchronization (send/receive, barriers, …)
Data representation (XDR, marshalling, …)
Wide range of communication mechanisms:

Send/receive

RPC/RMI

8
8

State of the art tools

Shared memory
POSIX threads (and derivatives)
JAVA threads (and derivatives)

Message passing
TCP/IP socket API
MPI, PVM, ...
(RPC)

9
9

Shared memory models

Processes + System V semaphores
Threads (e.g. Java, POSIX)

Extends Thread - or - implements Runnable
public void run() { /* body of thread */}
synchronizations: monitor
public synchronized int incr() {…}

… while(cond) { … wait(); … }
… notify();

… notifyAll();
Distributed Shared Memories ...

10
10

message passing (sync)

11

...
a=1;
send(P1,a);
receive(P0,&a);
...

P0 P1

...
receive(any,&b);
b=a*2;
send(P0,b);
...

...
a=5;

send(P1,a);

receive(P0,&a);
...

...
receive(any,&b);
b=a*2;
send(P0,b);
...

(5)

(10)wait

11

scatter, then gather

12
12

scatter, then gather

12
12

scatter, then gather

12
12

scatter, then gather

12
12

scatter, then gather

12
12

the MPI code

13

#include <stdio.h>
#include "mpi.h"
#define MAXPROC 8 /* Max number of procsses */
#define NAMELEN 80 /* Max length of machine name */
#define LENGTH 24 /* Lengt of send buffer is divisible by 2, 4, 6 and 8
*/

main(int argc, char* argv[]) {
 int i, j, np, me;
 const int nametag = 42; /* Tag value for sending name */
 const int datatag = 43; /* Tag value for sending data */
 const int root = 0; /* Root process in scatter */
 MPI_Status status; /* Status object for receive */

 char myname[NAMELEN]; /* Local host name string */
 char hostname[MAXPROC][NAMELEN]; /* Received host names */

 int x[LENGTH]; /* Send buffer */
 int y[LENGTH]; /* Receive buffer */

 MPI_Init(&argc, &argv); /* Initialize MPI */
 MPI_Comm_size(MPI_COMM_WORLD, &np); /* Get nr of processes */
 MPI_Comm_rank(MPI_COMM_WORLD, &me); /* Get own identifier */

 gethostname(&myname, NAMELEN); /* Get host name */

 if (me == 0) { /* Process 0 does this */

 /* Initialize the array x with values 0 .. LENGTH-1 */
 for (i=0; i<LENGTH; i++) {
 x[i] = i;
 }

 /* Check that we have an even number of processes and at most MAXPROC
*/
 if (np>MAXPROC || np%2 != 0) {
 printf("You have to use an even number of processes (at most %d)\n",
MAXPROC);
 MPI_Finalize();
 exit(0);
 }

 printf("Process %d on host %s is distributing array x to all %d
processes\n\n", \
	

 me, myname, np);

 /* Scatter the array x to all proceses, place it in y */
 MPI_Scatter(&x, LENGTH/np, MPI_INT, &y, LENGTH/np, MPI_INT, root, \
	

 	

 MPI_COMM_WORLD);

 /* Print out own portion of the scattered array */

 printf("Process %d on host %s has elements", me, myname);
 for (i=0; i<LENGTH/np; i++) {
 printf(" %d", y[i]);
 }
 printf("\n");

 /* Receive messages with hostname and the scattered data */
 /* from all other processes */
 for (i=1; i<np; i++) {
 MPI_Recv (&hostname[i], NAMELEN, MPI_CHAR, i, nametag,
MPI_COMM_WORLD, &status);
 MPI_Recv (&y, LENGTH/np, MPI_INT, i, datatag, MPI_COMM_WORLD,
&status);
 printf("Process %d on host %s has elements", i, hostname[i]);
 for (j=0; j<LENGTH/np; j++) {
	

 printf(" %d", y[j]);
 }
 printf("\n");
 }

 printf("Ready\n");

 } else { /* all other processes do this */

 /* Check sanity of the user */
 if (np>MAXPROC || np%2 != 0) {
 MPI_Finalize();
 exit(0);
 }

 /* Receive the scattered array from process 0, place it in array y */
 MPI_Scatter(&x, LENGTH/np, MPI_INT, &y, LENGTH/np, MPI_INT, root, \
	

 	

 MPI_COMM_WORLD);
 /* Send own name back to process 0 */
 MPI_Send (&myname, NAMELEN, MPI_CHAR, 0, nametag, MPI_COMM_WORLD);
 /* Send the received array back to process 0 */
 MPI_Send (&y, LENGTH/np, MPI_INT, 0, datatag, MPI_COMM_WORLD);

 }

 MPI_Finalize();
 exit(0);
}

13

RPC (sync)

14

public class DateClient {
 public static void main ...
	

 ...
	

 DateServer dateServer =
 (DateServer)Naming.lookup("rmi://" +
	

 args[0] + "/DateServer");

	

 Date when = dateServer.getDate();

	

 ...
}}

public static void main (...
 ...
 DateServerImpl dateS = new DateServerImpl();
 Naming.bind("DateServer", dateS);
}

P0 (client, active) P1 (server, passive)

RPC(getDate())

29/03/06

locally
execute(getDate())

ask P1 to execute
getDate()

wait
take from P1 the
result

14

RPC example: Java RMI

15

// REMOTE INTERFACE

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.util.Date;

public interface DateServer extends Remote {
 public Date getDate() throws RemoteException;
}

// CLIENT
import java.rmi.RMISecurityManager;
import java.rmi.Naming;
import java.util.Date;

public class DateClient {
 public static void main (String args[]) throws
Exception {

 if (args.length != 1)

 throw new RuntimeException("Syntax: DateClient
<hostname>");

 System.setSecurityManager(new RMISecurityManager());

 DateServer dateServer = (DateServer)Naming.lookup
("rmi://" + args[0] + "/DateServer");

 Date when = dateServer.getDate();

 System.out.println(when);
 }
}

// SERVER
import java.rmi.server.UnicastRemoteObject;
import java.rmi.RMISecurityManager;
import java.rmi.RemoteException;
import java.rmi.Naming;
import java.util.Date;

public class DateServerImpl extends UnicastRemoteObject
implements DateServer {
 public DateServerImpl() throws RemoteException {

 }

 public Date getDate() {

 return new Date();
 }

 public static void main (String args[]) throws
Exception {

 System.setSecurityManager(new RMISecurityManager());

 DateServerImpl dateS = new DateServerImpl();

 Naming.bind("DateServer", dateS);
 }
}

15

Too complex? Not enough ...
lot of code for a so simple paradigms
lot of static/lunch-time assumptions

n. of Processing Elements and their names
size of the matrix, number of blocks, order of distribution

lot of architectural assumptions
no firewalls, homogenous (data types) and reliable machines and
net, ...

performances, load balancing?
depends on the regularity of the computation
depends on the actual load of the machines

Is it possible to address these problems?
Yes of course, by adding more and more code ...16

16

Low-level // programming

Usually libraries
shared-memory (e.g. POSIX threads, DSM, ...)
message passing (e.g. POSIX sockets, MPI, PVM, ...)
orchestration code mixed with application code (e.g. mapping,
scheduling, data distribution, fault-tolerance, caching, ...)

Time consuming
programming, debugging
performance tuning

Tailored for specific architectures
difficult to be ported on different platforms
not a good investment ...

17
17

Part II

High-level parallel programming
what kind of problems it address
an overview of some environments

BSP (I’ll not show you, Frederic Loulergue already did it)

HPF (just for historical reasons, people no longer believe in it ...)

OpenMP

design patterns and skeletons (...)

components (not shown)

18
18

High Performance Fortran

Extension of the Fortran90
pragma for declaring parallelism
foremost paradigms of parallelism:

FORALL, DO INDEPENDENT

computes-owner rule
extremely difficult build a good compiler

data dependencies are entangled by indexes

The project can be considered trespassed
but very important, at least to know what concepts are
very very difficult to implement

19
19

HPF: example 1

20
20

So, what is the problem?

In many cases the “arrows” shown in the
previous slide are neither known at compile
time (e.g. a[i] = b[f(i)], f function) nor stable
across iterations
thus, it is almost impossible to automatically
derive good mapping of data onto processors
thus performance may become rapidly
disappointing

21
21

OpenMP
Thought for shared memory machines

The “arrows” problem no longer exist (arrows exists but simply
cost less because of the shared memory)
no mapping problem (because of the shared memory)

main target: parallelization of loops
co-begin/co-end model

Core elements of OpenMP:
thread creation
work load distribution(work sharing)
data environment management
thread synchronization

22
22

OpenMP: Parallel for

23

#include <stdio.h>
#ifdef _OPENMP
/* using conditional compilation to let
sequential compilers ignore the omp.h
header*/
#include <omp.h>
#endif
#define n 100000
void main()
{
int a[n];
int i;
#pragma omp parallel
#pragma omp for
 for (i=0;i<n;i++) a[i]= 2*i;
}

1 2 n...

cobegin
time

23

OpenMP: Parallel for

23

#include <stdio.h>
#ifdef _OPENMP
/* using conditional compilation to let
sequential compilers ignore the omp.h
header*/
#include <omp.h>
#endif
#define n 100000
void main()
{
int a[n];
int i;
#pragma omp parallel
#pragma omp for
 for (i=0;i<n;i++) a[i]= 2*i;
}

1 2 n...

2 4 2n

cobegin

coend

time

23

OpenMP: reduction

24

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {

int i, n;
float a[100], b[100], sum;

/* Some initializations */
n = 100;
for (i=0; i < n; i++)
 a[i] = b[i] = i * 1.0;
sum = 0.0;

#pragma omp parallel for reduction(+:sum)
 for (i=0; i < n; i++)
 sum = sum + (a[i] * b[i]);

printf(" Sum = %f\n",sum);

}

1 2 43

cobegintime

24

OpenMP: reduction

24

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {

int i, n;
float a[100], b[100], sum;

/* Some initializations */
n = 100;
for (i=0; i < n; i++)
 a[i] = b[i] = i * 1.0;
sum = 0.0;

#pragma omp parallel for reduction(+:sum)
 for (i=0; i < n; i++)
 sum = sum + (a[i] * b[i]);

printf(" Sum = %f\n",sum);

}

1 2 43

73

10

cobegin

coend

time

24

Balance ...
simple: need not deal with message
passing as MPI does

data layout and decomposition is
handled automatically by directives.

incremental parallelism: can work on
one portion of the program at one
time, no dramatic change to code is
needed.

a unified code for both serial and
parallel applications: OpenMP
constructs are treated as comments
when sequential compilers are used.

Original (serial) code statements
need not, in general, be modified
when parallelized with OpenMP.
This reduces the chance of
inadvertently introducing bugs.

currenty only run efficiently in
shared-memory multiprocessor
platforms

requires a compiler that supports
OpenMP. Visual C++ 2005 supports
it, and so do the Intel compilers for
their x86 and IPF product series.
GCC 4.2 will support OpenMP,
though it is likely that some
distributors will add OpenMP
support already to their GCC 4.1
based system compilers.

low parallel efficiency: rely more on
parallelizable loops, leaving out a
relatively high percentage of a non-
loop code in sequential part.

25

Pros
Cons

25

Skeletons: the principle

The new system presents the user with a selection of independent
“algorithmic skeleton”, each of which describes the structure of a
particular style of algorithm, in the way in which “higher order
functions” represent general computational frameworks in the
context of functional programming languages. The user must
describe a solution to a problem as an instance of the appropriate
skeleton.

 (Cole 1988)

26
26

The principle (rephrased)

Abstract parallelism exploitation pattern by parametric
code (higher order function)
Provide user mechanism to specify the parameters
(sequential code, extra parameters)
Provide (user protected) state-of-the-art implementation
of each parallelism exploitation pattern
In case, allow composition

Fundamental, second time property of skeletons systems

27
27

Example: task farm
Parameters:

Worker code
Parallelism degree (computed?)

Known implementation
Master slave pattern
Possibly distributed master

Composite worker
Master to master optimizations

28

M

W W W

M

M

W W W

M

W W W

28

other examples ...

Data parallel
map, fold, reduce,
haloswap
Divide&Conquer
...

Control parallel
farm
pipeline
DAG, graph, ...

29
29

map

functionally: apply the same function to each of
the partitions of a domain

well known in functional programming

parallel behavior: once data is partitioned, the
partitions can be independently crunched

depending on initial data layout, a the map may be
trammeled by a scatter-gather pair

30
30

scatter-map-gather

31
31

scatter-map-gather

31
31

scatter-map-gather

31
31

scatter-map-gather

31
31

scatter-map-gather

31
31

haloswap

similar to map, but the initial data is
divided in parts which are not partitions

some data (halo) appears in more than one
parts
in the case the data is kept in distributed form,
some more communications are needed
since data in halos is replicated, it should be
somehow kept coherent (usually just one PE
can write it)

32
32

Since high-level ...

we know the semantics
functional behavior
parallel behavior

it can be used to
provide good implementation
optimize programs
develop tools to tune
(statically, dynamically) the
program to the running
environment

33

Unfold Rules (!→)

1. seq f (x :τ)! !→ seq f x! : seq f τ !

2. farm ∆ (x :τ)! !→ farm ∆ xO(!,x) : farm ∆ τO(!,x)

3. pipe ∆1∆2 (x :τ)! !→ pipe ∆1 ∆2 x! : pipe ∆1 ∆2 τ !

4. comp ∆1∆2 (x :τ)! !→ comp ∆1 ∆2 x! : comp ∆1 ∆2 τ !

5. map p−1∆ p (x :τ)! !→ map p−1 ∆ p x! : map p−1 ∆ p τ !

6. d&c t p−1 ∆ p (x :τ)! !→ d&c t p−1 ∆ p x! : d&c t p−1 ∆ p τ !

7. while t ∆ (x :τ)! !→ while t ∆ x! : while t ∆ τ !

∆ (x : τ)! !→ ∆ x : ∆ τ 

C(∆ (x : τ)!) !→ C(∆ x : ∆ τ )
context unfold ,where C ::= − | ∆ x : C

Exec Rules (→)

1. seq f x! !→ f x! 2. farm ∆ x! !→ ∆ xO(!,x)

3. pipe ∆1∆2 x! !→ ∆2 RO(!,x) ∆1 x! 4. comp ∆1∆2 x! !→ ∆2 ∆1 x!

5. map p−1∆ p x! !→ p−1 (α ∆) p x!

6. d&c t p−1 ∆ p x! !→






∆ x! iff (t x)

p−1
(

α
(

d&c t p−1 ∆ p
))

p x! otherwise

7. while t ∆ x! !→






∆ x! iff (t x)

while t ∆ x! otherwise

∆ x!2 !2→ y!3

R!1 ∆ x!2 !2→ yΦ(!1!2,0)
relabel

∆1 x! !→ y

∆2 ∆1 x! !→ ∆2 y
context

p x! = 〈 y!1
1 , · · · , y!n

n 〉 ∆ y!i
i

!i→ z!i
i p−1 〈 z!1

1 , · · · , z!n
n 〉 = z

i = 1..n

Ψ(#, x) = #1 · · · #n

p−1 (α ∆) p x! !1,··· ,!n−→ z!1,··· ,!n

dp

∆i x!i
i

!i→ yi
i ∀i 1 ≤ i ≤ n ∧ Γ1)→ ∧ ∃ i, j 1 ≤ i, j ≤ n, #i = #j ⇒ i = j

Γ1 : ∆1 x!1
1 : · · · : ∆n x!n

n : Γ !1,··· ,!n−→ Γ1 : y1
1 : · · · : yn

n : Γ
sp

Fig. 1. Each Unfold Rule has a twin rule (not shown in the figure) without the
recursive term. x, y, z ∈ value; τ ∈ stream; #, #i, , i . . . ∈ label ; O,Ψ,Φ : label ∗

× value → label ∗; Γ1,Γ2 ∈ lab ske exp; α∆〈x1, · · · , xn〉 = 〈∆x1, · · · ,∆xn〉 (a.k.a.
apply-to-all [27]).

8

M. Aldinucci and M. Danelutto, Computer Languages, Elsevier, 2006

33

Skeletons: evolution

34

Cole PhD (1988)
Fixed degree DC, Iterative combination, Cluster Task queue

Darlington (1992)
Pipeline, Farm, RaMP, DMPA

P3L (1991)
Pipeline, Farm, Map, Reduce

Muesli (2002)
Pipeline, Farm, Parallel array + collectives

eSkel (2002)
Parametric skeletons + Give/Take

Fortran SSCL ASSISTSkIE

Kuchen Skil (1998)

Lithium OcamlP3L

BMF (‘80)
map fold reduce prefix + algebra

Gorlatch (late ‘90)Skillicorn (mid ‘90)

Serot (1999)
Skipper (→MDF)

MALLBA (‘00)
Combinatorial optimisation

HOC (early ‘00)

eSkel2 (2005)
M. Cole, A. Benoit

34

Skeletons & guest languages

skeletons are “design patterns” (and vice-
versa)

not fully correct, but please enable me to use this
approximation (Cole 2001)

they can be realized in any language
implementations exist in C, C++, Java, Ocaml ...

35
35

Skeletons in Pisa

36

P3L (the Pisa Parallel Programming Language 1991)

SkIE
(Skeleton Integrated
Environment 1997)

OcamlP3L
(1998)

SKElib (SKEleton
LIBrary 2000)

Macro Data Flow
RunTime (1999)

Lithium (2000)

muskel
(µskeleton lib 2003)

ASSIST
(A Software development

System based on Integrated
Skeleton Technology 2001)

36

Part III

Grids
Why Grids are really different from clusters

the need of QoS control
the need of adaptive programs

ASSIST (University of Pisa)

37
37

What is the Grid

“... coordinated resource sharing and problem solving
in dynamic, multi institutional virtual
organizations.” (Foster, Anatomy of the Grid)

“1) coordinates resources that are not subject to
centralized control …”
“2) … using standard, open, general-purpose protocols
and interfaces”
“3) … to deliver nontrivial qualities of
service.” (Foster, What is the Grid?)

38
38

Grid features 1

Heterogeneity:
machines are heterogeneous: different HW, OS, power ... networks are
multi-tier, each tier is different (networks are heterogeneous as well).

protocols to guarantee interoperability (middleware, SOKU)

Complexity
most interesting apps. are inherently distributed. Due to the scale is
progressively more difficult to ensure good speedups, and correctness

no way to do it with low-level approaches. High-level tools needed.

QoS
apps are required to exhibit a pre-determined QoS. In many interesting
cases the QoS change along the run (e.g. catastrophes management)

39
39

Grid features 2

Dynamicity:
platform, networks, and services become unavailable, change
performances, fail-stop, ... and do it during the run. And do it for sure, is it
not a remote possibility (Gannon, Kennedy, Kesselman, Dongarra, ...
GrADS@Rice Univ.)

correctness as well as performance control become dynamic proprieties

the application should be ready to react to that, in other words it should
be adaptive.

No adaptivity means no Grid
this our idea (and also the idea of several partners of CoreGRID,
Grids@Rice, ...)

40
40

May such HW be a Grid?

Boxes have different powers
(46:1 max ratio)

Net performance
Two Firewalls

ATM, Eth100, WiFi 11/54

Operating Systems
Linux, MacOSX, Windows

HW architecture
Single CPU and SMP

P2, P3, P4, HTP4, G4, G5

41

Eth100

Eth100 Eth100
802.11b

802.11g

Italian

backbone

(ATM)

di.unipi.it (Pisa)

isti.cnr.it (Ghezzano)

41

Many aspects rethought

Virtualization of resources
needed for adaptivity (Globus not enough)

ASSIST ➠ Virtual Process

ProActive ➠ Active Object

Performance prediction
scheduling, mapping.... static/lunch time
informations not reliable (look an example)

42
42

Boxes performances

Grid platforms are
supposed to exploit
different “power”
(in the meaning of
Aristotelic power/act)
and net bandwidth
both of them may
rapidly change over
time

43

0

0.175

0.350

0.525

0.700

P2
@2
33
M
Hz

P3
@1
.1G

Hz

G4
@8
00
M
Hz

G4
@8
67
M
Hz

P4
@1
.7G

Hz

P4
@2
.8G

Hz

2x
P3
@5
50
M
hz

2x
P4
@8
00
M
Hz

2x
G5
@2
GH

z

4x
P4
@2
.8G

Hz

80 X

43

Performance metrics

44

±1400%
0

0.175

0.350

0.525

0.700

P2
@2
33
M
Hz

P3
@1
.1G

Hz

G4
@8
00
M
Hz

G4
@8
67
M
Hz

P4
@1
.7G

Hz

P4
@2
.8G

Hz

2x
P3
@5
50
M
hz

2x
P4
@8
00
M
Hz

2x
G5
@2
GH

z

4x
P4
@2
.8G

Hz

0

0.175

0.350

0.525

0.700

4x
P4
@2
.8G

Hz

P2
@2
33
M
Hz

G4
@8
00
M
Hz

2x
G5
@2
GH

z

G4
@8
67
M
Hz

P4
@1
.7G

Hz

2x
P3
@5
50
M
hz

2x
P4
@8
00
M
Hz

P4
@2
.8G

Hz

P3
@1
.1G

Hz

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11

N of Processors

T
im

e
(s

ec
s)

Experim 1
Experim 2
Upper Bound
Lower Bound

44

Performance metrics

44

±1400%
0

0.175

0.350

0.525

0.700

P2
@2
33
M
Hz

P3
@1
.1G

Hz

G4
@8
00
M
Hz

G4
@8
67
M
Hz

P4
@1
.7G

Hz

P4
@2
.8G

Hz

2x
P3
@5
50
M
hz

2x
P4
@8
00
M
Hz

2x
G5
@2
GH

z

4x
P4
@2
.8G

Hz

0

0.175

0.350

0.525

0.700

4x
P4
@2
.8G

Hz

P2
@2
33
M
Hz

G4
@8
00
M
Hz

2x
G5
@2
GH

z

G4
@8
67
M
Hz

P4
@1
.7G

Hz

2x
P3
@5
50
M
hz

2x
P4
@8
00
M
Hz

P4
@2
.8G

Hz

P3
@1
.1G

Hz

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11

N of Processors

T
im

e
(s

ec
s)

Experim 1
Experim 2
Upper Bound
Lower Bound

REJECTED

44

Outline

Motivating ...
high-level programming for the grid
application adaptivity for the grid

ASSIST basics & adaptivity in ASSIST
mechanisms
demo & some experiments

Components & QoS
autonomic managers
QoS contracts

Concluding remarks
46

46

// progr. & the grid

concurrency exploitation, concurrent activities set up,
mapping/scheduling, communication/synchronization
handling and data allocation, ...
manage resources heterogeneity and unreliability,
networks latency and bandwidth unsteadiness, resources
topology and availability changes, firewalls, private
networks, reservation and jobs schedulers, ...

47

... and a non trivial QoS for applications
not easy leveraging only on middleware

D. Gannon et al. opened the way (GrADS@Rice)

47

ASSIST idea

“moving most of the Grid
specific efforts needed
while developing high-

performance Grid
applications from

programmers to grid tools
and run-time systems”

48

Grid

Abstact

Machine

Application Manager (AM)

(non functional aspects & QoS control)

ASSIST components
(interoperability towards other comp. models)

Abstraction of the basic services:

resource management & scheduling,

monitoring, ...

standard middleware

(TCP/IP, Globus, WS, CCM, ...)

Applications

ASSIST is a high-level programming environment for grid-aware // applications.
Developed at Uni. Pisa within several national & EU projects.

First version in 2001. Open source under GPL.

48

49 7

input output

Sequential or
parallel module

Typed streams
of data items

Programmable, possibly
nondeterministic input behaviour

app = graph of modules

P1
P2 P3

P4

49

50 7

native + standards

P1
P2 P3

P4

ASSIST native or wrap
(MPI, CORBA, CCM, WS)

TCP/IP, Globus,
IIOP CORBA,
HTTP/SOAP

50

51

VP VP

VP VP

VP VP

ASSIST parmod

51

51

VP VP

VP VP

VP VP

An “input
section” can be
programmed in
a CSP-like way

ASSIST parmod

51

51

VP VP

VP VP

VP VP

An “input
section” can be
programmed in
a CSP-like way

Data items can be
distributed (scattered,

broadcasted,
multicasted) to a set of

Virtual Processes
which are named
accordingly to a

topology

ASSIST parmod

51

51

VP VP

VP VP

VP VP

An “input
section” can be
programmed in
a CSP-like way

Data items can be
distributed (scattered,

broadcasted,
multicasted) to a set of

Virtual Processes
which are named
accordingly to a

topology

Data items partitions
are elaborated by
VPs, possibly in

iterative way

while(...)
 forall VP(in, out)
 barrier

data is logically shared by
VPs (owner-computes)

ASSIST parmod

51

51

VP VP

VP VP

VP VP

An “input
section” can be
programmed in
a CSP-like way

Data items can be
distributed (scattered,

broadcasted,
multicasted) to a set of

Virtual Processes
which are named
accordingly to a

topology

Data items partitions
are elaborated by
VPs, possibly in

iterative way

while(...)
 forall VP(in, out)
 barrier

data is logically shared by
VPs (owner-computes)

Data is eventually
gathered accordingly to

an user defined way

ASSIST parmod

51

51

VP VP

VP VP

VP VP

An “input
section” can be
programmed in
a CSP-like way

Data items can be
distributed (scattered,

broadcasted,
multicasted) to a set of

Virtual Processes
which are named
accordingly to a

topology

Data items partitions
are elaborated by
VPs, possibly in

iterative way

while(...)
 forall VP(in, out)
 barrier

data is logically shared by
VPs (owner-computes)

Data is eventually
gathered accordingly to

an user defined way

Easy to express
standard paradigms
(skeltons), such as

farm, deal, haloswap,
map, apply-to-all,

forall, ...

ASSIST parmod

51

parmod implementation

52 10

input
manager

VP VP

VP manager (VPM)

VP VP

VP manager (VPM)

input
manager

VP VP

VP manager (VPM)

processes VP Virtual Processes

52

Compiling & running

53

QoS
contract

ASSIST
program

ASSIST
compiler

resource
description

XML

executable
code

(linux, mac,
M$win)

launch

query new
resources

re
co

n
f

co
m

m
an

d
s

Managers

AM+MAMs

Grid execution

agent (GEA)

ISM OSM

VPM

seqseq

Network of processes

Run

53

Application adaptivity

54

Adaptivity aims to dynamically control
program configuration (e.g. parallel degree)
and mapping

for performance (high-performance is a natural sub-
target)
for fault-tolerance (enable to cope with unsteadiness
of resources, and some kind of faults)

54

Adaptivity recipe (ingredients)

1. Mechanism for adaptivity
reconf-safe points

in which points a parallel code can be safely reconfigured?

reconf-safe point consensus
different parallel activities may not proceed in lock-step fashion

add/remove/migrate computation & data
2. Managing adaptivity

QoS contracts
Describing high-level QoS requirement for modules/applications

“self-optimizing” modules/components
under the control of an autonomic manager

55
55

Mechanisms

At parmod level
add/remove/migrate VPs
very low-overhead due to knowledge coming from high-level
semantics + suitable compiling tools

At component level
create/destroy/wire/unwire parallel entities
medium/large overhead due to underlying API for staging,
run, ...

Not addressed in this talk (see references in the paper:
Europar 05, ParCo 05, ...), I just show a short demo

56
56

adaptivity: a working ex.

57

VP VP

ISM OSM

MAM

VP
VPM

VP VP
VPM

data

VP

data

18

57

adaptivity: a working ex.

57

VPM

VP VP

ISM OSM

MAM

VP
VPM

VP VP
VPM

data

VP

data

1. Gexec(newPE, VPM)

18

57

adaptivity: a working ex.

57

VPM

VP VP

ISM OSM

MAM

VP
VPM

VP VP
VPM

data

VP

data

1. Gexec(newPE, VPM)

2. acquire consensus

18

57

adaptivity: a working ex.

57

VPM

VP

ISM OSM

MAM

VP
VPM

VP VP
VPM

data

VP VP

data

1. Gexec(newPE, VPM)

2. acquire consensus

3. move VP and data

Only 3. is in the critical path 18

57

overhead? (mSecs)

59

!"# $"#

%&#

#'#

!"!#!$%&'("!)*+$#!("&+*",&-.&/0,1

!"# $"#

#'#

%&#

!"# $"#

%&#

#'#

%&#

2+('3,,

("&/04

!"$%&'("!)*+$#!("&+*",&-.56&/0,1

$"$%7832%$" 9:9

;:9&-<!==%3>$+31!"#$%&'()*#'(&"$'

"33=&6&/0 /04

+,-.'/0-12$3*#'(&"$'

343'*#3

2$+<(=&+3$'?3,&$
+3'("@A,$@3&2(!"#

+3'("@B&%$#3"'7

+3'("@B&#!<3

<("!#(+

#!<3

C$*"'?-D/9E/041 $'.

4("5*6%2",%(*#'(&"$'

D/,&$+3
+3=!,#+!F*#3=

G?3&"3>&2+('3,,
'("#$'#,&#?3&9:9

Fig. 2. Reconfiguration dynamics and metrics.

TCP/IP or Globus provided communication channels. The two applications are
composed by one parmod and two sequential modules. The first is a data-parallel
application receiving a stream of integer arrays and computing a forall of sim-
ple function for each stream item; the matrix is stored in the parmod shared
state. The second is a farm application computing a simple function on different
stream items. Since Rt also depends on sequential function cost, in both cases
we choose sequential functions with a close to zero computational cost in order
to evaluate mechanism on the finest possible grain.

The reconfiguration overhead (Ro) measured during our experiments, with-
out any reconfiguration change actually performed, is practically negligible, re-
maining under the limit of 0,004%, the measurement of the other two metrics
are reported in Table 1.

Notice that in the case of a data-parallel parmod, Rl grows linearly with
(x + y) for the reconfiguration x → y for both kinds of reconf-safe points, and
depends on shared state size and mapping. Farm parmod cannot be reconfigured
on-barrier since it has no barrier, and achieves a negligible Rl (below 10−3 ms).
This is due to the fact that no processes are stopped in the transition from one
configuration to the next. Rt, which includes both the protocol cost and time to
reach next reconf-safe point, grows linearly with (x + y) for the former cost and
heavily depends on user-function cost for the latter.

parmod kind Data-parallel (with shared state) Farm (without shared state)

reconf. kind add PEs remove PEs add PEs remove PEs

of PEs involved 1→2 2→4 4→8 2→1 4→2 8→4 1→2 2→4 4→8 2→1 4→2 8→4

Rl on-barrier 1.2 1.6 2.3 0.8 1.4 3.7 – – – – – –
Rl on-stream-item 4.7 12.0 33.9 3.9 6.5 19.1 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Rt 24.4 30.5 36.6 21.2 35.3 43.5 24.0 32.7 48.6 17.1 21.6 31.9

Table 1. Evaluation of reconfiguration overheads (ms). On this cluster, 50 ms are
needed to ping 200KB between two PEs, or to compute a 1M integer additions.

GrADS papers reports overhead in the order of hundreds of seconds (K. Kennedy et al.
2004), this is mainly due to the stop/restart behavior, not to the different running env.

19

59

Autonomic Computing

AC emblematic of a vast hierarchy of self-
governing systems, many of which consist
of many interacting, self-governing
components that in turn comprise a number
of interacting, self-governing components at
the next level down.
IBM “invented” it in 2001 (control with self-
awareness, from human body autonomic
nervous system)

self-optimization, self-healing, self-
protection, self-configuration = self-
management

control loop, of course, exists from mid of
last century

60

Managed elements (MAMs)

Monitor

Analyze Plan

 ExecuteKwowledge

Autonomic Manager (AM)

M4

M2
M1

M3

60

Autonomic behavior

61

Monitor Plan

Execute

Analyze
broken
contract

next
configuration

QoS data

Managed element
(module, component)

monitor: collect execution stats: machine load, VPM service time, input/output
queues lenghts, ...
analyze: instanciate performance models with monitored data, detect broken
contract, in and in the case try to indivituate the problem
plan: select a (predefined or user defined) strategy to reconvey the contract to valid
status. The strategy is actually a list of mechanism to apply.
execute: leverage on mechanism to apply the plan

61

Autonomic behavior

61

Monitor Plan

Execute

Analyze
broken
contract

next
configuration

QoS data

Managed element
(module, component)

monitor: collect execution stats: machine load, VPM service time, input/output
queues lenghts, ...
analyze: instanciate performance models with monitored data, detect broken
contract, in and in the case try to indivituate the problem
plan: select a (predefined or user defined) strategy to reconvey the contract to valid
status. The strategy is actually a list of mechanism to apply.
execute: leverage on mechanism to apply the plan

Autonomic behavior as
been included in NGG2/3

(Next Generation Grid) EU
founding recommendation

as prerequisite for Grid
computing

61

ASSIST & components

62

P1 P2

P3

P4

62

ASSIST & components

62

P1 P2

P3

P4

ASSIST graphs can be enclosed in components

ASSIST

native

62

ASSIST & components

62

P1 P2

P3

P4

ASSIST graphs can be enclosed in components
they can be wired one another

P1 P2

P3

P4

ASSIST

native

ASSIST

native

62

ASSIST & components

62

P1 P2

P3

P4

ASSIST graphs can be enclosed in components
they can be wired one another
they may used to wrap sequential or parallel
code (e.g. MPI)

P1 P2

P3

P4

ASSIST

native

ASSIST

native

wrap (e.g. MPI)

62

ASSIST & components

62

P1 P2

P3

P4

ASSIST graphs can be enclosed in components
they can be wired one another
they may used to wrap sequential or parallel
code (e.g. MPI)
they can be wired to other legacy components
(e.g. CCM)

P1 P2

P3

P4

ASSIST

native

ASSIST

native

wrap (e.g. MPI)

other component
models (e.g. CCM)

62

ASSIST & components

62

P1 P2

P3

P4

ASSIST graphs can be enclosed in components
they can be wired one another
they may used to wrap sequential or parallel
code (e.g. MPI)
they can be wired to other legacy components
(e.g. CCM)
currently native component model, already
converging in the forthcoming GCM (authors
involved in CoreGRID NoE, WP3)

P1 P2

P3

P4

ASSIST

native

ASSIST

native

wrap (e.g. MPI)

other component
models (e.g. CCM)

62

managed components

modules and components are controlled by managers
managers implements NF-ports

63

M4M3

M1 M2

ASSIST stream

component
functional
interaction
(e.g. RPC)

provided
port

component a component b

component c

NF port

NF port NF port

MAM4
MAM3

AM

CAMa

MAM4

CAMc

CAMb

MAM2

63

managed components

modules and components are controlled by managers
managers implements NF-ports

63

M4M3

M1 M2

ASSIST stream

component
functional
interaction
(e.g. RPC)

provided
port

component a component b

component c

NF port

NF port NF port

MAM4
MAM3

AM

CAMa

MAM4

CAMc

CAMb

MAM2

MAM
4

MAM
3

AM

CAM
a

MAM
4

CAM
c

CAM
b

MAM
2

63

managed components

modules and components are controlled by managers
managers implements NF-ports
the distributed coordination of managers enable the managing of the
application as whole (the top manager being the Application Manager)

63

M4M3

M1 M2

ASSIST stream

component
functional
interaction
(e.g. RPC)

provided
port

component a component b

component c

NF port

NF port NF port

MAM4
MAM3

AM

CAMa

MAM4

CAMc

CAMb

MAM2

MAM
4

MAM
3

AM

CAM
a

MAM
4

CAM
c

CAM
b

MAM
2

63

QoS contract
(of the experiment I’ll show you in a minute)

64

Perf. features QLi (input queue level), QLo (input queue
level), TISM (ISM service time), TOSM

(OSM service time), Nw (number of VPMs),
Tw[i] (VPMi avg. service time), Tp (parmod
avg. service time)

Perf. model Tp = max{TISM ,
∑n

i=1
Tw[i]/n, TOSM},

Tp < K (goal)

Deployment arch = (i686-pc-linux-gnu ∨ powerpc-apple-
darwin*)

Adapt. policy goal based

64

experiment: stateless farm

Input stream pressure
VPMs aggregated power

N. of VPMs in parmod

QoS contract

 50

 200 180 160 140 120

Wall Clock Time (s)

 20 100

 2
 4
 6
 8

 10

 2
 4
 6
 8

 80 60 40

F
ill

 %
It

e
m

s/
s

N
.

o
f

V
P

M
s

 100

 0
Input stream queue fill level

contract:
keep a given service time
contract change along the run

65
65

Experimenting heterogeneity

66

0

1,500

3,000

4,500

6,000

A B C D
Platforms

D
35%

C
24%

B
30%

A
11%

A B C D

Bo
go

M
IP

S

P4@2.5GHz P4@2GHz P4@2.8GHzP3@868MHz
Expected work
balance among

platforms

66

mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz

Experimenting heterogeneity

66

0

1,500

3,000

4,500

6,000

A B C D
Platforms

D
35%

C
24%

B
30%

A
11%

A B C D

Bo
go

M
IP

S

P4@2.5GHz P4@2GHz P4@2.8GHzP3@868MHz
Expected work
balance among

platforms

Not only Intel+linux: similar experiments has been run on Linux, Mac,
Win, and a mixture of them

66

mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz

Data-par experiment (STP)

 6
 3
 0

 80%
 40%
 0%

 0 400 350 300 250 200 150 100 50

 400

 300

 200

 100
 0

25%

25%25%

25%
36%

22%

31%

11%

51%

1%

41%

8%
35%

23%

32%

11%

Time (iteration no.)

Iteration time

Relative Unbalance

A

D

C

B

67

Distribution of load among platforms (n. of VPs)

67

Conclusions 1/2

68

Application adaptivity in ASSIST
complex, but trasparent (no burden for the
programmers)

they should just define they QoS requirements

QoS models are automatically generated from program structure (and don’t
depend on seq. funct.)

dynamically controlled, efficiently managed
catch both platforms unsteadiness and code irregular behavior in running
time

performance models not critical, reconfiguration does not stop the
application

key feature for the grid

68

Conclusions 2/2

ASSIST cope with
grid platform unsteadiness
interoperability with standards

and rely on them for many features

high-performance
app deployment problems on grid

private networks, job schedulers, firewalls, ...

QoS of the whole application through hierarchy of
managers

69
69

Thank you

ASSIST is open source under GPL
http://www.di.unipi.it/Assist.html

70

http://www.di.unipi.it/Assist.html
http://www.di.unipi.it/Assist.html

