
Linear Algebra and its Applications 386 (2004) 111–136
www.elsevier.com/locate/laa

Aggregation of stochastic automata networks
with replicas�

Anne Benoit a,∗, L. Brenner b,1, P. Fernandes b,1, B. Plateau a

aLaboratoire ID-IMAG, CNRS-INRIA-INPG-UJF, 51 Av. Jean Kuntzmann, 38330 Montbonnot,
Saint-Martin, France

bPUCRS, Faculdade de Informática, Av. Ipiranga, 6681 90619-900 Porto Alegre, Brazil

Received 12 August 2003; accepted 24 February 2004

Submitted by W. Stewart

Abstract

We present techniques for computing the solution of large Markov chain models whose
generators can be represented in the form of a generalized tensor algebra, such as Stochastic
Automata Networks (SAN). Many large systems include a number of replications of identical
components. This paper exploits replication by aggregating similar components. This leads to
a state space reduction, based on lumpability. We define SAN with replicas, and we show how
such SAN models can be strongly aggregated, taking functional rates into account. A tensor
representation of the matrix of the aggregated Markov chain is proposed, allowing to store
this chain in a compact manner and to handle larger models with replicas more efficiently.
Examples and numerical results are presented to illustrate the reduction in state space and,
consequently, the memory and processing time gains.
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1. Introduction

The high complexity of dynamic systems in many areas of application makes
them difficult to analyze [26]. Continuous time Markov chains (CTMC) facilitate
their performance and even reliability analysis. CTMC are often used as the under-
lying concept of a high level formalism interpreted by a software package, which
generates the state space and the infinitesimal generator of the underlying CTMC,
and computes stationary and transient solutions.

The primary difficulty in developing a software tool to handle large-scale Markov
chains comes from the explosion in the number of states. Indeed, CTMC model-
ing real systems are usually huge and sophisticated algorithms are needed to handle
them. In order to keep memory requirements manageable, Stochastic Automata Net-
works (SAN) were introduced [10,21]. The SAN formalism allows Markov chains
models to be described in a memory efficient manner due to their storage based on a
tensor representation. A somewhat different approach based on Stochastic Petri Nets
allows us to obtain a similar tensor formalism, as shown by Donatelli [8,9]. Further-
more, analysis techniques for these formalisms have been proposed. Direct solution
methods, such as Gaussian elimination, are generally not used because the amount of
fill-in that occurs necessitates a prohibitive amount of storage space. Iterative meth-
ods, which can take advantage of sparse storage techniques to hold the infinitesimal
generator, are more appropriate [11,21,26], even though here also, memory require-
ments can become too large for real life models. In order to analyze large CTMC
models with loosely coupled blocks, some iterative aggregation/disaggregation (a/d)
methods have been proposed in [26], and an a/d algorithm has also been proposed
for SAN in [4].

In fact, it will be necessary to develop techniques to reduce the complexity of the
Markov chain that will be analyzed. Fortunately, many large real systems include a
considerable large number of identical (replicated) components. Taking such repli-
cations of components into account, a reduced Markov chain resulting from strong
aggregation [17,22] can be generated. Previous studies on weak lumpability [2,19]
have also shown how to group identical states, but this kind of aggregation depends
on the initial state of the model. Lumpability and equivalence relations have been
defined and discussed in [3,6,18,14,24].

In the previous approaches, lumping on the state space of a Markov chain is
described. Some other techniques to exploit replications are based on hierarchical
models [20]. These techniques generate the reduced Markov chain directly from
the model specification. Hierarchical Markovian models are useful for analyzing
complex systems, and techniques to generate a reduced Markov chain from the spec-
ification of the model have been developed. Some a/d algorithms can also be applied
to such models [5]. For Stochastic Activity Networks (a particular class of Stochastic
Petri Nets), an algorithm for reducing the state space in the presence of replicated
subsystems has been developed [23]. Some similar techniques exist for finite states
machines, as shown in [7]. In [16], a symmetric composition for Stochastic Process
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Algebras is proposed. Its operational semantics is compact and intuitive, and it allows
a compact description of systems with replicas.

All these approaches present lumpability conditions for various modeling tech-
niques in order to reduce the state space. The goal of this paper is to present an
equivalent technique that can be used to efficiently aggregate SAN models. The lum-
pability conditions, as shown earlier in [17,22], are described and used in order to
demonstrate that a SAN with replicas can be strongly aggregated. Identical automata
within the model are detected and they can be automatically grouped and aggregated
in order to generate the reduced Markov chain. A similar approach is described by
Siegle [25], but it does not take functional rates, one of the major components of SAN
models, into account. In his work [3], Buchholz defines the equivalence relations for
Stochastic Automata Networks, and particularly equivalent representations for a Sto-
chastic Automata. Gusak et al. [14,15] have provided relatively general lumpability
conditions for continuous-time and discrete-time SAN; these conditions are checked
on automata matrices and they do not require exact replication of components. All
these approaches emphasis on equivalence relations, but they do not give any formal
definition of replicas for SAN. Moreover they do not give a tensorial expression of
the matrix of the aggregated Markov chain.

In the next section, we briefly recall the concept of SAN, and then we formally
define SAN with replicas in Section 3. The strong aggregation of such SAN is
described in Section 4, and a tensorial expression of the matrix of the aggregated
Markov chain is proposed. The final section shows the benefits of aggregation and
some numerical results of practical examples.

2. Stochastic Automata Networks (SAN)

Continuous-time Stochastic Automata Networks [10,11,21] describe a system as
a set of subsystems that interact. Each subsystem is modeled by a stochastic autom-
aton, and some rules between the states of each automaton describe the interactions
between subsystems.

Each automaton is composed of states, called local states, and transitions among
them. Transitions on each automaton are labeled with the list of the events that may
trigger it. An event is triggered after a delay which is exponentially distributed and
the exponentially distributed variables corresponding to each event are independent.
Each event is defined by its name and its rate.

When the occurrence of the same event can lead to different target states, a proba-
bility of occurrence is assigned to each possible transition. The label on the transition
is evt(prob), where evt is the event name, and prob is the probability of occurrence
of each possible transition. When only one transition is possible, the probability can
be omitted.

There are basically two ways in which stochastic automata interact. Firstly, the
rate at which an event may occur can be a function of the state of other automata.
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Such rates are called functional rates. Rates that are not functional are said to be
constant rates. The probabilities of occurrence can also be functional. Secondly, an
event may involve more than one automaton: the occurrence of such event triggers
transitions in two or more automata at the same time. Such events are called syn-
chronizing events, in opposition to events involving only one automaton, called local
events. As local events, synchronizing events may have constant or functional rates
and probabilities.

Consider a SAN model with N automata and E events. It is a N-component Mar-
kov chain whose components are not necessarily independent (due to the possible
presence of functional rates and synchronizing events). A local state of ith autom-
aton (A(i) | i = 1, . . . , N) is denoted x(i) while the complete set of states for this
automaton is denoted S(i), and the cardinality of S(i) is denoted by ni . Ŝ = S(1) ×
· · · × S(N) is called the product state space, and its cardinality is equal to

∏N
i=1 ni . A

global state for the model is a vector x = (x(1), . . . , x(N)) ∈ Ŝ. The reachable state
space of the model is denoted by S; it is generally smaller than the product state
space, most of the time because of synchronizing events and functional rates which
prevent some states in Ŝ from occurring.

An automaton is involved by an event if it has at least one transition labeled by
this event. The set of automata involved by an event e is denoted by Oe. The event e

can occur if, and only if, all the automata in Oe are in a local state from which one of
those transitions can be triggered. When it occurs, all the corresponding transitions
are triggered. Notice that for a local event e, Oe is reduced to the automaton involved
by this event, and that only one transition occurs.

For i = 1, . . . , N , the behavior of continuous-time automaton A(i) is described
by a set of square matrices, all of order ni . We shall denote the set of synchronizing
events by ES. Let us denote, for i = 1, . . . , N , and for e ∈ ES:

• Q
(i)
l the matrix consisting only of the transitions that are local to automaton A(i);

• Q
(i)
e+ the positive synchronization matrix of A(i), which represents the occurrence

of the synchronizing event e and its rates;
• Q

(i)
e− the negative synchronization matrix of A(i), which corresponds to an updat-

ing of the diagonal elements for event e; it is defined by Q
(i)
e+ and its elements are

not necessarily negative as suggested by the name.

Notice that if A(i) is not in Oe, then Q
(i)
e+ and Q

(i)
e− are identity matrices.

Then, it has been shown in [10,11] that the transition matrix can be expressed as:

Q =
N⊕

g
i=1

Q
(i)
l +

∑
e∈ES


 N⊗

g
i=1

Q
(i)
e+ +

N⊗
g

i=1

Q
(i)
e−


 . (1)

The tensor sum corresponds to the analysis of the local events, while the tensor
products correspond to the analysis of the synchronizing events. Notice the use of
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generalized tensor algebra [10,21], i.e., the use of operators
⊕

g and
⊗

g , instead of⊕
and

⊗
.

3. SAN models with replicas

Although large systems often contain identical components, we turn our attention
to two different cases: systems where all subsystems are equal, and systems where only
some sets of subsystems are equal among themselves. The first case is modeled by a
SAN composed of one replica, and the second case is modeled by a SAN with multiple
replicas. In this section we formally define SAN models composed of one replica and
SAN models with multiple replicas with an illustrating example for each case.

3.1. SAN models composed of one replica

Informally, a SAN composed of one replica consists of a set of N identical auto-
mata, i.e., the states of each automaton are identical, and the transitions are labeled
with identical synchronizing events or replicated local events (for a given transition,
the local events have the same rate in each automaton). This implies that the syn-
chronizing events involve all replicated automata. Moreover, we have a replica only
if the functions are not changed by a permutation of the parameters. For example,
if N = 2, for all functional rate f and for all x(1) ∈ S(1) and x(2) ∈ S(2), we must
have f (x(1), x(2)) = f (x(2), x(1)) (remember that S(i) is the state space of automa-
ton A(i)). Formalizing the definition of such SAN:

Definition 1. A SAN composed of one replica is a SAN model with N automata,
such that, for i = 1, . . . , N , we have:

• all local matrices Q
(i)
l are identical (equal to Ql);

• for every synchronizing event e ∈ ES, all matrices Q
(i)
e+ and all matrices Q

(i)
e− are

identical and respectively equal to Qe+ and Qe−; only one automaton hold the
transition rate fe of the event (matrices feQe+ and feQe−);

• for all functional rates f , for all permutations σ of [1, . . . , N], and for each global
state x = (x(1), . . . , x(N)), f (x) = f (σ (x)), where σ(x) = (xσ(1), . . . , xσ(N))

(the functions are not changed by a permutation of the parameters).

The concept of a SAN composed of one replica is now illustrated through a small
example.

3.2. The basic resource sharing model––RS1

In this model, Np distinguishable processes share Nr identical units of a com-
mon resource. Each of these processes alternates between a sleeping state and a
resource using state. Notice that when Nr = 1 this model reduces to the usual mutual
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Fig. 1. Basic resource sharing model––RS1.

exclusion problem and when Nr = Np all of the processes are independent. Let λ(i)

be the rate at which process i awakes from the sleeping state wishing to access the
resource, and let µ(i) be the rate at which this same process releases the resource
after using.

Each process is modeled by a two-state automaton A(i), the two states being
sleeping and using. Assuming δ(b) a function that equals 1 if the expression b is
true, otherwise this function equals 0, then let the function f be defined by:

f (x) = δ





 Np∑

i=1

δ(x(i) == using)


 < Nr


 , (2)

where x(i) is the local state of automaton A(i), and x = (x(1), . . . , x(Np)) is the
global state of the SAN. Thus the function f has the value 1 when access to the
resource is permitted (there is at least one available resource) and has the value 0
otherwise.

When all rates are identical (λ(1) = · · · = λ(Np) = λ and µ(1) = · · · = µ(Np) =
µ), there are two local events per process:

• evt(i)a corresponds to “acquiring a resource” by the ith process and it has a rate λf ;
• evt(i)r corresponds to “releasing a resource” by the ith process and it has a rate µ.

This model, called RS1, is graphically illustrated in Fig. 1.
Since this model does not have synchronizing events, there is only one matrix per

process:

Q
(i)
l =

(−λf λf

µ −µ

)
.

All local matrices are identical, and the function is not changed by a permutation
of the parameters (commutativity of the sum in the definition of f , Eq. 2). This SAN
is therefore a SAN composed of one replica, as defined in Definition 1.

3.3. SAN models with multiple replicas

Definition 2. Assuming a SAN with N automata, we define a partition G such that
there are K contiguous subsets of replicated automata (K ∈ [1, . . . , N]). Then let
kh be the last automaton index of the hth subset, called subset h (h ∈ [1, . . . , K]).
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Fig. 2. Decomposition into subsets of a SAN with N = 6 and K = 3.

Assuming arbitrarily k0 = 0, we may denote by SIh the set of indexes of the auto-
mata in subset h: SIh = (kh−1 + 1, . . . , kh) and by Rh = kh − kh−1 the number of
automata in the subset h (Rh = Card(SIh)).

An illustration of this decomposition into K subsets is given in Fig. 2.
First let us define a set of permutations such that there can be an exchange inside

each subset, but not between different subsets:

Definition 3. For a given SAN and a partition G (Definition 2), let P be the set of
permutations of [1, . . . , N] such that

σ ∈ P ⇐⇒ ∀h ∈ [1, . . . , K], ∀i ∈ SIh, σ (i) ∈ SIh.

For h ∈ [1, . . . , K], let Ph be the set of permutations inside the corresponding subset
(permutations of [(kh−1 + 1), . . . , kh]). σ ∈ P can be expressed as a combination of
permutations σh ∈ Ph, denoted by σ = (σ1, . . . , σK).

State vector structure due to multiple replicas
Let x = (x(1), . . . , x(N)) be a global state of the SAN.
It can be decomposed into subsets, x = (x1, . . . , xK) where xh(h ∈ [1, . . . , K])

is a vector such that xh = (x(kh−1+1), . . . , x(kh)).
Then, for σ ∈ P, denote σ(x) = (xσ(1), . . . , xσ(N)). If σ = (σ1, . . . , σK) is

defined as above, σ(x) = (σ1(x1), . . . , σK(xK)), and for h ∈ [1, . . . , K],
σh(xl) = (xσ(kh−1+1), . . . , xσ(kh)).

Note that the composition of permutations (denoted by ◦) is closed within P, that
is to say: let ϕ, τ ∈ P, then σ = ϕ ◦ τ is also in P. It is also obvious that when σh

goes through Ph, for all h ∈ [1, . . . , K], then σ goes through P. For K = 1 (SAN
composed of one replica), P equals the set of permutations of [1, . . . , N].

Considering the example in Fig. 2 with each automaton having two local states (1
and 2), the global state x = (2, 1, 1, 1, 2, 1) means that A(2), A(3), A(4) and A(6)

are in local state 1, while A(1) and A(5) are in local state 2. Let σ be the permutation
such that σ(x) = (1, 2, 1, 2, 1, 1). We have in both global states (x and σ(x)):

• one automaton from the first subset, two automata from the second subset, and
one automaton from the third subset in state 1; and
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• one automaton from the first subset, one automaton from the second subset, and
no automata from the third subset in state 2.

Having the same number of automata in all local states means that we can exchange
global states with a permutation of P (Definition 3).

A formal definition of SAN models with multiple replicas can be as follows:

Definition 4. A SAN with multiple replicas is a SAN model with N automata and
a partition G (Definition 2), such that, for h = 1, . . . , K , we have:

• for all j ∈ SIh, the local matrices Q
(j)
l are identical (equal to Q(l,h));

• for every synchronizing event e ∈ ES, for almost all j ∈ SIh, all matrices Q
(j)
e+

and Q
(j)
e− are identical and respectively equal to Q(e+,h) and Q(e−,h). Only one

automaton in the whole SAN holds the transition rate fe of the event and therefore
this automaton has different matrices. When this automaton is in subset h, its
matrices are respectively equal to feQ(e+,h) and feQ(e−,h);

• for all functional rates f , for all permutations σ ∈ P (Definition 3), and for each
global state x, f (x) = f (σ (x)) (for each subset h, the function is not changed by
a permutation of the parameters “state of A(kh−1+1)” to “state of A(kh)”).

A SAN is said to be without replica if there are N subsets with only one automaton
in each subset (K = N and kh = h for h = 1, . . . , N). On the other hand, a SAN
composed of one replica is a SAN for which all automata are in the same subset
(K = 1), as for the RS1 example presented in Section 3.2. A SAN with multiple
replicas is therefore a SAN for which 1 < K < N .

Note also that synchronizing events may affect several subsets (as well as only
one subset). The conditions in the above definitions expresses that automata in the
same replica have the same behavior with respect to all synchronizing events.

3.4. The resource sharing model with different rates––RS2

In this model (Fig. 3), we consider Np processes partitioned in K groups with
different rates for acquiring and releasing Nr units of a common resource (the Nr
units of resource can be used by any process of any group). For each process of each
group (h ∈ [1, . . . , K], i ∈ SIh), we have two local events:

• evt(i)a,h is the local event corresponding to “acquiring a resource” by process i

of group h. It has rate λhf (f has the definition given in Eq. 2 for the example
RS1);

• evt(i)r,h is the local event corresponding to “releasing a resource” by process i of
group h. It has rate µh.

There are no synchronizing events, so we have only local matrices. For h =
1, . . . , K and i ∈ SIh,
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Fig. 3. Resource sharing model, different rates––RS2.

Q
(i)
l,h =

(−λhf λhf

µh −µh

)
.

Inside each subset, the local matrices are identical, and the function f (Eq. 2) is
not changed by a permutation of the parameters. Following Definition 4, this SAN is
therefore a SAN with multiple replicas.

3.5. How to detect replicas in a SAN model

Since large systems are often described with identical components, it is usual
to describe these identical components as replicas during the model specification.
So the partition G of replicated automata is usually given by the user during the
model specification phase. In fact, we just have to be sure that the properties of SAN
with multiple replicas (or with one replica) are checked for the user defined model.
Therefore we do not have to detect the subsets, because they are given by the model
itself.

The current implementation of replica detection in the PEPS software tool [1]
is based on the verification of properties for automata informed as identical during
the model specification. Specifically, to each set of automata informed as a replica
(using brackets []) any functional rates and probabilities are verified to comply with
Definition 4. Such verification is quite simple and its computational cost is irrelevant.

4. Aggregation of replicas

Now that we have introduced the notion of replicas in SAN, we can proceed to
model aggregation. In this following, we assume that we have an initial SAN and
a decomposition into subsets, as defined in Definition 2. Our goal is to obtain a
reduced Markov chain resulting from strong aggregation (the formal definition of
strong aggregation will be given in Section 4.2). Firstly, it is shown how aggrega-
tion intuitively works on a small example. After that, we prove that a SAN with
multiple replicas can be strongly aggregated. Finally, it is shown that the matrix of
the aggregated Markov chain can still be written as a tensor expression.
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Fig. 4. RS1––Np = 3 and Nr = 2––aggregated Markov chain.

4.1. Aggregation example

We show how aggregation works on the basic resource sharing model RS1 (Fig. 1,
Section 3.2), with Np = 3 processes and Nr = 2 resources. This SAN is composed
of one replica, as shown previously, i.e., P is the set of permutations of [1, . . . , Np].

All equivalent states of the initial SAN within a permutation of P (Definition 3)
are grouped into one state of the aggregated Markov chain. We can arbitrarily choose
one particular state to represent each group of global states, which we call equiva-
lence classes. Assuming 1 as the local state sleeping and 2 as the local state using, the
aggregated Markov chain of this example has four equivalence classes represented
by the global states (1,1,1), (1,1,2), (1,2,2), and (2,2,2). All the global states of the
initial SAN are equivalent to one of these states. We just need to know how many
processes are using the resources, but it does not matter which process(es) is (are)
using them. For example, being in global state (1,1,2) or (1,2,1) means that one
resource is currently used.

If C1 and C2 represent two different equivalence classes, the transition rate from
state C1 to state C2 of the aggregated chain is obtained by summing up the transition
rates of the initial SAN from one original global state of C1 to all the original global
states of C2.2 The aggregated Markov chain for RS1 is represented in Fig. 4, and the
formal definition of aggregation is presented in the next section.

Notice that state (2,2,2) is not reachable (only two automata can use the resource
simultaneously). The state space of the aggregated Markov chain, denoted by Ŝagg,
may have some unreachable states, which can be suppressed, obtaining the state
space Sagg.

4.2. Strong aggregation of SAN with replicas

In this section we study the conditions of strong aggregation of SAN with replicas.
We consider a partition of the state space � = (�1, . . . , ��), and recall the definition
of strong aggregation [3,17,22].

2 We will see in the next section that the choice of the state of C1 in the initial SAN does not affect
the result.
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Definition 5 (Strong aggregation). A Markov chain can be strongly aggregated on
the partition � if for any initial vector, the aggregated chain (whose states are �γ ,
for γ ∈ [1, . . . , �]) is a Markov chain and the transition rates of this chain do not
depend on the initial vector.

Finally, a condition of strong aggregation is given by the following theorem of
Rosenblatt. A proof of this theorem can be found in [17].

Theorem 1 (Rosenblatt). Consider a continuous time Markov chain with state space
�, and a partition of the state space � = (�1, . . . , ��). If, for all β, γ ∈ [1, . . . , �],
the probability of passing from a state x ∈ �β to �γ always has the same value for
each state x from �β, then the Markov chain can be strongly aggregated on the
partition �.

The transition rate from a state �β of the aggregated chain to another state �γ

(β, γ ∈ [1, . . . , �]) is the sum of transition rates in the initial SAN from one state
of �β to all the states of �γ . Due to the condition of Rosenblatt, we can arbitrarily
choose any of the states of �β , and the result will not be affected.

We have seen the conditions needed to aggregate a Markov chain. We now inves-
tigate whether a SAN with multiple replicas can be aggregated, and prove that a
SAN with multiple replicas can be strongly aggregated. To do this, we first define
the partition of the state space that we want to consider in the theorem of Rosenblatt
(Definition 6), then introduce some notation, and finally prove that the condition of
Rosenblatt is satisfied for the considered partition (Lemma 1).

Definition 6 (State space partition). Two global states x and y (x, y ∈ Ŝ) are equiv-
alent if ∃σ ∈ P σ(x) = y. For both global states, there is in each subset the same
number of automata in a given local state.
The partition that we consider is � = (�1, . . . , ��), where each �γ (γ ∈ [1, . . . , �])
corresponds to a class of equivalent states.
All the states in �γ are equivalent, so we can choose for each �γ one particular state
rγ ∈ �γ , called the reference state, and for all other states x ∈ �γ , we can find a
permutation τ ∈ P such that τ(x) = rγ .

Notation
• If x is a global state of the SAN, x(i) is the local state of A(i), for i = 1, . . . , N .

Notice that if τ ∈ P, then τ(x)(i) = x(τ(i)).
• If A is a matrix, i and j two indexes, then aij represents the element of A on row

i and column j . It may be functional, and aij (x) is the function evaluated for the
global state x.

• The descriptor Q described in Eq. (1) can be decomposed into three parts: Q =
L + ∑

e∈ES(P e + Ne) where the matrix L corresponds to the local part of the
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descriptor, Pe to the positive synchronization part for event e, and Ne to the
negative synchronization part for event e.

• If x and y are two global states of the SAN, qxy = lxy + ∑
e∈ES(pexy + nexy) is

the rate of passing from state x to state y.
• If x is a global state of the SAN and γ ∈ [1, . . . , �], then qx�γ is the cumulative

rate of passing from state x to one of the states of �γ : qx�γ = ∑
y∈�γ

qxy .

This can also be defined for the matrix L, and for Pe and Ne (where e ∈ ES):
lx�γ = ∑

y∈�γ
lxy , pex�γ = ∑

y∈�γ
pexy , nex�γ = ∑

y∈�γ
nexy .

Notice that all states in �γ are equivalent within a permutation of P, so we have
lx�γ = ∑

y∈�γ
lxy = ∑

σ∈P lxσ (rγ ). The same can be written for pe and ne.

Lemma 1. The Rosenblatt condition (Theorem 1) is satisfied for the SAN on the par-
tition � = (�1, . . . , ��) (Definition 6). In other words, for all β, γ ∈ [1, . . . , �], the
probability of passing from a state x ∈ �β to �γ always has the same value for each
state x in �β : ∀x ∈ �β qx�γ = qrβ�γ (where rβ ∈ �β is the reference state of �β).

The proof of this Lemma is in the Appendix. With the application of the Theo-
rem 1 (Rosenblatt), the Markov chain underlying the SAN can therefore be strongly
aggregated on the partition �.

The aggregated Markov chain is defined on the set of equivalence classes defined
by the permutations of P (Definition 6). These equivalence classes are built from
the product state space of the initial SAN which may contain unreachable states.
As a consequence, some of these equivalence classes may also be unreachable. Let
us denote by Ŝagg this state space of equivalence classes (product state space of the
aggregated Markov chain).

4.3. Tensor expression of the matrix of the aggregated Markov chain

This section aims at showing how we can express the matrix of the aggregated
Markov chain as a tensor expression.

Recall that the descriptor Q of the initial SAN described in Eq. (1) can be decom-
posed into three parts: Q = L + ∑

e∈ES(Pe + Ne). L is a tensor sum; all Pe and Ne

are tensor products.
Let x̃ and ỹ be two global states of the aggregated state space (equivalence clas-

ses), and x ∈ x̃ be any of the global states of the equivalence class (it is a global state
of the original state space). The generator of the aggregated Markov chain, denoted
by Q̃, is defined by q̃x̃ỹ = ∑

y∈ỹ qxy = ∑
σ∈P qxσ(y).

Moreover, with the definition of Q, qxy = lxy + ∑
e∈ES(pexy + nexy), and finally

q̃x̃ỹ =
∑
σ∈P

lxσ (y) +
∑
e∈ES

(∑
σ∈P

pexσ(y) +
∑
σ∈P

nexσ(y)

)
.
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Therefore, the matrix Q̃ can be expressed as a sum of matrices: Q̃ = L̃+∑
e∈ES(P̃e +

Ñe), where, for each global state x̃ and ỹ, and for a = l, a = pe or a = ne (e ∈ ES),

ãx̃ỹ =
∑
σ∈P

axσ(y).

Now we consider a lumped version of each matrix A (A can be any of the matrix
L, Pe and Ne, where e ∈ ES), denoted by Â. This lumped matrix (defined in the
following) is a tensor expression, obtained by the aggregation of each subset of rep-
licated automaton. The equivalent SAN obtained is not defined there, we work only
on the matrix expression of this SAN.

We want to prove that Q̃ = L̂ + ∑
e∈ES(P̂e + N̂e), where Q̃ is the matrix of the

aggregated Markov chain. So, we will have a tensor expression of Q̃.
To prove this, we work on each term a, where a can be l, pe or ne (e ∈ ES), and

we show that ãx̃ỹ = âx̃ỹ .
We consider first the tensor products Pe and Ne, for e ∈ ES. Then we explore the

case of the tensor sum L.

• Let A be one of the tensor products Pe or Ne, e ∈ ES: A =
N⊗

g
i=1

Q(i).

Let x and y be two global states. With the definition of generalized tensor product,
we haveaxy = ∏N

i=1 q
(i)

x(i)y(i) (x). So ãx̃ỹ = ∑
σ∈P axσ(y) = ∑

σ∈P
∏N

i=1 q
(i)

x(i)σ (y(i))
(x).

Recall that σ can be expressed as a combination σ = (σ1, . . . , σK) (Definition 3).
So we have

ãx̃ỹ =
∑

σ1∈P1

, . . . ,
∑

σK∈PK

N∏
i=1

q
(i)

x(i)σ (y(i))
(x).

If we decompose the product into subsets, we can replace in the product term, σ

by the corresponding σh, where h ∈ [1, . . . , K], and factorize the independent terms:

ãx̃ỹ =
K∏

h=1


 ∑

σh∈Ph

∏
i∈SIh

q
(i)

x(i)σh(y(i))
(x)


 . (3)

Then let us define the lumped matrix Â.

Definition 7. Let us consider a SAN with N automata and a partition G (Defini-
tion 2). Then, let A be one of the tensor products of the generator of the SAN, A =
N⊗

g
i=1

Q(i).

The lumped matrix Â is defined as a tensor product of K matrices:

Â =
⊗

g
h∈[1,...,K]

Âh,
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where Âh, h ∈ [1, . . . , K], is defined by

âh
x̃hỹh

(x̃) =
∑

σh∈Ph

∏
i∈SIh

q
(i)

x(i)σh(y(i))
(x̃).

Recall that x̃ = (x̃1, . . . , x̃K) = (x̃(1), . . . , x̃(N)).
Then we have

âx̃ỹ =
K∏

h=1

âh
x̃hỹh

(x̃) =
K∏

h=1

∑
σh∈Ph

∏
i∈SIh

q
(i)

x(i)σh(y(i))
(x̃). (4)

Due to the properties of the functions, when we evaluate them with all x ∈ x̃, we
always have the same result, so formula (3) and (4) are equal, which prove the result
ãx̃ỹ = âx̃ỹ .

• Now, let A be the tensor sum L: A =
N⊕

g
i=1

Q(i).

Let x and y be two global states. With the definition of generalized tensor sum,
we have

axy = ∑N
i=1 q

(i)

x(i)y(i) (x)�(x(i),y(i)), where3 �(x(i),y(i)) = ∏
j=1,...,N,j /=i δx(j)y(j) .

So ãx̃ỹ = ∑
σ∈P axσ(y) = ∑

σ∈P
∑N

i=1 q
(i)

x(i)σ (y(i))
(x)�(x(i),σ (y(i))).

Notice that the only σ = (σ1, . . . , σK) giving a non-zero result for �(x(i),σ (y(i)))

are such that only one of the σh, h = 1, . . . , K , is not the identity (denoted by id).
Let σ̄h = (id, . . . , σh, . . . , id) be such a permutation. Then we have:

ãx̃ỹ =
K∑

h=1


 ∑

σh∈Ph

N∑
i=1

q
(i)

x(i)σ̄h(y(i))
(x)�(x(i),σ̄h(y(i)))


 .

�(x(i),σ̄h(y(i))) can be non-null only for i ∈ SIh, so finally,

ãx̃ỹ =
K∑

h=1


 ∑

σh∈Ph

∑
i∈SIh

q
(i)

x(i)σ̄h(y(i))
(x)�(x(i),σ̄h(y(i)))


 . (5)

Then let us define the lumped matrix Â.

Definition 8. Let us consider a SAN with N automata and a partition G (Defini-
tion 2). Then, let A be the tensor sum of the generator of the SAN,

A =
N⊕

g
i=1

Q(i).

3 δuv = 1 if u = v, and 0 otherwise.
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The lumped matrix Â is defined as a tensor sum of K matrices:

Â =
⊕

g
h∈[1,...,K]

Âh,

where Âh, h ∈ [1, . . . , K], is defined by

âh
x̃hỹh

(x̃) =
∑

σh∈Ph

∑
i∈SIh

q
(i)

x(i)σh(y(i))
(x̃)�h

(x(i),σh(y(i)))

and �h
(x(i),y(i))

= ∏
j∈SIh,j /=i δx(j)y(j) .

Then we have

âx̃ỹ =
K∑

h=1

âh
x̃hỹh

(x̃)

=
K∑

h=1


 ∑

σh∈Ph

∑
i∈SIh

q
(i)

x(i)σh(y(i))
(x̃)�h

(x(i),σh(y(i)))


 ∏

k∈[1,...,K],k /=h

δxkyk
. (6)

In Eq. (6), the product
∏

k∈[1,...,K],k /=h δxkyk
multiplied by the �h

(x(i),σh(y(i)))
is

equivalent to the �(x(i),σ̄h(y(i))) defined for Eq. (5).
The two formula are therefore identical, and ãx̃ỹ = âx̃ỹ .

Tensor expression of Q̃

We have proved that Q̃ = L̂ + ∑
e∈ES(P̂e + N̂e), and with the expression of the

different lumped matrix, we have

Q̃ =
⊕

g
h∈[1,...,K]

L̂h +
∑
e∈ES


 ⊗

g
h∈[1,...,K]

P̂e
h +

⊗
g

h∈[1,...,K]
N̂e

h




and all the matrices Âh have been defined above (Definitions 7 and 8).
Thus, we obtain a compact representation of the aggregated Markov chain, as if

each subset has been aggregated in an independent way.

5. The benefits of aggregation

We have seen that we can strongly aggregate a SAN with multiple replicas, but
we still need to see what benefits it brings in order to justify this aggregation. We
present at first some theoretical results, then we show the benefits of aggregation on
practical examples.
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5.1. Theoretical results

Consider a SAN composed of one replica with N automata, and let M be the num-
ber of states per automaton (it is the same for all automata because of the replication).
The total number of states of the SAN is then MN . We wish to calculate the number
of states of the reduced Markov chain. Notice that we do not take unreachable states
into account, and some states of the aggregated Markov chain can be removed (as
seen in the examples).

For a given global state of the initial SAN, let us denote by nam (m ∈ [1, . . . , M])
the number of automata that are in state m. the number of integer solutions of the
equation

∑M
m=1 nam = N , which is [18](

N + M − 1

M − 1

)
= (N + M − 1)!

N !(M − 1)! .

Aggregation is beneficial only when there are several automata. For example, if we
aggregate a SAN with N = 2 and M = 5, we have initially 52 = 25 states and we ob-
tain 15 states after aggregation. For large values of N , it becomes much more interest-
ing. For example, when N = 100 and M = 5, we obtain an order of 4.6 million states
after aggregation, instead of the 5100 ≈ 1070 initial states. If we have N automata with
2 states each, we have initially 2N states, and only N + 1 after aggregation.

Aggregation is useful for large SAN models, and it can be observed that in these
cases, the state space reduction is significant. We have drawn some curves that show
the state space reduction: percentage of the aggregated product state space size com-
pared to the original product state space size, function of N , for different values of
M (Fig. 5).

For N > 10, the size of the aggregated state space is negligible compared to the
size of the original product state space, and the reduction is more significant for
larger values of M .

For a SAN with multiple replicas, we have for each subset h ∈ [1, . . . , K]
(Rh+Mh−1)!
Rh!(Mh−1)! aggregated states (Mh is the number of states of the automata of the sub-

Fig. 5. State space reduction.
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Fig. 6. RS1––aggregated Markov chain.

set h, and Rh the number of replicas), what makes a total of
∏K

h=1
(Rh+Mh−1)!
Rh!(Mh−1)! states.

For example, if we have 2 subsets of R automaton, each having 2 states, and K

other subsets containing only one automaton with M states each, we have initially
2R × 2R × MK states, and only (R + 1) × (R + 1) × MK states after aggregation.

5.2. Numerical results

This section aims at showing the practical benefits of aggregation through a few
examples. At first, we introduce some examples, and then we summarize the results.

RS1 and RS2. These models have already been described in Sections 3.2 and 3.4.
Fig. 6 shows the aggregated Markov chain for the RS1 model.4 State i (i =

1, . . . , Np) corresponds to the state i processes are using a resource. The part with
dotted lines correspond to the unreachable states, it can be suppressed from the
Markov chain.

The size of the SAN before aggregation is |Ŝ| = 2Np and |S| = ∑Nr
i=0

(Np
i

)
.

The size of the aggregated Markov chain is |Ŝagg| = Np + 1, and when we sup-
press the unreachable states, |Sagg| = Nr + 1.

For the RS2, the aggregated state (i1, . . . , iK) means that ih processes of the
group h (h = 1, . . . , K) are using a resource. Some numerical results will be pro-
vided, showing the reduction of the state space in some special cases.

Resource sharing model with failure––RS3. This model is similar to RS1, except that
the system may fail. Each of the Np processes has an additional state fail, and can
go to this state via a synchronizing transition from both states sleeping and using.
The event evtfail (rate λf) corresponds to a failure of the system. The occurrence of
the event evtrep (rate λr) means that the system has been repaired, and then all the
processes are back in state sleeping.

An additional automaton represents the state of the system, it can be failure or
active. Transitions from one state to another occur with evtfail and evtrep. The other
events are the same as those of RS1 (Section 3.2). This model, which we shall call
RS3, is graphically illustrated in Fig. 7. It is a SAN with two replicas, the first one
consisting in automata A(i), i = 1, . . . , Np and the second one consisting only in
automaton A(Np+1).

4 In fact, Fig. 6 is a generalization of the model in Fig. 4.
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Fig. 7. Resource sharing model with failure––RS3.

Fig. 8. RS3––aggregated Markov chain.

Fig. 8 shows the aggregated Markov chain (without the unreachable states). State
i (i = 1, . . . , Nr) corresponds to the state i processes are using a resource, and state
fail corresponds to the failure of the system.

The size of the SAN before aggregation is |Ŝ| = 2 ∗ 3Np and |S| = 1 + ∑Nr
i=0

(Np
i

)
(one more state than for RS1, corresponding to the global state the system is in failure).

The size of the aggregated Markov chain is |Ŝagg| = (Np + 2)(Np + 1), and when
we suppress the unreachable states, |Sagg| = Nr + 2.

On/off sources model––OS. This fourth model presents a case in which s on/off
sources feed a limited capacity (C requests) queue. The SAN for this model is
represented by s + 1 automata. Each source is represented by a two-states automaton
(local states on and off), and an additional automaton with C + 1 states. The arrival
rate of the queue is a function of the state of the sources automata, and the service rate
is a constant value µ (rate of the event evts). We consider two groups of sources, the
first with s1 sources (automata 1 to s1), and rate λ1, and the second with s2 = s − s1
sources (automata s1 + 1 to s), and rate λ2. These source rates shall be added to the
arrival rate when the source is in the state on. Then the rate of the event of arrival in
the queue evtt is

λ1

s1∑
i=1

δ
(
st (A(i) == on)

)
+ λ2

s∑
i=s1+1

δ
(
st (A(i) == on)

)
.
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Fig. 9. On/off sources model––OS.

Fig. 9 illustrates this SAN model. The events evt(i)a and evt(i)f have constant rates,
depending only of the type of source (group 1 or group 2).

This model has three subsets (K = 3), and the first and second subsets can be
aggregated. The first subset aggregation results in an automaton with s1 + 1 states,
and the second subset aggregation results in an automaton with s2 + 1 states. The
reduced state space is then |Ŝagg| = (s1 + 1) × (s2 + 1) × (C + 1), instead of the
original state space |Ŝ| = 2s × (C + 1).

Cluster with Bus Communication––CB. This fifth model represents a cluster with Np
processing nodes with a simple behavior:

• each node i alternates from idle (Id(i)) to processing (Pr(i)) state;
• being in the idle state a node can pass to transmission (T x(i)) state if no other

node is already transmitting; or it can pass to reception (Rx(i)) state if there is
another node transmitting;

• after transmitting or receiving each node returns to idle state regardless of the
state of the other nodes.5

Such model could be seen as a simple description of UDP protocol over a shared
bus, or other communication protocol in which there is no need of commitment
between send/receive connections. Despite the application of such model, our inter-
est in this paper is the description of a SAN with Np automata with four states each.
This replicated automata model is represented in Fig. 10. All events in this SAN are
local, but events l

(i)
3 and l

(i)
5 must be defined with functional rates (the other events

have constant rates), respectively:

5 According to such behavior it is not necessary to synchronize nor the beginning, neither the end of
transmissions.



130 A. Benoit et al. / Linear Algebra and its Applications 386 (2004) 111–136

Fig. 10. Cluster with bus communication replicated automaton––CB.

•
(∑Np

i=1 δ(st (A(i) == T x(i)))
)

= 1 in order to grant access to reception state if

there is one node transmitting; and

•
(∑Np

i=1 δ(st (A(i) == T x(i)))
)

= 0 in order to grant access to transmission state

if no node is already transmitting.

When all nodes have the same rates this model is a SAN composed of one replica.
Only the global states in which only one node, at most, is transmitting are reachable,
i.e.:

reachability =

 Np∑

i=1

δ(st (A(i) == T x(i)))


 � 1.

Numerical results. We present here some numerical results obtained with the
software package PEPS [1] aggregating and solving the presented examples. The
aggregation of replicas was automatically performed by PEPS using the model spec-
ification information (see Section 3.5), and the lumped SAN models were stored in
the tensor format (see Section 4.3). The computer used to run the examples was an
IBM-PC running Linux OS (Mandrake distribution, version 8.0), with 1.5 Gbytes
of RAM and with 2.0 GHz Pentium IV processor. The indicated processing times
do not take system time into account, i.e., they refer only to the user time spent to
perform one iteration,6 in order to compute the steady-state probabilities.7 A time
of 0 s means that the time is negligible (less than 10−4 s). An indication – means

6 The number of iterations may vary according to the chosen numerical input parameters. However,
the time to perform one iteration is not affected by the choice of numerical parameters. The solution
method used to compute results was power iteration, but the other methods available in PEPS (Arnoldi and
GMRES) have a quite similar time costs per iteration that depends on the cost of one vector-description
multiplication [12].

7 The technique presented in this paper is probably also useful for transient analysis. However, our
interest here is limited to stationary solution, since this is the only solution formally defined for SAN
models and implemented in the PEPS software tool.
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Table 1
Numerical results

Model Initial SAN Aggregated Markov chain

|Ŝ| |S| Time |Ŝagg| |Sagg| Time
(s) (s)

RS1 1,048,576 616,666 15.7 21 11 0.000
Np = 20, Nr = 10

RS1 – – 10,001 8001 0.004
Np = 10,000, Nr = 8000 210,000

RS2
K = 2, Nr = 10 1,048,576 616,666 15.7 96 51 0.000
R1 = 5, R2 = 15

RS3 6,973,568,802 616,667 – 462 12 0.000
Np = 20, Nr = 10

OS
s1 = 12, s2 = 4, Kq = 1000 65,601,536 65,601,536 101.5 65,065 65,065 0.032

OS
s1 = 8, s2 = 8, Kq = 1000 65,601,536 65,601,536 101.5 81,081 81,081 0.034

CB 16,777,216 2,657,205 72.6 455 169 0.000
Np = 12

CB 1,073,741,824 86,093,442 – 816 256 0.000
Np = 15

that PEPS was unable to solve the model (too many states). It is important to notice
that only the processing times to compute the solution were indicated, since it is not
necessary to disaggregate the solution vector on to the unaggregated state space. In
fact, the computation of the result functions performed by PEPS (integration over
the probability vector) works over the lumped state space.

The results in Table 1 show that aggregation always produce a significant state
space reduction. This is true even when the original product state space is equal to
the original reachable state space (model OS). The cardinality of the subsets, as in
the two OS models presented, has little effect when compared to the gains achieved
by the aggregation technique. The time required to compute performance indexes
for this model becomes quite negligible. Taking replicas into account can even make
possible to solve problems that were too large before, as the proposed RS3 model,
the RS1 model with Np = 10,000, and the CB model with Np = 15. In fact, the last
OS with a little bit more than 65 million states is the largest model directly solved
by PEPS until now. Larger models can be solved, but with the current computational
power, and specially the current memory limitations, there is no much room to handle
larger models, unless some aggregation technique, like ours, is employed.



132 A. Benoit et al. / Linear Algebra and its Applications 386 (2004) 111–136

6. Conclusions

In this paper, we have defined SAN models with replicas, and have exposed a tech-
nique to aggregate such models. We proved a theorem showing how strong aggrega-
tion can be performed, and how the matrix of the aggregated Markov chain can be
expressed as a tensor expression. The theoretical benefits of such an aggregation are
also presented and verified by the numerical achievements of the implementation in
the PEPS software tool.

It can be shown that a SAN with replicas is also exactly lumpable over the same
partition [2]. The proof is very similar to the proof of Lemma 1 (Section 4). This
property (exactly lumpable) allows to compute the probabilities of the initial model
knowing the probabilities of the aggregated system.

Notice that the subsets of replicated automata have to be defined at the high level
specification. This is often a fake problem since the replicas are usually known when
modeling a particular system.

The implementation of the automatic generation of the aggregated Markov Chain
in PEPS proved the efficiency of the proposed technique. The implemented algorithm
generates the tensor expression of the matrix very quickly (much faster than the time
spent by one single iteration). The resulting tensor expression is usually much more
compact, so we can compute the numerical solution with an impressive reduction of
CPU costs.

In this paper, we work only on the matrices describing such SAN to prove that
the matrix of the aggregated Markov chain can be expressed as a tensor expres-
sion. We could as future work define formally an equivalent SAN resulting from the
aggregation of each subset.

Finally, we plan to work on applications, e.g., communication protocols, to exper-
iment those new techniques on real and large systems with a significant number
of replicas. Many models in communication could not be solved by SAN due to
the limitation of the product state space size, but we do believe that the proposed
technique can boost the use of SAN to such practical cases.

Acknowledgements

The authors wish to thank Cyril Guilloud for his preliminary work on SAN aggre-
gation.

Appendix: Proof of Lemma 1

To prove Lemma 1, we decompose the problem into two parts, corresponding
respectively to the local part of the descriptor (Lemma 2) and the synchronizing part
(Lemma 3).
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Lemma 2. For all β, γ ∈ [1, . . . , �], the probability of passing from a state x ∈ �β

to �γ with a local transition always has the same value for each state x in �β :
∀x ∈ �β lx�γ = lrβ�γ .

• Proof of Lemma 2
Let β, γ ∈ [1, . . . , �], x ∈ �β and let τ ∈ P be the permutation such that x =

τ(rβ).
With the definition of a generalized tensor sum [10,26], for y ∈ �γ , we have

lxy =
N∑

i=1


q

(i)

l x(i)y(i) (x)

N∏
j=1,j /=i

δx(j)y(j)


 ,

where Q
(i)
l is the local transition matrix of automaton A(i), and δuv = 1 if u = v,

and 0 otherwise.
In order to simplify the notation, let us define �x(i)y(i) = ∏N

j=1,j /=i δx(j)y(j) . Then
we have

lx�γ =
∑
y∈�γ

lxy =
∑
σ∈P

lxσ (rγ ) =
∑
σ∈P

N∑
i=1

q
(i)

l x(i)rγ (σ(i)) (x) �x(i)rγ (σ(i)) .

Moreover, we have x = τ(rβ), so

lx�γ =
∑
σ∈P

N∑
i=1

q
(i)

l rβ(τ(i)) rγ (σ(i)) (τ (rβ)) �rβ(τ(i)) rγ (σ(i)) .

Now decompose the equation for each subset of the SAN. Recall that the matrices
of a subset h ∈ [1, . . . , K] are all identical to Q(l,h). Moreover, for σ ∈ P, let ϕ ∈ P
be the permutation ϕ = σ ◦ τ−1. Then σ = ϕ ◦ τ and when σ goes through P, ϕ

does the same (in a different order). Because of the commutativity of the sum, we
can replace

∑
σ∈P with

∑
ϕ∈P. Then we have:

lx�γ =
∑
ϕ∈P

K∑
h=1

∑
i∈SIh

q(l,h) rβ(τ(i)) rγ (ϕ◦τ(i)) (τ (rβ)) �rβ(τ(i)) rγ (ϕ◦τ(i)) .

The functions are not changed by a permutation of P, and τ ∈ P, so we can
replace τ(rβ) by rβ in the above equation. Moreover, for each subset h, when i goes
through SIh, τ(i) does the same but in a different order (it is a permutation inside the
subset). Because of the commutativity of a sum, we can change the order and replace
τ(i) by i in the equation:

lx�γ =
∑
ϕ∈P

K∑
h=1

∑
i∈SIh

q(l,h) rβ(i) rγ (ϕ(i)) (rβ) �rβ(i) rγ (ϕ(i))

=
∑
ϕ∈P

N∑
i=1

q
(i)

l rβ(i) rγ (ϕ(i)) (rβ) �rβ(i) rγ (ϕ(i)) .

Finally, lx�γ = ∑
ϕ∈P lrβ ϕ(rγ ) = lrβ �γ . �
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Lemma 3. For all β, γ ∈ [1, . . . , �], the probability of passing from a state x ∈
�β to �γ with a synchronizing transition always has the same value for each state x

in �β : ∀x ∈ �β

∑
e∈ES(pex�γ + nex�γ ) = ∑

e∈ES(perβ�γ + nerβ�γ ).

• Proof of Lemma 3
Let e ∈ ES, β, γ ∈ [1, . . . , �], x ∈ �β and let τ ∈ P be the permutation such

that x = τ(rβ). We prove first that pex�γ = perβ�γ . The proof for ne is similar.
With the definition of a generalized tensor product [10,26], for y ∈ �γ , we have

pexy = ∏N
i=1 q

(i)

e+ x(i)y(i) (x), where Q
(i)
e+ is the positive synchronization transition

matrix of automaton A(i).
Moreover, x = τ(rβ), so we have

pex�γ =
∑
y∈�γ

pexy =
∑
σ∈P

pexσ(rγ ) =
∑
σ∈P

N∏
i=1

q
(i)

e+ rβ(τ(i)) rγ (σ(i)) (τ (rβ)).

Now decompose the equation for each subset of the SAN. Recall that almost all
the matrices are identical inside a subset g ∈ [1, . . . , K]; we denote them by Q(e+,g).
There is only one particular matrix in one of the subsets equal to feQ(e+,g), where
fe is the transition rate of the event (definition of SAN models with replicas).

For σ ∈ P, let ϕ ∈ P be the permutation ϕ = σ ◦ τ−1. Then σ = ϕ ◦ τ and when
σ goes through P, ϕ does the same (in a different order). Because of the commuta-
tivity of the sum, we can replace

∑
σ∈P with

∑
ϕ∈P. Then we have:

pex�γ =
∑
ϕ∈P

K∏
h=1


fe(τ (rβ))

∏
i∈SIh

q(e+,h) rβ(τ(i)) rγ (ϕ◦τ(i)) (τ (rβ))


 .

The functions are not changed by a permutation of P, and τ ∈ P, so we can
replace τ(rβ) by rβ in the above equation. Moreover, for each subset h, when i goes
through SIh, τ(i) does the same but in a different order (it is a permutation inside
the subset). Because of the commutativity of a product, we can change the order and
replace τ(i) by i in the equation:

pex�γ =
∑
ϕ∈P

K∏
h=1


fe(rβ)

∏
i∈SIh

q(e+,h) rβ(i) rγ (ϕ(i)) (rβ)




=
∑
ϕ∈P

N∏
i=1

q
(i)

e+ rβ(i) rγ (ϕ(i)) (rβ).

Finally, pex�γ = ∑
ϕ∈P perβ ϕ(rγ ) = perβ �γ .

In a similar way, we can prove that nex�γ = nerβ �γ . This is true for all events e ∈
ES, so we finally have

∑
e∈ES(pex�γ + nex�γ ) = ∑

e∈ES(perβ�γ + nerβ�γ ). �
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• Proof of Lemma 1
Let β, γ ∈ [1, . . . , �], x ∈ �β and let τ ∈ P be the permutation such that x =

τ(rβ).
With the decomposition of Q, we have

qx�γ =
∑
y∈�γ

qxy =
∑
y∈�γ

(
lxy +

∑
e∈ES

(pexy + nexy)

)

=
∑
y∈�γ

lxy +
∑
e∈ES


 ∑

y∈�γ

pexy +
∑
y∈�γ

nexy




= lx�γ +
∑
e∈ES

(pex�γ + nex�γ ).

With the application of Lemmas 2 and 3, we finally have

qx�γ = lrβ�γ +
∑
e∈ES

(perβ�γ + nerβ�γ ) = qrβ�γ . �
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