

Chapter 9: Virtual MemoryChapter 9: Virtual Memory

9.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

De la mémoire vers la mémoire virtuelleDe la mémoire vers la mémoire virtuelle

 So far: various memory management strategies

 Keep many processes in memory → multiprogramming

 Require that the entire process is in memory

 Virtual memory allows the execution of a process not completely in

memory

 Programs >> main memory size

 Abstracts main memory into extremely large uniform array

 Allows processes to share files, to implement shared memory

9.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Chapter 9: Virtual MemoryChapter 9: Virtual Memory

1. Background

2. Demand Paging

3. Copy-on-Write

4. Page Replacement

5. Allocation of Frames

6. Thrashing

7. Memory-Mapped Files

8. Allocating Kernel Memory

9. Other Considerations

10. Operating-System Examples

Objectives:

To describe the benefits of a

virtual memory system

To explain the concepts of

demand paging, page-

replacement algorithms, and

allocation of page frames

To discuss the principle of the

working-set model

9.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

1. Background1. Background

 Memory management (previous chapter)

 Instruction being executed must be in physical memory

 Place the entire logical memory in physical memory

 Dynamic loading may help

 Special precaution / extra work

 Seems necessary & reasonable

 Unfortunate

 Limits the size of a program

 Entire program is not needed in many cases:

 Code for unusual error condition

 Array / lists allocate more memory than needed

 Some options / features rarely used

9.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Background (cont)Background (cont)

 Benefits

 No constraint by the limit of the physical memory

 More programs could be run at the same time

 Increase in CPU utilization, throughput

 Same response time or turnaround

 Less I/O to load/swap each user program / run faster

9.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Background (cont)Background (cont)

 Virtual memory – separation of user logical memory from

physical memory.

 Only part of the program needs to be in memory for execution

 Logical address space can therefore be much larger than

physical address space

 Programming task much more easier

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

9.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Virtual Memory That is Larger Than Physical MemoryVirtual Memory That is Larger Than Physical Memory

9.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Virtual Address SpaceVirtual Address Space

 Refers to the logical view of how a process is

stored in memory

 In fact physical memory may be organized in

page frames

 Pages frames may be assigned to a process in

a non contiguous way

 The MMU maps logical pages to physical pages

 Hole (sparse address space) is part of the

virtual address space

 Require physical addresses only if the

heap/stack grows

 Allows also sharing of files, memory, process

creation, libraries

9.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Shared Library Using Virtual MemoryShared Library Using Virtual Memory

Mapped Read only

9.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

2. Demand Paging2. Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed → reference to it

 Invalid reference → abort

 Not-in-memory → bring to memory

 Lazy swapper – never swaps a page into memory unless

page will be needed

 Swapper that deals with pages is a pager

9.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Transfer of a Paged Memory to Contiguous Disk SpaceTransfer of a Paged Memory to Contiguous Disk Space

9.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Basic conceptBasic concept

 Pager “guesses” which pages will be used before the process is

swapped out again

 Need support to distinguish between the pages that are

 In memory

 On the disk

9.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Valid-Invalid BitValid-Invalid Bit

 With each page table entry, a valid–invalid bit is associated
(v → in-memory, i → not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry

 is i → page fault

v

v

i

v

i

i

i

….

Frame # valid-invalid bit

page table

9.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page Table When Some Pages Are Not in Main Page Table When Some Pages Are Not in Main

MemoryMemory

 Page marked invalid has no effect

if the process never attempts to

access that page

 If we guess right, the process will

run exactly as though we have

brought in all pages

 While pages are memory

resident, execution proceeds

normally

9.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page FaultPage Fault

 If there is a reference to a page, first reference to that
page will trap to operating system:

 page fault

1. Operating system looks at another table to decide:

 Invalid reference → abort process

 Just not in memory → page it in

2. Get empty frame

3. Swap page into frame

4. Update page table: set validation bit = v

5. Restart the instruction that caused the page fault

Extreme case: start executing a process with no page in memory

 pure demand paging

9.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page Fault (Cont.)Page Fault (Cont.)

 Restart instruction

 Must save the state of the interrupt process

 restart the process in exactly the same place

 If page fault when writing result, restart the whole instruction

 Problems, for instance with block move

 Solution: check locations before start or use registers

Some programs could access several new pages of memory with each

instruction execution

 poor performance

 locality of reference results in reasonable performance from demand paging

9.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Steps in Handling a Page FaultSteps in Handling a Page Fault

9.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Performance of Demand PagingPerformance of Demand Paging

 Page fault rate 0 ≤ p ≤ 1

 if p = 0, no page faults

 if p = 1, every reference is a fault

 Effective Access Time (EAT)

EAT = (1 – p) x (memory access time)

+ p x (page fault overhead

 + swap page out

 + swap page in

 + restart overhead)

9.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Demand Paging ExampleDemand Paging Example

 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p x (8 milliseconds)

 = (1 – p) x 200 + p x 8,000,000

 = 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then

 EAT = 8.2 microseconds.

 This is a slowdown by a factor of 40!

 Performance degradation < 10%

 → p < 0.0000025

9.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Process CreationProcess Creation

 Virtual memory allows other benefits during process creation:

 Copy-on-Write

 Memory-Mapped Files (later)

 fork() system call creates a child process as a duplicate of its parent

 Many child call exec() system call immediately after creation

 Unnecessary code copy… waste of time

9.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

3. Copy-on-Write3. Copy-on-Write

 Copy-on-Write (CoW) allows both parent and child processes to

initially share the same pages in memory

If either process modifies a shared page, only then is the page

copied

 Only pages that can be modified are marked CoW (not the

code)

 CoW allows more efficient process creation as only modified pages

are copied

 Free pages are allocated from a pool of zeroed-out pages

9.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Before Process 1 Modifies Page CBefore Process 1 Modifies Page C

Copy of

page C

After Process 1 Modifies Page CAfter Process 1 Modifies Page C

1

1

2

2

9.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

What happens if there is no free frame?What happens if there is no free frame?

 Page replacement – find some page in memory, but not

really in use, swap it out

 algorithm

 performance – want an algorithm that will result in

minimum number of page faults

 Same page may be brought into memory several times

9.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

4. Page Replacement4. Page Replacement

 Prevent over-allocation of memory by modifying page-fault

service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers –

only modified pages are written to disk

 Page replacement completes separation between logical

memory and physical memory – large virtual memory can be

provided on a smaller physical memory

 Need

 Frame allocation algorithm

 Page replacement algorithm

9.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Need For Page ReplacementNeed For Page Replacement

9.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Basic Page ReplacementBasic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

 - If there is a free frame, use it

 - If there is no free frame, use a page replacement

algorithm to select a victim frame

3. Bring the desired page into the (newly) free frame;

update the page and frame tables

4. Restart the process

9.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page ReplacementPage Replacement

9.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page Replacement AlgorithmsPage Replacement Algorithms

 Want lowest page-fault rate

 Evaluate algorithm by running it on a particular

string of memory references (reference string) and

computing the number of page faults on that string

 In all our examples, the reference strings are

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

and

 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

9.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Graph of Page Faults Versus The Number of FramesGraph of Page Faults Versus The Number of Frames

9.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

First-In-First-Out (FIFO) AlgorithmFirst-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

 4 frames ?

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

9.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

First-In-First-Out (FIFO) AlgorithmFirst-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

 4 frames

 Belady’s Anomaly: more frames → more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

FIFO Illustrating Belady’s AnomalyFIFO Illustrating Belady’s Anomaly

9.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

FIFO Page ReplacementFIFO Page Replacement

15 faults

9.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Optimal AlgorithmOptimal Algorithm

 Replace page that will not be used for longest period of time

 4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know this?

 Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5

9.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Optimal Page ReplacementOptimal Page Replacement

9 faults (vs 15 for FIFO)

9.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Least Recently Used (LRU) AlgorithmLeast Recently Used (LRU) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Counter implementation

 Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to

determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

9.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

LRU Page ReplacementLRU Page Replacement

12 faults (vs 15 for FIFO)

9.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

LRU Algorithm (Cont.)LRU Algorithm (Cont.)

 Stack implementation – keep a stack of page numbers in a double

link form:

 Page referenced:

 move it to the top

 requires 6 pointers to be changed

 No search for replacement

 Neither implementation (counter or stack) conceivable without

hardware support

 Interrupt to update clock or stack

 Slow every memory reference by a factor at least 10

 Overhead that cannot be tolerated

9.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Use Of A Stack to Record The Most Recent Page ReferencesUse Of A Stack to Record The Most Recent Page References

9.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

LRU Approximation AlgorithmsLRU Approximation Algorithms

 Reference bit
 With each page associate a bit, initially = 0

 When page is referenced bit set to 1

 Replace one that is 0 (if one exists)

 We do not know the order, however

 Additional reference bit
 Shift register to record reference bit periodically

 Second chance
 Need reference bit

 Clock replacement

 If page to be replaced (in clock order) has reference bit = 1 then:

 set reference bit 0

 leave page in memory

 replace next page (in clock order), subject to same rules

9.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Second-Chance (clock) Page-Replacement AlgorithmSecond-Chance (clock) Page-Replacement Algorithm

9.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Counting AlgorithmsCounting Algorithms

 Keep a counter of the number of references that have been

made to each page

 LFU Algorithm: replaces page with smallest count

(Least Frequently Used)

 MFU Algorithm: based on the argument that the page with

the smallest count was probably just brought in and has yet

to be used

(Most Frequently Used)

9.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

5. Allocation of Frames5. Allocation of Frames

 How do we allocate the fixed amount of free memory among the

various processes ?

 Each process needs minimum number of pages

 Example: IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 Two major allocation schemes

 fixed allocation

 priority allocation

9.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Fixed vs Priority AllocationFixed vs Priority Allocation

 Equal allocation – For example, if there are 100 frames and 5

processes, give each process 20 frames

 Proportional allocation – Allocate according to the size of process

 si = size of process pi , S = ∑ si

 m = total number of frames

 ai : number of frames allocated to pi : ai = (si / S) x m

 Example with m = 64, s1 = 10, s2 = 127:

• We obtain a1 = 5, a2 = 59

 Priority allocation – Use a proportional allocation scheme using

priorities rather than size

9.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Global vs. Local AllocationGlobal vs. Local Allocation

 Global replacement – process selects a replacement

frame from the set of all frames; one process can take a

frame from another

 Local replacement – each process selects from only its

own set of allocated frames

 With global replacement, a process cannot control its

own page fault behavior

 Priority allocation (cont): If process Pi generates a page fault,

 select for replacement one of its frames

 select for replacement a frame from a process with lower

priority number

9.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

6. Thrashing6. Thrashing

 If a process does not have “enough” frames, the page-fault rate is

very high. This leads to:

 low CPU utilization

 operating system thinks that it needs to increase the degree of

multiprogramming

 another process added to the system

 Thrashing = a process is busy swapping pages in and out

9.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Thrashing (Cont.)Thrashing (Cont.)

Limit the trashing by using local replacement algorithm / priority replacement :

 process trashing in paging queue most of the time access time will increase

We need to provide a process with as many frames as it needs

How do we know how many frames it “needs” ?

9.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Demand Paging and Thrashing Demand Paging and Thrashing

 Why does demand paging work?

Locality model

 Process migrates from one locality to another

 Localities may overlap

 Allocate enough frames to a process to accommodate its

current locality

 Why does thrashing occur?

 ∑ size of locality > total memory size

 Limit effects by using local or priority page replacement

9.49 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Locality In A Memory-Reference PatternLocality In A Memory-Reference Pattern

Locality model == unstated

principle behind several concepts

If accesses to any type of data

were random rather than

patterned, caching would be

useless…

9.50 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Working-Set ModelWorking-Set Model

 Δ = working-set window = a fixed number of page references

Example: 10,000 instructions

 WSSi (working-set size of process Pi) =

total number of pages referenced in the most recent Δ (varies in time)

 If Δ too small: will not encompass entire locality

 if Δ too large: will encompass several localities

 if Δ = ∞ : will encompass entire program

 D = ∑ WSSi = total demand frames

 If D > m: Thrashing

 Policy if D > m, then suspend one of the processes

9.51 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Working-set modelWorking-set model

9.52 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Keeping Track of the Working SetKeeping Track of the Working Set

 Approximate with interval timer + a reference bit

 Example: Δ = 10,000

 Timer interrupts every 5000 time units

 Keep in memory 2 bits for each page

 Whenever a timer interrupts: copy and set the values of all

reference bits to 0

 If one of the bits in memory = 1: page in working set

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time units

9.53 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page-Fault Frequency SchemePage-Fault Frequency Scheme

 Establish “acceptable” page-fault rate

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

9.54 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

7. Memory-Mapped Files7. Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine

memory access by mapping a disk block to a page in memory

 A file is initially read using demand paging. A page-sized

portion of the file is read from the file system into a physical

page. Subsequent reads/writes to/from the file are treated as

ordinary memory accesses.

 Simplifies file access by treating file I/O through memory rather

than read() write() system calls

 Also allows several processes to map the same file allowing the

pages in memory to be shared

9.55 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Memory Mapped FilesMemory Mapped Files

9.56 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Memory-Mapped Shared Memory in WindowsMemory-Mapped Shared Memory in Windows

9.57 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

8. Allocating Kernel Memory8. Allocating Kernel Memory

 Treated differently from user memory

 Often allocated from a free-memory pool

 Kernel requests memory for structures of varying sizes:

should limit waste due to fragmentation

 Some kernel memory needs to be contiguous

9.58 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Buddy SystemBuddy System

 Allocates memory from fixed-size segment consisting of

physically-contiguous pages

 Memory allocated using power-of-2 allocator

 Satisfies requests in units sized as power of 2

 Request rounded up to next highest power of 2

 When smaller allocation needed than is available, current

chunk split into two buddies of next-lower power of 2

 Continue until appropriate sized chunk available

 Pros and cons

 Coalescing to quickly combine adjacent buddies

 Rounding up to next highest power of 2 causes fragmentation

9.59 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Buddy System AllocatorBuddy System Allocator

9.60 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Slab AllocatorSlab Allocator

 Alternate strategy

 Slab is one or more physically contiguous pages

 Cache consists of one or more slabs

 Single cache for each unique kernel data structure

 Each cache filled with objects – instantiations of the data

structure

 When cache created, filled with objects marked as free

 When structures stored, objects marked as used

 If slab is full of used objects, next object allocated from empty slab

 If no empty slabs, new slab allocated

 Benefits include no fragmentation, fast memory request satisfaction

9.61 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Slab AllocationSlab Allocation

9.62 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

9. Other Issues – Prepaging9. Other Issues – Prepaging

 Prepaging

 To reduce the large number of page faults that occur at process

startup

 Prepage all or some of the pages a process will need, before they

are referenced (e.g., pages from working set)

 But if prepaged pages are unused, I/O and memory were wasted

 Assume s pages are prepaged and α of the pages are used

 Is cost of s x α saved pages faults greater or less than the cost

of prepaging s x (1- α) unnecessary pages?

 α close to zero (resp. one): prepaging loses (resp. win)

9.63 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Other Issues – Page SizeOther Issues – Page Size

 Page size selection must take into consideration:

 fragmentation

 table size

 I/O overhead (latency + transfer rate)

 locality

 number of page faults

9.64 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Other Issues – TLB Reach Other Issues – TLB Reach

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB

 Otherwise there is a high degree of page faults

 Increase the Page Size

 This may lead to an increase in fragmentation as not all

applications require a large page size

 Provide Multiple Page Sizes

 This allows applications that require larger page sizes the

opportunity to use them without an increase in

fragmentation

9.65 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Other Issues – Program StructureOther Issues – Program Structure

 Program structure

 Int[128,128] data;

 Each row is stored in one page

 Program 1

 for (j = 0; j <128; j++)

 for (i = 0; i < 128; i++)

 data[i,j] = 0;

 128 x 128 = 16,384 page faults

 Program 2

 for (i = 0; i < 128; i++)

 for (j = 0; j < 128; j++)

 data[i,j] = 0;

128 page faults

9.66 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Other Issues – I/O interlockOther Issues – I/O interlock

 I/O Interlock – Pages must sometimes be locked into

memory

 Consider I/O - Pages that are used for copying a file

from a device must be locked from being selected for

eviction by a page replacement algorithm

9.67 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Reason Why Frames Used For I/O Must Be In MemoryReason Why Frames Used For I/O Must Be In Memory

9.68 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

10a. Windows XP10a. Windows XP

 Uses demand paging with clustering. Clustering brings in

pages surrounding the faulting page.

 Processes are assigned working set minimum (50) and

working set maximum (345)

 Working set minimum is the minimum number of pages the

process is guaranteed to have in memory

 A process may be assigned as many pages up to its working

set maximum

 When the amount of free memory in the system falls below a

threshold, automatic working set trimming is performed to

restore the amount of free memory

 Working set trimming removes pages from processes that

have pages in excess of their working set minimum

10. Operating System Examples10. Operating System Examples

9.69 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

10b. Solaris 10b. Solaris

 Maintains a list of free pages to assign faulting processes

 lotsfree – threshold parameter (amount of free memory) to begin

paging (1/64 of the size of the physical memory)

 desfree – threshold parameter to increasing paging

 minfree – threshold parameter to begin swapping

 Paging is performed by pageout process

 pageout scans pages using modified clock algorithm

 scanrate is the rate at which pages are scanned. This ranges from

slowscan to fastscan

 pageout is called more frequently depending upon the amount of

free memory available

9.70 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Solaris 2 Page ScannerSolaris 2 Page Scanner

9.71 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

RésuméRésumé

 Mémoire virtuelle: mapper un large espace d'adressage logique sur

une mémoire physique plus petite – permet de faire tourner des

gros processus, et d'augmenter le degré de multiprogrammation

 Pagination à la demande: table des pages, et faute de page si la

page n'est pas en mémoire; mettre la page en mémoire et relancer

l'instruction qui a provoqué la faute

 Remplacement de pages lorsque la mémoire est pleine; attention à

l'anomalie de Belady

 Politique d'allocation des cadres de page; remplacement local

(interne à un processus) ou global (avec priorité par exemple);

modèle du working-set pour éviter le thrashing

 Fichiers mappés en mémoire: accès fichier = accès mémoire

 Mémoire système: allocation buddy ou slab

9.72 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

ExercicesExercices

1. Demand-paged memory. Page table: in registers.

 * 8 millisec to service page fault if there is an empty page, or

the replaced page is not modified

 * 20 millisec if the replaced page is modified

 * Memory access time: 100 nanosec

 If the page to be replaced is modified 70% of the time, what is the

maximum acceptable page-fault rate for an effective access time

of no more than 200 nanosec?

2. What is the cause of thrashing? How does the system detect

thrashing? Once it detects thrashing, what can the system do to

eliminate this problem?

