
“bxh089” — 2005/4/19 — page 369 — #1

© The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org

doi:10.1093/comjnl/bxh089

Scheduling Skeleton-Based Grid
Applications Using PEPA and NWS

A. Benoit, M. Cole, S. Gilmore and J. Hillston

School of Informatics, The University of Edinburgh, James Clerk Maxwell Building,
The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK

Email: enhancers@inf.ed.ac.uk

Any scheduling scheme for grid applications must make implicit or explicit assumptions about both
the future behaviour of the application and the future availability and performance of grid resources.
This paper describes an approach in which the future application behaviour is constrained by the
use of algorithmic skeletons, facilitating modelling with a performance oriented process algebra,
and future grid resource performance is predicted by the Network Weather Service (NWS) tool.
The concept is illustrated through a case study involving Pipeline and Deal skeletons. A tool is
presented which automatically generates and solves a set of models which are parameterised with
information obtained from NWS. Some numerical results and timing information on the use of the

tool are provided, illustrating the efficacy of this approach.

Handling Editor: Nigel Thomas

Received 29 June 2004; revised September 22, 2004

1. INTRODUCTION

Grid frameworks [1, 2] have enormous potential to provide
significant quantities of computational power and storage for
meeting the needs of today’s most demanding computational
tasks. Structured parallel programming languages are very
valuable tools to deploy when programming in an envir-
onment such as a computational grid. The design of the
language rules out problems such as deadlocks and process
starvation which are faced by parallel application developers
when working with low-level parallelism. One productive
approach to high-level structured parallel programming is to
use algorithmic skeletons [3] to structure the creation and
configuration of processes. In this approach, the skeletons
add expressive power to the programming language used for
sequential computing blocks and expedite the development
of complex parallel applications by providing generic and
parametric parallel processing constructs to complement the
loop constructs and conditional statements which are used in
sequential computation.

Algorithmic skeletons successfully address the challenges
of grid computation. In response to the changing work-
load on servers, or due to the sudden non-availability
because of software or hardware problems, the application
can be restructured to use an alternative implementation
skeleton or there can be a simple re-evaluation of the
parameters of the skeleton currently in use. Typically
such resilience to operational faults is not found in low-
level parallel programming methods and is one of the
strengths of a structured approach to parallel programming.

Furthermore, skeletons allow the programmer to provide
explicit information about the future interaction structure of
the application, which would be difficult or even impossible
to derive statically from an equivalent unstructured program
source.

The ability to reconfigure and redeploy an application on-
the-fly would be used even more effectively if the future load
on the available servers could be estimated with reasonable
accuracy. The Network Weather Service (NWS) [4] provides
us with these estimates. Analogous with meteorological
climate prediction, a short-range forecast is made on the basis
of a record of recent activity. Perfect forecasting of future
loads is, of course, not possible, but in the experience of
the users of the NWS, its predictions turn out more often
useful than misleading so scheduling decisions based on
NWS information can be very useful ones.

The detailed implementation and scheduling of the
programmer selected skeletons is decided automatically
according to the evaluation of performance models seeded
with rate information obtained from the NWS. In this work,
we use the algorithmic skeletons from Cole’s eSkel library [5]
and our performance models of these algorithmic skeletons
are expressed in Hillston’s Performance Evaluation Process
Algebra (PEPA) [6]. A range of tools is available to solve
PEPA models. We have extended and applied some of them
in the present work.

In the next section, we present the principle of the Pipeline
and Deal skeletons, which we use as a case study. A model
of these skeletons is proposed in Section 3. In Section 4
we present a tool which automatically determines the best

The Computer Journal Vol. 48 No. 3, 2005

“bxh089” — 2005/4/19 — page 370 — #2

370 A. Benoit et al.

...

FIGURE 1. The pipeline application.

...

.
.
.

FIGURE 2. Pipeline and deal.

mapping to use for the application, by first generating a set
of models, then solving them and comparing their results.
Some numerical results are provided in Section 5. Finally,
we give some conclusions.

2. PIPELINE AND DEAL SKELETONS

Many parallel algorithms can be characterized and classified
by their adherence to one or more of a number of generic
algorithmic patterns. A skeleton [3, 7, 8] is a programming
construct which abstracts such a pattern of processes and
interactions. The programmer invokes one or more skeletons
to describe the structure of a program, specializing each with
types and operations from the application domain. The code
handling the interaction and invocation of the domain specific
operations is inherited implicitly from the chosen skeleton.
In this paper we review the concept of Pipeline parallelism,
which has been successfully used in several applications, and
of the Deal skeleton, which is often used nested inside a
Pipeline skeleton.

2.1. Pipeline

In the simplest form of Pipeline parallelism [9], a sequence
of Ns stages processes a sequence of inputs to produce a
sequence of outputs(Figure 1). All inputs pass through each
stage in the same order, with the processing of a particular
input beginning as soon as its predecessor has left the first
stage. It is noteworthy that parallelism is introduced by
overlapping the processing of many input instances. Indeed,
it is quite normal for the processing time of each individual
input to be increased by pipelining. Performance benefits
accrue when many such instances are processed concurrently
across the pipeline.

2.2. Deal

It is evident that the performance of a pipeline is constrained
by the processing time of its slowest stage. This may be
improved by exploiting parallelism within, as well as
between, stages. A simple approach is to implement the stage
with several processors which take turns to accept inputs from
the incoming stream, returning results to the output stream

in the same order. In this manner, the slow processing time
of all but the first input can be masked by this intra-stage
parallelism (Figure 2). The Deal skeleton [5] abstracts this
pattern. The name is chosen for its analogy with the process
of dealing out a pack of cards (inputs) in strict rotation to a
collection of players (stage internal processors). In our model
there are Nws workers for a given Deal skeleton s.

From the application programmer’s perspective, it is
important to note that this approach is only valid for stateless
stage computations. If the stage maintains and updates states
from one input to the next, a more sophisticated internal
parallelization strategy needs to be devised.

2.3. Context of the work

Considering both skeletons in the context of computational
grids, we could map them to our computing resources. We
have a set of processors, which may be different from one
another, but are interconnected by an heterogeneous network.

As noted above, pipelining performs most effectively when
the workload is well balanced across stages and there are
a large enough number of inputs to amortize the costs of
filling and draining the pipeline. Our work directly addresses
the first of these issues by facilitating exploration of the
stage-to-processor mapping space. It is the programmer’s
responsibility to tackle the second issue. Our approach
assumes that the system will reach an equilibrium behaviour
after running the application for a considerable time.

3. PEPA MODEL OF SKELETONS

In this section, we present our approach to modelling the
Pipeline and Deal skeletons. The model is expressed in
PEPA [6]. We first briefly introduce PEPA. The Pipeline
and Deal skeletons can both be seen as particular cases of
a Deal nested within a Pipeline application. We, therefore,
present a generic model of Pipeline with Deal in Section 3.2.

3.1. Introduction to PEPA

The PEPA language provides a small set of combinators.
These allow language terms to be constructed, defining the
behaviour of components, via the activities they undertake

The Computer Journal Vol. 48 No. 3, 2005

“bxh089” — 2005/4/19 — page 371 — #3

Scheduling Skeleton-Based Grid Applications Using PEPA and NWS 371

and the interactions between them. Time information is
associated with each activity. Thus, when enabled, an
activity a = (α, r) will delay for a period sampled from
the negative exponential distribution which has parameter
r . If several activities are enabled concurrently, either
in competition or independently, we assume that a race
condition exists between them. The component combinators
used in the skeleton models, together with their names and
interpretations, are presented below.

Prefix. The basic mechanism for describing the behaviour
of a system is to give a component a designated first action
using the prefix combinator, denoted by a full stop. For
example, the component (α, r). S carries out activity (α, r),
which has action type α and an exponentially distributed
duration with parameter r , and it subsequently behaves as S.

Choice. The choice combinator captures the possibility of
competition between different activities. The component
P + Q represents a system which may behave either as P

or as Q—the activities of both are enabled. The first activity
to be completed distinguishes one of them: the other is
discarded. The system will behave as the derivative resulting
from the evolution of the chosen component.

Constant. It is convenient to be able to assign names to
patterns of behaviour associated with components. Constants
are components explained by a defining equation.

Cooperation. In PEPA direct interaction, or cooperation,
between components is the basis of compositionality. The
set used as the subscript for the cooperation symbol, the
cooperation set L, determines those activities on which
the co-operands are forced to synchronize. For action
types not in L, the components proceed independently and
concurrently with their enabled activities. However, an
activity whose action type is in the cooperation set cannot
proceed until both components enable an activity of that
type. The two components then proceed together to complete
the shared activity. The rate of the shared activity may be
altered to reflect the work carried out by both components to
complete the activity (for details see [6]). We write P ‖ Q

as an abbreviation for P ��
L

Q when L is empty.
In some cases, when an activity is known to be carried

out in cooperation with another component, a component
may be passive with respect to that activity. This means that
the rate of the activity is left unspecified (denoted �) and is
determined upon cooperation by the rate of the activity in the
other component. All passive actions must be synchronized
in the final model.

The dynamic behaviour of a PEPA model is represented
by the evolution of its components, as governed by the
operational semantics of PEPA terms (see [6]). Thus, as
in classical process algebra, the semantics of each term is
given via a labelled multi-transition system (the multiplicities
of arcs are significant). In the transition system a state
corresponds to each syntactic term of the language, or
derivative, and an arc represents the activity which causes

one derivative to evolve into another. The complete set of
reachable states is termed the derivative set and these form
the nodes of the derivation graph which is formed by the
exhaustive application of the semantic rules.

The derivation graph is the basis of the underlying
Continuous Time Markov Chain (CTMC) which is used to
derive performance measures from a PEPA model. The graph
is systematically reduced to a form so as to be treated as
the state transition diagram of the underlying CTMC. Each
derivative is then a state in the CTMC. The transition rate
between two derivatives P and Q in the derivation graph
is the rate at which the system changes from behaving as
component P to behaving as Q. It is the sum of the activity
rates and labelling arcs connecting node P to node Q.

It is important to note that in our models the estimated
duration of tasks, etc. is represented as random variables, not
as constant values. These random variables are exponentially
distributed. Repeated samples from the distribution will
follow the distribution and conform to the mean but individual
samples may potentially take any positive value.

3.2. Model of pipeline with deal

To model a Pipeline application we split the problem into the
stages, the processors and the network. Some of the stages
can then be modelled as Deal skeletons.

The stages. The first part of the model is the application
model, which is independent of the resources on which the
application will be computed. The application consists of
Ns stages, which are each modelled by a PEPA component
Stages (s = 1, . . . , Ns).

When Stages is not a Deal, it executes sequentially. As its
first activity, it obtains data (activity moves), then processes it
(activity processs,1) and finally moves the processed data to
the next stage (activity moves+1). In the processs,1 activity,
the 1 in the index denotes the first (and only) worker for this
stage (i.e. the number of workers for the stage s is Nws = 1).
The second subscript will play a more important role in
Deal, when there may be many workers. The definition is
in Figure 3a.

All the rates are unspecified and denoted by the
distinguished symbol �, since the processing and move times
depend on the resources on which the application is running.
These rates will be defined later in another part of the
model.

When Stages is a Deal, we consider that we have Nws

workers which have to process a sequence of inputs. In
our model, we enforce cyclic allocation of inputs to workers
by introducing, for each Deal, a Sourcecomponent and a
Sink component which interface between the Deal workers
and the moveactions which link this stage to its pipeline
neighbours. Each worker i ∈ {1, . . . , Nws} first gets an
input from the source with an inputs,i action, processes it
(processs,i) then transfers its output to the sink (outputs,i).

We obtain the definitions Sources , Sinks and Workers,i
from Figure 3b, where the workers are defined as i =
1, . . . , Nws . All the workers are independent, and they

The Computer Journal Vol. 48 No. 3, 2005

“bxh089” — 2005/4/19 — page 372 — #4

372 A. Benoit et al.

a. Stage without Deal

Stages
def= (moves , �).(processs,1, �).(moves+1, �).Stages

b. Stage with Deal

Sources
def= (moves , �).(inputs,1, �).

(moves , �).(inputs,2, �).

. . .

(moves , �).(inputs,Nws
, �).Sources

Workers,i
def= (inputs,i , �).(processs,i , �).(outputs,i , �).Workers,i

Sinks
def= (outputs,1, �).(moves+1, �).

(outputs,2, �).(moves+1, �).

. . .

(outputs,Nws
, �).(moves+1, �).Sinks

Stages
def= Sources ��

LIs

(
Workers,1 || . . . || Workers,Nws

) ��
LOs

Sinks

c. The Pipeline application

Pipeline
def= Stage1 ��

{move2} Stage2 ��
{move3} · · · ��

{moveNs
} StageNs

d. The processors

Processors
def= Processor1 || Processor2 || . . . || ProcessorNp

e. The network

Network
def= (move1, λ1).Network + . . . + (moveNs+1, λNs+1).Network

+ (inputs,1, λIs,1).Network + . . . + (inputs,Nws
, λIs,Nws

).Network
+ (outputs,1, λOs,1).Network + . . . + (outputs,Nws

, λOs,Nws
).Network

f. Overall model

Mapping
def= Network ��

Ln
Pipeline ��

Lp
Processors

FIGURE 3. PEPA definitions.

are synchronized with the source and the sink via the input
and outputactions. We define LIs = {inputs,i}i∈{1, ..., Nws }
and LOs = {outputs,i}i∈{1,...,Nws } in the Stages definition
(Figure 3b).

Once all the stages have been defined, the Pipeline
application is then a cooperation of the different stages
over the moves activities, for s = 2..Ns . The activities
move1 and moveNs+1 represent the arrival of an input into
the application and the transfer of the final output out of
the Pipeline, respectively. They do not represent any data
transfer between stages, so they are not synchronized within
the Pipeline application. As mentioned above, the rates on
the input and output actions are left unspecified. These will
be defined elsewhere in the model. The Pipeline definition
is in Figure 3c.

The processors. We consider that the application must
be mapped to a set of Np processors. Each worker is

implemented by a given (unique) processor, but a processor
may host several workers. In order to keep the model simple,
we put information about the processor (such as the load of the
processor or the number of stages being processed) directly
into the rate µs,i of the activities processs,i , for s = 1..Ns

and i = 1..Nws (these activities have been defined for the
components Stages). Each processor is then represented by a
PEPA component which has a cyclic behaviour, consisting of
sequentially processing inputs for a worker. Some examples
follow.

• In the case with no Deal, when Np = Ns , we map one
worker per processor:

Processori
def= (processi,1, µi,1). Processori

• If several workers are hosted by the same processor, we
use a choice composition. In the following example
(Np = 2, Ns = 2, and the first stage is a Deal with

The Computer Journal Vol. 48 No. 3, 2005

“bxh089” — 2005/4/19 — page 373 — #5

Scheduling Skeleton-Based Grid Applications Using PEPA and NWS 373

FIGURE 4. Principle of AMoGeT.

2 workers), the first processor processes the first worker
of both stages and the second processor processes
only the second worker of Stage 1 (so that Stage 1 is
distributed across two processors).

Processor1
def= (process1,1, µ1,1). Processor1

+ (process2,1, µ2,1). Processor1

Processor2
def= (process1,2, µ1,2). Processor2

Generally, since all processors are independent, the set
of processors is defined as a parallel composition of the
processor components (Figure 3d).

The network. Rather than directly representing the physical
structure of the underlying network architecture, our network
model is designed to allow us to derive the rates of the
logical communication actions (move, input, output) of our
Pipeline and Deal models from the NWS monitored physical
processor to processor latency information. Using λs for
the rate of a moves and λIs,i and λOs,i for the respective
rates of inputs,i and outputs,i activities, the definition of the
network is straightforward.

For example, assuming that only stage s is a Deal, we
obtain the definition from Figure 3e. If some other stages
are also modelled as Deals, we need to add their input and
output activities into the choice. The relationship between
NWS monitored information and the model’s rates is complex
and will be discussed in Section 4.4.

Pipeline with Deal. Once the different components of the
model have been defined, we just have to map the stages
onto the processors and the network by using the cooperation
combinator. Two cooperation sets are used. Ln synchronizes
the application and the network (it is the set of all the
move, inputand outputactivities), while Lp synchronizes the
application and the processors (it is the set of all the process
activities). The definition is in Figure 3f.

4. AMOGET: THE AUTOMATIC MODEL
GENERATION TOOL

In this section we present the tool AMoGeT, which
automatically generates and solves performance models for
the Pipeline with Deal case study. This provides information
which would allow the running grid application to be
profitably rescheduled.

We start with an overview of the tool, then describe the
inputs required and the principal functions of AMoGeT
(model generation, model solution and results comparison).

4.1. Overall description of AMoGeT

Figure 4 illustrates the principle of the tool. In its current
form, the tool is a generic analysis component. Its ultimate
role will be that of an integrated component of a run-
time scheduler and re-scheduler, adapting the mapping from
application to resources in response to changes in resource
availability and performance. The tool allows everything to
be done in a single step through a simple Perl script. On
initialization, it obtains information from the resources and
the network with the help of the NWS [4]. Some additional
information must be provided to the tool via some description
files(see below). The models are then generated and solved.
Finally, the tool compares the results.

4.2. Description files for AMoGeT

We must initially give the tool the names of the processors
which are to be used for the application. For this, we
provide a file named hosts.txt containing a list of the
IP addresses of the available computing resources. NWS
must run on each of these nodes, and secure shell access
must be allowed to gather some information about the
processors. The first processor on the list is called the
reference processor. All these processors are denoted in the
following by processor i, where i is their ranking in the list,
starting at 1 (the reference processor is processor 1).

Another file describes the modelled application. It is
named mymodel.des, where mymodel is the name of the
application. For a Pipeline skeleton, some information is
needed on the stages of the Pipeline: the number of stages Ns ,
and the average time trs , in seconds, required to compute one
output for stage s (s = 1, . . . , Ns) on the reference processor:

nbstage = Ns;tr1 = 10; tr2 = 2; . . .

The Deal skeleton can be defined in the same way, being in
effect a Pipeline with only one stage. The time is then the time
required to complete the work on the reference processor.

We also need to specify the size of the data transferred to
and from each stage, in bytes. For s = 1, . . . , Ns + 1, dss is
the size of the data transferred to stage s, with the boundary
case dsNs+1 which represents the size of the output data:

ds1 = 100; ds2 = 5; . . .

Finally we define a set of candidate mappings of stages
and workers to processors. Each mapping specifies where
the initial data is located, where the output data must be left
and (as a tuple) the processor where each stage is processed.
For example, the tuple (1, 1, 2) indicates that the two first

The Computer Journal Vol. 48 No. 3, 2005

“bxh089” — 2005/4/19 — page 374 — #6

374 A. Benoit et al.

stages are on processor 1, with the third stage on processor 2.
When a Deal is nested inside a particular stage, we should
indicate between brackets the processor of each worker. For a
2-stage Pipeline, the tuple (1, (1, 2, 3)) implies that the first
stage is on processor 1, and that 3 workers are processing
stage 2 on processors 1, 2 and 3, respectively. A mapping
is then of the form [input, tuple, output]. The mapping
definition is a set of mappings, it can be as follows:

mappings = [1, (1,2,3),3], [1, (1,2, (1,2)),2];
In this example, the first mapping is a standard Pipeline and
the second one is a Pipeline with a Deal (2 workers) nested
into the third stage.

4.3. Gathering information with the NWS

The NWS is a distributed system that periodically monitors
and dynamically forecasts the performance that various
network and computational resources can deliver over a
given time interval. The service operates a distributed set
of performance sensors (network monitors, CPU monitors,
etc.) from which it gathers readings of the instantaneous
conditions. It then uses numerical models to generate
forecasts of what the conditions will be for a given time
frame [4]. To run NWS, we only need to run a few scripts on
the nodes that we want to monitor. The required information
is obtained with the help of NWS sensors, which gather and
store (time stamp, performance measurements) pairs for a
specific resource. We can then obtain, in a direct manner,
information about the fraction of CPU available to a newly-
started process on each host, and the amount of time, in
milliseconds, required to transmit a TCP message between
two hosts. We denote by avi the fraction of CPU available on
the processor i, and by lai,j the latency of a communication
from processor i to processor j (ms) for a message size of
1 byte.

Some additional information is required to evaluate the
computing power of each processor. For this, we obtain the
frequency of each CPU in MHz by reading this information
from the file /proc/cpuinfo, using a secure shell
connection to each host (thus limiting our work to Linux
systems for the moment). This information is denoted
cpui for processor i. This approach is somewhat naive
since the performance of the processors depends on many
other factors including memory access speed and cache
policy. Moreover, it depends on the characteristics of the
application. In future we plan to make a proper estimation
of the performance of each processor for a given application,
by running probes derived from the application. However,
using the frequency of the processor gives us a rough idea of
its global performance.

4.4. Generating the models

One model is generated from each mapping of the description
file. Each model is as described in Section 3.2. The
difficult point consists in generating the rates from the
information gathered before. The model generation itself
is then straightforward.

Ratesµ. To compute the µ rates, we need to know how
many workers are hosted on each processor, assuming that
the work sharing between them is equitable. For a given
stage s (s = 1, . . . , Ns) and worker i (i = 1, . . . , Nws),
let j be the number of the processor hosting the worker i of
the stage s. nbj is the number of workers being processed
on processor j . Then the rate associated with the processs,i
activity is:

µs,i = avj

nbj

× cpuj

cpu1
× 1

trs

In effect, the available computing power avj is further diluted
by our own internal timesharing factor nbj . The fraction
cpuj /cpu1 represents the difference of computational power
between the actual processor j and the reference processor 1,
since the reference timing of the stage trs is done on
processor 1.

Rates λ. The rates of communication (the variously
subscripted λ, λI and λO terms) are derived from the
processor to processor latency values (la) obtained from
NWS and from the data size values (ds) of the data transferred
from one stage to another. However, some of the move,
input and outputactivities may express a data transfer from
processor j to this same processor (j = 1, . . . , Np). The
latencies laj,j must, therefore, be defined since no value is
obtained for them from NWS. In order to work with tractable
performance models, we treat such communication latency
as insignificant. These activities are needed to ensure the
logical behaviour of the model. They cannot be immediate
because all activities are timed in PEPA. We set all these
latencies to an arbitrarily small value of 10−5 ms. There are
then three cases to consider.

A: Pipeline with no Deals. This is straightforward. Com-
munication performance between stage s − 1 and stage s is
governed by the latency between the processor running stage
s−1, which we label js−1, and the processor running stage s,
labelled js . It depends also on the size of the data transiting
between the two stages, which is dss . In this case there are
no input and output actions (and therefore no λI and λO),
so we must associate this communication cost with the move
action. Since lajs−1,js is in milliseconds we define

λs = 103

dss × lajs−1,js

B: Pipeline with non-adjacent Deals.Suppose stage s is a
Deal, but stages s − 1 and s + 1 are either simple stages or
input or output sources. Additionally, suppose stage s − 1 is
mapped to processor js−1, stage s+1 is mapped to processor
js+1 and that worker i of the Deal (i = 1, . . . , Nws) is
mapped to processor js,i . In our model the communication
of data between js−1 and js,i is captured by action moves
followed by action inputs,i , with rates λs and λIs,i . The NWS
monitored time corresponding to this is lajs−1,js,i

. Since λs

is common to all such communications but λIs,i is worker
specific, we would like to allocate the full monitored rate to

The Computer Journal Vol. 48 No. 3, 2005

“bxh089” — 2005/4/19 — page 375 — #7

Scheduling Skeleton-Based Grid Applications Using PEPA and NWS 375

λIs,i as 103/(dss × lajs−1,js,i
), with λs infinite. However,

since all activities are timed in PEPA models, we have to
give a finite value to λs . We set it very high (arbitrarily set
to 109, corresponding to a latency of 10−6) and compensate
the time spent by the moves activity in the definition of λIs,i

by removing 10−6 from the latency.

λs = 109

λIs,i = 103

dss × lajs−1,js,i
− 10−6

The situation for output is symmetric, using this time the data
size dss+1, and so

λs+1 = 109

λOs,i = 103

dss+1 × lajs,i ,js+1 − 10−6

C: Pipeline with adjacent Deals.Suppose that stages s and
s + 1 are both Deals. We need only consider the interfaces
between these, since interaction with stages s − 1 and s + 2
will be handled either similarly, if these are also Deals, or
by case B. Thus, we need to define λs+1, λOs,i and λIs+1,i′
for i = 1, . . . , Nws and i′ = 1, . . . , Nws+1. As indicated
above, we choose to associate all communication costs with
input and outputactions, so we set λs+1 = 109.

In this paper, we choose to model an implementation of
adjacent Deals in which communication between worker i

(of the first Deal) and i′ (of the second Deal) is achieved
by sending the data via processor 1 of the first Deal. This
simplification allows processor 1 of the first deal to reconcile
the cyclic (by processor) output of the first Deal with the
cyclic input of the second Deal. We expect to optimize away
this extra communication in subsequent work. Thus, we
define

λOs,i = 103

dss × lajs,i ,js,1

λIs+1,i′ = 103

dss × lajs,1,js+1,i′ − 10−6

Notice that we (correctly) compensate for the λs+1 only once.

4.5. Solving the models

Numerical results have been computed from such models
with the Java Version of the PEPA Workbench [10, 11]. The
performance result that is pertinent to us is the throughput of
the moves activities (s = 1, . . . , Ns + 1), which represents
the throughput of the Pipeline application. Since data passes
sequentially through each stage, the throughput is identical
for all s and we need to compute only the throughput of
move1 to obtain significant results. This is done by adding
the steady-state probabilities of each state in which move1
can happen, and multiplying this by λ1. The result can be
computed by a single command line, given that the result
required is specified in the PEPA input file. This is done

during the model generation (Section 4.4) by adding a line at
the end of this file.

For a small example with two stages, two processors and
no Deal, we have:

Thr = λ1 × {** || (Stage1 || **) || (** || **)}

If Stage 1 is a Deal with two workers,

Thr = 2 × λ1 × { ** || Source1 || **}

The expression between the braces {} describes the states
of interest (in this example, the states in which move1 can
happen) through the use of a simple language. The double
stars (**) are wild cards and the double vertical bars (||)
are separators between model components. The model
components are described in the same order used in the
system equation and we can skip them at the end of the
equation if there are only wild cards (as done in the second
example).

Thus, the result for one model can be computed by using
the command line interface of the PEPA workbench by
invoking the following command:

java pepa.workbench.Main -run lr

./mymodel-[mapping].pepa

The -run lr option means that we use the linear
biconjugate gradient method to compute the steady
state solution of the model described in the file
./mymodel-[mapping].pepa, and then we compute
the performance results specified in this file—in this case,
the Throughput result.

When a large number of models need to be solved, we
use task farming to solve them in a parallel scheme. The
most lightly loaded processors are selected with the help of
information gathered previously with NWS, and the jobs are
distributed on these processors. The gain is almost equal to
the number of processors used, even if a small overhead can
be observed due to the time required to dispatch the models
and to collect the results.

Note that the scheduling for the Task Farm (which is
effectively a simple skeleton) is dynamically determined by
the pattern itself. There is therefore no need to analyse
the scheduling of this skeleton and its straightforward use
(without AMoGeT) is not a limitation for us.

4.6. Comparing the results

During the resolution, all the results are saved in a single file,
and the last step, results comparison finds out which mapping
produces the best throughput. This mapping is the one we
should use to run the application.

5. NUMERICAL RESULTS

We present some numerical results obtained on small experi-
ments. These allow us to estimate the size of the models
for different kinds of applications. Some measurements of
the time required to run the tool are presented and finally

The Computer Journal Vol. 48 No. 3, 2005

“bxh089” — 2005/4/19 — page 376 — #8

376 A. Benoit et al.

 1e+6

 8e+5

 6e+5

 4e+5

 2e+5

0 2 4 8 10 126

Number of Stages

(b)

(a)

Nb of states
Nb of transitions

Equi-repartition of workers

Additional workers on Stage 1

0 2 4 8 10 12

 2e+5

 4e+5

 6e+5

 8e+5

 1e+6

Nb of states
Nb of transitions

6

Total number of workers

Nb of states
Nb of transitions

FIGURE 5. States and transitions. (a) Pipeline with no Deal-
function of the number of stages. (b) Pipeline with Deal-3 Pipeline
Stages (3 workers minimum).

we explain, through a few experiments, how information
obtained by these techniques can be relevant for optimizing
the application.

In the present paper, we do not apply this method to a given
‘real-world’ example. We use an abstract Pipeline for which
we arbitrarily fix the time required to complete each stage.

5.1. Size of the models

Figure 5 illustrates the number of states and transitions of the
models as a function of the parameters of the skeleton. These
numbers are independent of the number of processors in the
model; they depend only on the number of Pipeline stages
and Deal workers.

Figure 5a shows the case of a simple Pipeline without
Deal. In this case we only consider the number of stages,
since the total number of workers in the model equals
the number of stages. When the number of stages is
<9, the size of the model is such that the resolution is
usually very quick (a few seconds). However, the model
grows exponentially when the number of stages is increased,
making AMoGeT less effective for a large number of
stages. However, since real applications usually do not

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 6 8 10 12 14 16 18 20

C
PU

 T
im

e
(s

ec
on

ds
)

Number of processors
 0

FIGURE 6. Time required to get information with NWS.

have very many stages, this is not a limitation of the tool in
practice.

Figure 5b shows the impact of numerous workers on the
size of the model. The study is limited to a Pipeline with
3 stages. We consider first the case where all additional
workers are on the same stage, the first one, i.e. only the
first stage is a Deal. In this case, the size of the model
increases faster than for the Pipeline without Deal, and we can
realistically consider only cases with <8 workers (6 workers
for stage 1, and one for each other stages). When several
stages are a Deal, and when we have approximately the same
number of workers on each stage (equi-repartition of the
workers), it is even worse and the models start to become
very large with a total of only 6 workers.

5.2. Timing of the tool

The steps consuming time when using the AMoGeT tool are
both the gathering of information from the NWS and the time
required to generate and solve the models.

First, the time consumed by the use of NWS depends
directly on the number of processors considered. Figure 6
represents the CPU time (in seconds) used by AMoGeT
to gather information from NWS, as a function of the
number of processors. This time is the mean value of
five measurements done on a cluster of PCs. Different results
are obtained from each measurement, due to the changing
performance of the resources, so the results are much more
significant when iterated. The global tendency is that the
time increases with the number of processors, which is quite
logical since a higher number of processors implies that
we have to perform more calls to NWS. The amount of
time required is only a few seconds for up to 20 processors
and since the grid performance will not change rapidly, in
general, we assume that we should make these measurements
only once per hour or so, and then run AMoGeT to
find out if a better scheduling should be adopted for the
application.

The time required to generate and solve the models must
also be carefully considered. The generation is always very
quick: it takes <0.01 s to generate 20 models. The time
required to solve the models is usually more important,

The Computer Journal Vol. 48 No. 3, 2005

“bxh089” — 2005/4/19 — page 377 — #9

Scheduling Skeleton-Based Grid Applications Using PEPA and NWS 377

especially when the models have a large state space.
However, if we consider only relatively small models (up
to 20,000 states), the resolution with the PEPA workbench
takes only a few seconds (Figure 5 illustrates this number of
states function of the characteristics of the application).

Some tests have been done with larger models requir-
ing around 40 s to be solved (up to 50,000 states and
250,000 transitions). In this case, several models are solved
in parallel using task farming (see Section 4.5). The use of
several processors allows us to consider such models without
losing too much time on solving models.

The use of AMoGeT takes usually less than one minute
for complex applications running on several processors, even
when we consider several models which can be relatively
large. The distributed resolution of the models allows us to
decrease this time significantly. Considering that the tool
may be run once an hour, it is likely that the amount of time
required may be quite negligible and that the gain obtained
by using the optimal scheduling can outperform the cost of
the use of the tool, when we consider large applications with
long stages.

5.3. Optimizing the application

We have made some experiments to study the performance
improvement running an application using the best mapping
obtained with AMoGeT in comparison to other mappings.
For this, we compare the throughput obtained with the
different models. Several experiments follow.

Experiment 1. In this first experiment, all processors are
identical, and the four stages of the Pipeline execute in
a time which is exponentially distributed with a mean of
10 s (trs = 10, s = 1..4). Moreover, the network is
homogeneous; we consider differing latencies to go from
one processor to another but assume it is the same for the
whole network, and we fix the size of the data transiting
from one stage to another to 1. In this case we use a
simple Pipeline without Deal, since all of the stages have the
same complexity. The input and output data are located on
processor 1.

Figure 7 shows the throughput as a function of the latency,
for different mappings. For a small latency, the optimal
mapping is obviously (1,2,3,4) (one stage per processor).
When the latency is <1 s, the throughput for (1,2,3,4) is two
times better than for (1,1,2,2) and four times better than for
(1,1,1,1). The performance of the network has some impact
on the optimal mapping only when the latency is of the same
order as the time required to compute one stage (∼10 s). Then
it may be a better solution to share the stages between two
processors, and finally just process everything on processor 1
when the network is exceptionally slow (latency >35 s).
Notice also that for small latencies (<0.1 s), when the mean
reference time to solve the stages is multiplied by a factor f ,
the resulting throughput is then divided by f .

For a latency of 0.01, the best throughput is obtained
with the mapping (1,2,3,4) and it is 0.051. With the
mapping (1,1,1,1), this throughput is almost four times

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 10 20 40 50

T
hr

ou
gh

pu
t

Latency (seconds)
 30 0

FIGURE 7. Experiment 1: throughput function of the latency, for
different mappings.

worse (0.01287). Thus, a large number of inputs results
in significant difference in the performance, and therefore
better performance by choosing the optimal mapping. A less
obvious case is for a latency of 20 s. The throughput for
the mapping (1,1,2,2) is of 0.01648 instead of 0.01459 for
the mapping (1,2,3,4). Even a reasonable number of inputs
exhibit substantial benefits in choosing this mapping, since
we save almost 8 s per input in this case.

Experiment 2. This second experiment investigates the use
of a Deal skeleton nested inside a Pipeline in different cases.
The Pipeline has three stages, and the network is working
well (the latency of the order of 1 ms to go from one node
to another, as observed with the NWS on our network). The
size of the data is fixed to 1. The mean reference time for the
stages is of the order of 10 s and the network has, therefore, no
influence on this experiment (cf. Experiment 1). The input
and output data are located on processor 1 and all workers
have their own processor.

Figure 8 presents the results for identical stages (all with a
mean reference time of 10 s) and for the case when the second
stage is three times longer than the others (tr2 = 30). In the
results displayed in columns ‘P2 working’, all processors
are identical, while for the experiment of the columns ‘P2
broken’, the second processor (processing the first worker
of Stage 2) is twice as heavily loaded as the others. Some
additional workers are added to process stage 2 as a Deal (the
case with no additional workers corresponds to a Pipeline
without Deal). Note also that the throughput results are
expressed in minutes (throughput per second multiplied by
60) for easy reading.

Adding workers to a stage (Deal skeleton) always improves
the throughput of the application, especially when the stage
is longer than the others, or when one of the processors
processing this particular stage is not fully available. When
one of the processors is broken (P2 broken), it is not worth
using when there are at least 2 additional workers. In this
case, the throughput is better just by removing this worker
(equivalent to P2 working minus one worker). A study of
all models allows us to observe which mapping is the best in
this case.

The Computer Journal Vol. 48 No. 3, 2005

“bxh089” — 2005/4/19 — page 378 — #10

378 A. Benoit et al.

Number of additional Identical stages Stage 2 three times longer
workers for Stage 2 P2 working P2 broken P2 working P2 broken

0 3.3844 2.3639 1.7584 0.9613
1 4.6408 3.9562 2.7070 1.7958
2 4.9294 4.5522 3.2482 2.4331
3 5.1061 4.8793 3.6643 2.9509
4 5.2283 5.0821 3.9970 3.3775
5 5.3191 5.2196 4.2683 3.7325

FIGURE 8. Result table for experiment 2 (throughput per minute).

We have seen from these experiments that AMoGeT can
help us choose the optimal mapping for a skeleton-based
application. Even if the difference in throughput is small, the
time saved for large applications can be really worthwhile. It
is therefore worth spending some time to solve the models.

6. CONCLUSIONS AND FUTURE WORK

We have reviewed the principles of the Pipeline and Deal
skeletons and have constructed models of these using the
PEPA. We have developed a tool which generates and solves
such models, thereby providing information which could be
used to profitably schedule and reschedule grid applications
programmed using our skeletons. The models are augmented
with real-time information concerning performance of the
available grid resources, gathered with the help of the NWS.

Some other recent work considers the use of skeleton
programs within grid nodes to improve the quality of cost
information [12]. Each server provides a simple function
capturing the cost of the implementation of each skeleton.
In an application, each skeleton therefore runs only on one
server, and the goal of scheduling is to select the most
appropriate of such servers within the wider context of the
application and supporting grid. In contrast, our approach
considers single skeletons which span the grid. Moreover,
we use modelling techniques to estimate performance.

The implementation of the Deal skeleton that we discuss
in this paper is not necessarily the most efficient, because
of the use of strict polling. If one of the workers is on
a slow processor, the whole application slows down. We
plan to model other skeletons so that we can use AMoGeT
on a larger class of applications. We plan also to use
this approach based on skeletons and process algebra on
real applications to illustrate its practical advantages. For
example, we could model an application performing Optical
Character Recognition using Pipeline and Deal skeletons.
Moreover, in the current system, the user needs to specify a
list of mappings from which the tool will select the best one.
It would be useful to automatically generate a set of possible
mappings, and maybe make a pre-selection of the mappings
which may produce ‘good’ results in order to simplify the
user’s task and to improve the performance of the tool. This
will be considered in future work. We also intend to address
the issues raised by the use of exponential models having
memoryless properties.

We believe that this first case study has already shown
that our approach can allow grid systems to obtain important
information and that we have the potential to enhance the
performance of grid applications through the use of skeletons
and process algebras.

REFERENCES

[1] Foster, I. and Kesselman, C. (1998) The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann.

[2] Berman, F., Fox, G. and Hey, A. J. G. (eds) (2003) Grid
Computing: Making the Global Infrastructure a Reality.
Wiley & Sons.

[3] Cole, M. (1989) Algorithmic Skeletons: Structured Manage-
ment of Parallel Computation. MIT Press & Pitman. Available
at http://homepages.inf.ed.ac.uk/mic/Pubs/pubs.html.

[4] Wolski, R., Spring, N. and Hayes, J. (1999) The
network weather service: a distributed resource performance
forecasting service for metacomputing. Future Gener. Comp.
Sys., 15, 757–768.

[5] Cole, M. (2003) eSkel: TheEdinburgh Skeleton library
Version 2.0—Draft API reference manual. Internal Paper,
School of Informatics, University of Edinburgh, UK. Available
at http://homepages.inf.ed.ac.uk/mic/eSkel/.

[6] Hillston, J. (1996) A Compositional Approach to Performance
Modelling. Cambridge University Press.

[7] Rabhi, F. and Gorlatch, S. (2002) Patterns and Skeletons for
Parallel and Distributed Computing. Springer Verlag.

[8] Cole, M. (2004) Bringing skeletons out of the closet:
a pragmatic manifesto for skeletal parallel programming.
Parallel Comput., 30, 389–406.

[9] Cole, M. (2002) eSkel: TheEdinburgh Skeleton library.
Tutorial Introduction. Internal Paper, School of Informatics,
University of Edinburgh, UK. Available at http://homepages.
inf.ed.ac.uk/mic/eSkel/.

[10] Gilmore, S. and Hillston, J. (1994) The PEPA Workbench:
A Tool to Support a Process Algebra-based Approach to
Performance Modelling. In Proc. 7th Int. Conf. on Modelling
Techniques and Tools for Computer Performance Evaluation,
Vienna, May 3–6, LNCS794, pp. 353–368. Springer-Verlag.

[11] Haenel, N. V. (2003) User Guide for the Java Edition of
the PEPA Workbench. Internal Paper, School of Informatics,
University of Edinburgh. Available at http://www.dcs.ed.ac.
uk/pepa.

[12] Alt, M., Bischof, H. and Gorlatch, S. (2002) Program
development for computational grids using skeletons and
performance prediction. Parallel Processing Letters, 12,
157–174.

The Computer Journal Vol. 48 No. 3, 2005

