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Abstract

Parallel and distributed systems can be modelled as a set

of interacting components. This has an impact on the math-

ematical structure of the model, namely it induces a product

form represented by a tensor product. We present a new al-

gorithm for computing the solution of large Markov chain

models whose generators can be represented in the form of

a generalized tensor algebra, such as networks of stochastic

automata. The tensor structure inherently involves a prod-

uct state space but inside this product state space, the ac-

tual reachable state space can be much smaller. For such

cases, we propose an improvement of the standard numeri-

cal algorithm, the so-called “shuffle algorithm”, which ne-

cessitates only vectors of the size of the actual state space.

With this contribution, numerical algorithms based on ten-

sor products can now handle much larger models, even with

functional rates and synchronizing events.

1 Introduction

Continuous Time Markov Chains (CTMC) facilitate the

performance analysis of dynamic systems in many areas of

application [31], and are particularly well adapted to the

study of parallel and distributed systems, [1, 16, 29]. They

are often used in a high level formalism in which a soft-

ware package is employed to generate the state space and

the infinitesimal generator of the CTMC, as well as to com-

pute stationary and transient solutions. Several high-level

formalisms have been proposed to help model very large

and complex CTMCs in a compact and structured man-

ner. For example, stochastic automata networks (SANs),

[26, 13], queueing networks, [17], generalized stochastic

Petri nets, [23], stochastic reward nets, [25] and stochas-

tic activity nets, [28] are, thanks to their extensive mod-

elling capabilities, widely used in diverse application do-

mains, and notably in the areas of parallel and distributed

systems. It is therefore possible to generate the CTMC that

represents the system to be studied from formalisms such as

these which model entire systems from their interconnected

subcomponents. Such formalisms often involve a product

state space �� but inside this product state space, the actual
reachable state space

�
can be much smaller (

��� �� ).
In this paper, our concern is with the computation of the

stationary probability vector ���
	�� 
�� , a row vector whose�����
element ��� is the probability of being in state � of the

CTMC at a time that is sufficiently long for all influence of

the initial starting state to have been erased, and where
�
is

the set of states of the CTMC. The vector � is the solution of
the system of linear equations ������� , subject to ������� ,
where � is the generator matrix of the CTMC and � is a
vector whose elements are all equal to 1.

The primary difficulty in developing software to handle

large-scale Markov chains comes from the explosion in the

number of states that usually occurs when certain model pa-

rameters are augmented. Indeed, CTMCs which model real

parallel and distributed systems are usually huge and so-

phisticated algorithms are needed to handle them. Both the

amount of available memory and the time taken to generate

them and to compute their solutions need to be carefully an-

alyzed. For example, direct solution methods, such as Gaus-

sian elimination, are generally not used because the amount

of fill-in that occurs necessitates a prohibitive amount of

storage space. Iterative methods, which can take advantage

of sparse storage techniques to hold the infinitesimal gener-

ator, are more appropriate, even though here also, memory

requirements can become too large for real life models.

During the generation of the CTMC from the high-level

formalism, particular attention must be paid to the way in

which the quantities
�
, � and � are stored. Indeed, even

though the computational cost of a particular numerical so-
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lution method may be relatively high, it is essentially stor-

age considerations that determine whether this method may

be used or not. Furthermore, iterative methods often need

to compute the product of a probability vector and the gen-

erator � many many times. They therefore depend directly

upon the manner in which these data are stored.

Different techniques have been proposed for storing the

set of reachable states � and for performing efficient

searches in this set. In certain cases, it is possible to de-

fine a reachability function for the model and this may be

used to provide access to the reachable states in constant

time, [15]. In other cases, multi-level approaches such as

decision diagrams [8] may prove to be efficient. In what

follows, we suppose that � is stored in an efficient man-

ner and we will no longer be concerned with this particular

aspect of the algorithms.

There have been many techniques proposed to represent

the descriptor � and the probability vector � . A first ap-

proach, independant of the high-level formalism, consists

of storing the matrix in a row-wise compact sparse format:

the nonzero elements of the matrix and their position in the

matrix are kept. The probability vectors are the size of the

reachable state space � ��� . Efficient algorithms are available
with which to compute a vector-matrix product when the

matrix is stored in this fashion [27, 30]. However, for very

large models, it is frequently the case that the matrix is too

large to be held in memory.

Sanders and his co-workers [9] proposed to generate the

elements of � as they were needed, “on the fly” from a high

level model. However, this approach can be computation-

ally expensive, especially when the model contains imme-

diate transitions. A different proposal is to store � on a fast

disk and to seek the elements as and when they are needed

[10]. This obviously requires a disk that is sufficiently fast

and sufficiently large.

Stochastic Automata Networks (SANs) were introduced

by Plateau et al. ([26, 13]) to keep memory requirements

manageable. These allow Markov chains models to be de-

scribed in a memory efficient manner because their storage

is based on a tensor formalism. Another formalism based

on Stochastic Petri Nets allows us to obtain a similar ten-

sor formalism, as shown by Donatelli in [11, 12]. However,

the use of independant components connected via synchro-

nizations and functions may produce a representation with

many unreachable states ( � ����� �	��
� ). Within this Kro-

necker framework, a number of algorithms have been pro-

posed. The first and perhaps best-known, is the shuffle algo-

rithm [13, 14, 26, 3], which computes the product but never

needs the matrix explicitly. However, as has been shown

previously, this algorithm needs to use vectors �� the size of�� , that we shall call extended. We denote this algorithm E-

Sh, for extended shuffle. Some alternative approachs have

been proposed in [22, 21, 6, 3]. They consist of first com-

puting the state space � , and then solving the model by us-
ing iteration vectors � which contains entries only for these
states (size of � ), that we shall call reduced.
Another approach consists of using decision diagrams in

order to represent theMarkov chain generator � . In this tree
representation only distinct nonzero elements are stored,

and they are kept as the leaves of the tree. On initial con-

struction, the branches of the tree must be pruned to keep

it from becoming too large. Multi-terminal binary deci-

sion diagrams (MTBDDs) and probabilistic decision graphs

(PDGs) can be used in model checking, e.g. [20, 4], or in

performance evaluation [19]. This is a promising approach,

but its efficiency in memory requirements is directly linked

to the number of distinct elements in � . Moreover, access
to the nonzero elements requires following a path from the

root of the tree to the appropriate leaf, and this must be

done every time an element is needed. As far as we are

aware, there are no comparative studies on the effective-

ness of these algorithms in actually computing solutions of

Markov chains.

In order to improve the computation time, another kind

of representation is presented in [7, 24]. This representa-

tion of the generator � as a matrix diagram permits quick

access to all of their elements, and the solution time is often

satisfactory, even for large models. Furthermore, memory

requirement to store � are barely greater than that needed

for a descriptor stored in tensor format and remains negli-

gible compared to that needed to store a probability vector.

However, techniques linked to a cache, [7] make theoreti-

cal estimations of the complexity of the algorithms difficult,

whereas good theoretical results may be obtained with the

Kronecker approach, [6].

When � �����
� ���� , the gain in memory obtained with the
use of the tensor formalism can be enormous compared to

the standard approach of an explicit sparse matrix storage.

For example, if a model consists of � components of size��� ( ��������� � ), the infinitesimal generator is full and the
space needed to store it with the standard approach is of the

order of ��������! �"��#%$ . The use of a tensor formalism reduces

this cost to & ����! � $� . The shuffle algorithm E-Sh is very

effective in this case, as has been shown in [13, 14, 26, 3].

However, when there are many unreachable states

( � ���'�(�	��
� ), E-Sh is not efficient, because of its use of ex-
tended vectors. The probability vector can therefore have

many zero elements, since only states corresponding to

reachable states have nonzero probability. Moreover, com-

putations are carried out for all the elements of the vector,

even those elements corresponding to unreachable states.

Therefore, the gain obtained by exploiting the tensor for-

malism can be lost since many useless computations are

performed, and memory is used for states whose probabil-

ity is always zero. In this case, the approach first described,

based on storing all nonzero elements of the generator, per-
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forms better since it does not carry out meaningless compu-

tations. However, its extensive memory requirements pre-

vent its use on extremely large models.

Due to the large memory requirements of this last ap-

proach, it is worthwhile seeking a solution which takes un-

reachable states into account and at the same time, uses the

benefits of the tensor formalism. Thus, we would like to be

able to exploit the tensor formalism, even in the presence

of an important number of unreachable states. Indeed, the

shuffle is an efficient algorithm when � ������������ , and we
will show how to modify it efficiently for the case in which� ���	�
������ . It is interesting to work on this algorithm which

conserves its tensor structure and for which we possess cer-

tain theoretical results, and which, in addition, is used in

diverse domains (signal processing [18], partial differential

equations,...).

The use of reduced vectors (of size � ) permits a reduc-
tion in memory used, and some needless computations are

avoided. This leads to significant memory gains when us-

ing iterative methods such as Arnoldi or GMRES which

can possibly require many probability vectors. A modi-

fication to the E-Sh shuffle algorithm permits the use of

such vectors. However, to obtain good performance at the

computation-time level, some intermediate vectors of size ��
are also used. The algorithm Act-Sh-JCB of [6] transforms

the reduced vector � into a vector �� of size �� before calling
E-Sh. An algorithm proposed in [3] permits us to save com-

putations by taking account of the fact that the probabilities

corresponding to nonreachable states are always zero in the

resulting vector. We refer to this as partially reduced and

denote the corresponding algorithm PR-Sh. However, the

saving in memory turns out to be somewhat insignificant for

the shuffle algorithm itself.

In summary, the algorithm E-Sh is an efficient algorithm

when there are few non reachable states in the system. Mod-

ifications to reduce memory needs when � �����
� ���� have
been proposed, but the new algorithm PR-Sh uses also in-

termediate data structures of size �� [6, 3]. Our goal is to

develop algorithms that maintain the desirable complexity

of E-Sh, while eliminating the inconvenient data structures

of size equal to the size of the product space, which, to our

knowledge, has not been done before. We hope that this will

minimize memory requirements at the cost of only a small

increase in computation time.

In the next section we present the shuffle algorithm E-Sh

for the multiplication of a vector and a SAN descriptor. We

then present (in Section 3) a new version of the shuffle al-

gorithm, one which concentrates on the amount of memory

used, and allows us to handle even more complex models.

In this new algorithm, all the intermediate data structures

are stored in reduced format. We refer to this as fully re-

duced and denote the corresponding shuffle algorithm FR-

Sh. A series of tests comparing the two shuffle algorithms is

presented in Section 4. These algorithms were incorporated

into the software package PEPS [15] and tested by means

of this package.

2 The Shuffle Algorithm

In SANs [13, 14] and in SGSPNs [12], it has been shown

that the transition matrix can be expressed as:�������
��������� � � ��!" �$#%& �'� �(������� � � ��!& � � �*),+-# !%./���
01 �(2������ � � �3!.546

(1)

Here 7 is the number of automata (resp. sub Petri Nets) in

the network and 8 is the number of synchronizing events

(resp. transitions). In the first representation, D is the di-

agonal of the descriptor; the tensor sum corresponds to the

analysis of the local events and is called the local part of

the descriptor; the tensor product corresponds to the analy-

sis of the synchronizing events and is called the synchro-

nizing part of the descriptor. The second representation

shows that the basic operation of interest in computing the

steady state vector of theMarkov chain using iterative meth-

ods is the product of a row vector �� and a tensor product1(�� ��3�'� � � ��! . This term is composed of a sequence of 7
matrices denoted

� � ��!
with 9;:=<?>A@B@B@C7ED , each associated

with an automaton F � ��! . We begin by introducing some

definitions concerning finite sequences of matrices:

- G � is the order of the 9IHKJ matrix in a sequence;
- G,LNMPORQ � is the product of the order of all the matrices that

are to the left of the 9IHKJ matrix of a sequence, i.e., S �UTV�W ��� G W
with the special case: GVLKMXOYQ � � > ;
- G[Z\9^]`_aQ � is the product of the order of all the matrices

that are to the right of the 9IHKJ matrix of a sequence, i.e.,S � W �,� ) � G W with the special case: G[ZP9^]`_aQ � � > ;We first assume that there are no functional dependencies.

According to the decomposition property of tensor products

[13], every tensor product of 7 matrices is equivalent to the

product of 7 normal factors. To compute the multiplication

of a vector by the term b ������ � � ��! it is therefore sufficient to
know how to multiply a row-vector �� and a normal factor 9 :��dcfehg " &Ci Hkjml � � ��! l ehgXn � � J�Hkj . Furthermore, the property of
commutativity between normal factors allows the multipli-

cation of the normal factors in any desired order. The matrixehg " &oi Hkj\l � � ��! l ehg	n � � JBHKj is a block diagonal matrix in which
the blocks are the matrix

� � ��! l ehg	n � � J�H j . We can treat the
different blocks in an independent manner, which suggests

the possibility of introducing parallelism into the algorithm,

[32]. There are G,LNMPOYQ � blocks of the matrix each of which
is to be multiplied by a different piece of the vector, which

1The indices p have been omitted from the matrices qsr?t�uv in order to

simplify the notation.
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we shall call a vector slice. The vector is divided according

to ���������
	 j and so we shall call these vector slices, � -slices
(for left) and denote them by ��
��
���
�
�����������
	 j T�� , each of size���������! #"%$&��" .
Thus, the E-Sh algorithm consists of a loop over the� ��'�(  #" � -slices, and at each iteration it computes the result-

ing � -slice, � �*)+��� $-,/. "10�2 ����3 "�465 	 j . The computation of
an element of the resulting � -slice corresponds to the multi-
plication of ��� by a column of the matrix ,/. "1072 �!�83 "�465 	 j .
Due to the structure of this matrix, the multiplication there-

fore boils down to the repeated extraction of components

of ��� (at distance ���������! #" apart), forming a vector called9�" � from these components and then multiplying 9�" � by

a column of the matrix ,/. "10 . Notice carefully that 9:" � is
composed of elements of ��� which may not be consecutive.
In a certain sense, it is a slice of ��� . The slice 9�" � corre-
sponds to elements of ��� which must be multiplied by the
elements of the column of ,/. "10 . The structure of the matrix,/. "10;2 ���83 "<4�5 	 j informs us that we must consider ���������! #"
slices 9�" � . Thus, we number the 9�" � from = to ���:�����! #"�>+? .
Extracting a 9:" � is the same as accessing the vector ��� and
choosing the elements at intervals of ���������! #" positions in
the vector.

Once a 9�" � has been obtained, we can compute an ele-
ment of the result by multiplying the 9�" � by a column of,/. "10 . The multiplication of a 9�" � by the entire matrix ,/. "10
therefore provides several elements of the result, a slice of

the result, called 9�@�A 	 . The positions of the elements of 9�@�A 	
in � � correspond to the positions of the elements of 9:" � in
��� . We number the 9�@�A 	 in the same way as we did for 9:" � .
Therefore, the multiplication of the 9�" � �;BDC by ,/. "10 gives9:@EA 	 �FBGC .
A pseudo-code of the E-Sh can be found in [3].

Complexity: The complexity of the algorithm for mul-

tiplying a vector and a classic tensor product may be ob-

tained by observing the number of vector–matrix multipli-

cations that are executed [13, 14]. If we assume that the

matrices ,/. "�0 are stored in a sparse compacted form, and
letting ��9:" denote the number of nonzero elements in the
matrix ,/. "10 , then the complexity of E-Sh is given by

HI
"1J �

��"7$
HK
"�J �

�F9�"
��" )ML
NO L $

HK
"1J �

��9:"
��"

This should be compared to the multiplication of a vec-

tor and , )QP H"�J � ,/. "10 which consists in first computing, , and then multiplying the result with the vector. This has
complexity of the order of L NO L R when the matrices ,/. "10 are
full, and S H"�J � �F9�" for a sparse compacted format. So, E-Sh
is better than this last multiplication for ��9:"UTV�F" � W XY;Z X .
The complexity of the algorithm handling functional depen-

dencies can be found in [3, 13].

The E-Sh has two drawbacks: it uses vector data struc-

ture of size NO and computes all vector elements, even the

zero entries out of NO . In what follows, we remove these two
drawbacks. The idea is the following: for each normal fac-

tor, the nonzero elements of the vector are reordered so that

the elements of a 9:" � are consecutive.

3 Reduced Memory Shuffle Algorithm

Data Structures Used: The fact that we shall store only

the values of the vector that correspond to reachable states

implies that we must keep track of the positions of these

elements in the corresponding vector in NO . We shall assume
that the set of reachable states in already known. This may

be done either by applying an algorithm that explores all

reachable state [22, 8], or by asking the user to provide a

function which represents the set of reachable states of the

system [15].

We shall let ��[8\�]^ denote the set of states which have
nonzero entries in any vector N_ . The probability vectors

are such that ��[�\�]^a` O
, and we represent them with the

help of two arrays of size L O L : the array N_ � bc'�d contains the
entry values and the array N_ � ��[8\ �e f� [ � \ contains the posi-
tions of the reachable states in the corresponding vector in

NO . It is however important to notice that processing the mul-
tiplication of a vector and a normal factor corresponding to

a synchronizing event (with matrix , .
"10
� in Equation 1) may

lead to an intermediate vector N_ for which we do not have��[8\�]^a` O
. We can equally well store these intermediate

vectors in two arrays N_ � bc':d and N_ � ��[�\ �e f� [ � \ of size L O L ifL ��[�\�]^ LhgiL O L . In this case, the positions no longer corre-
spond to the reachable states, but they correspond to ��[8\�]^ .
Notice that most often L ��[�\�]^ L�gjL O L since the intermediate
vectors are obtained via multiplicationwith synchronization

matrices, matrices which are generally very sparse. These

vectors therefore contain many zero elements. However, it

may happen that L ��[8\�]^ L�kaL O L . In this case, it becomes nec-
essary to dynamically reallocate memory in which to store

the vector2.

The principal difficulty in applying ideas of algorithm E-

Sh with the new reduced vector data structure lies in extract-

ing the slices of the vector 9:" � from an � -slice. Indeed, the
previous algorithm used a skipping procedure to extract the

vector slices. When the vector is stored in a reduced struc-

ture, it is not possible to perform these skips. A somewhat

similar method can however be adopted by traversing the

vector and extracting all the 9:" � for the � -slice being treated.
For this, we use an intermediate structure3 that consists of

a set of triplets (number, place, index), each triplet corre-

2We have not yet implemented dynamic reallocation in PEPS. This hap-

pens very rarely in our experience and is the reason why we have not had

need of dynamic reallocation for the moment.
3To implement this structure, we used the Standard Template Library

(STL) containers.
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sponding to an element of the vector �� : number represents

the number of the ����� containing this element; place repre-
sents the place of the element in the ����� ; index represents
the index (the position) of the element in the reduced vector

(
�
	���
�������	�� ���

), it allows us to find the value of the

element as ���� � ����� ��
 �!���#" .
The different steps of the multiplication $&% � '( �*)�+-,/. j1032

4 ��5 0 ( ��67�98;:/. j for the FR-Sh algorithm are de-

tailed below. We differentiate between the nature of $
(probability or intermediate vector) to optimize the perfor-

mance of the algorithm.

Notice first that an < -slice is a set of consecutive elements
and a single sweep over the vector � allows us to determine
the limits of < -slices. For <=%?>#@ �/�/� @ 
 < �*ACB ��D �

, the < -sliceE ) contains elements with index � such that 
 � ' 
GF��IHKJ#B � '< 	 �C� ECL�M ��BN� L 
 M!O �QP
RS
 � ' 
GF��IHKJ#B � ' O <#T ��P
. We han-

dle the < -slices in a sequential manner (but it can be done in
parallel): for each < -slice, we begin by collecting the neces-
sary information for an efficient execution of the remainder

of the algorithm. The set of triplets infozin contains infor-

mations on the ����� of the < -slice, while infozout give infor-
mations on the ��U7V�. when available (the slice to consider in
this case is a < -slice of $ ).

Treatment of an < -slice:
1. Filling infozin: We first perform a traversal of the < -slice
of �C� ECL�M ��BN� L 
 M , to construct a set of triplets called infozin.
For each element, we obtain


�WCXZY[��F
and E <]\ �;� by perform-

ing an integer division of �C� ECL*M ��BN� L 
 M � ��
��!���K" by 
GF��IHKJ#B � :
GWCXZY[��F % �C� ECL�M ��BN� L 
 M � ��
������#"KX L �^
GF��IHKJ#B � andE <_\ �;� % �C� ECL*M ��BN� L 
 M � ��
��!���#"#�`� � 
�F��IHKJ#B � .
An integer division by


GF��IHKJ#B � boils down to fetching the
elements that are spaced


GF��IHKJ#B � apart in the extended vec-
tor.

2. Filling infozout: When $ is a probability vector, the ar-

ray $ � ECL�M ��BN� L 
 M is initialized with the positions of the states
of
�
. This means that we can perform a traversal of the < -

slice of $ � ECL�M �IBN� L 
 M , to construct a set infozout similar to
infozin, but which takes into account the positions of the

vector $ (these may be different from those of � if � is an
intermediate vector). Thus, the fields


GWCXaY[��F
and E <_\ �;�

respectively represent for each element of $ , the number of
the ��U7V�. and the place of the element in the �*UbV�. . When $
is an intermediate vector, we have no information on $ so

there is no infozout.

3. Sorting infozin and infozout: We need to perform a

sort4 on the sets of triplets according to

�WCXZY[��F

so that all

the elements of the same ����� (or ��U7V�. ) end up in adjacent
positions.

4. Treatment of a ����� :
a. Extraction of the ����� : The elements of the same �����

are now placed consecutively and a single traversal of in-

4The STL sort used is introsort, a variant of quicksort which offers a

complexity of cedgfihkjmlGfon in the worst case.

fozin allows us to get the ����� one after the other. When $ is

a probability vector, we extract the ����� only if at least one
of the states of the corresponding ��U7V�. is reachable. This is
obtained by a single traversal of infozout, because the ele-

ments of the same ��U7V�. are now placed consecutively. So

we need not necessary to extract all the ����� as it is done in
E-Sh.

b. Multiplication: When $ is a probability vector, in-

fozout informs us of which elements need to be multiplied,

and we can finally perform the multiplication of the ����� by
the corresponding columns of the matrix. In this case, we

do not have to perform all the products as in E-Sh. On the

other hand, when $ is an intermediate vector, we do not

know a priori the position of the nonzero elements, so we

perform the sparse multiplication of ���9� by the entire ma-
trix, and we store all the nonzero elements as a (position,

value) pair.

5. Storing the result: When $ is a probability vector, we

perform the multiplication for each reachable state and the

information contained in infozout tells us where to store the

value obtained ( $ � � ����� ��
 �!���#" ). The storage therefore takes
place as and when the computations are performed. On the

other hand, when $ is an intermediate vector, we must wait

until the end of the computations with all of the ����� , and
then sort the nonzero elements by increasing position order.

A linear traversal of these elements is sufficient to fill the

tables $ � ECL*M ��BN� L 
 M and $ � � ��� 5.
When all the ����� of a given < -slice have been treated, then

the following < -slice is treated.
A pseudo-code of the FR-Sh can be found in [3].

Complexity of the algorithm: Notice first that we no

longer use arrays of size
� ��p� . All the arrays are of size � ���

since we assume that there is no intermediate vector �� such
that

� ECL*MCqr ��st� ���
. As far as computation time is concerned,

we reduce the number of multiplications to the order of� ��� '^u3v��w=x ��y j� j when $ is a probability vector (where we

assume that the number of nonzero elements per column

is uniform). However, we introduce some supplementary

costs, most notably, the cost of a sort which could reachz O � ��� < L H O � ��� PbP .
When the percentage of nonreachable states is high

(
� �{�}|~� ���� ), the improvement is significant. The computa-
tion and memory cost are somewhat higher than E-Sh when� ���Q��� ��{� . We have therefore fulfilled our objective of not
using any structure of size

� ��p� while maintaining an efficient
algorithm when

� �{��|�� ���� .
4 Numerical results

Now that the algorithms have been presented, we shall

study their performance and compare themwith one another

5It is at this moment that a dynamic reallocation may be needed.
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on the basis of both memory needs and execution time.

All numerical experiments were performed using the

software package, PEPS ([15]), into which we implemanted

the new algorithm. All execution times were measured

to within a tenth of a second on a 531 MHz Pentium III

PC with 128 MB of memory. Convergence was verified

to an absolute precision of ten decimal places, i.e., the re-

sults have a tolerance of the order of ��� T���� . In all exper-
iments, the initial vectors were chosen to be equiprobable,

and we used the unpreconditioned power method. Further-

more, since the new algorithm does not alter the speed of

convergence of the methods, we only provide the total time

needed during execution and not the number of iterations

required for convergence.

The memory use is taken from the system during exe-

cution. It represents the totality of memory used by PEPS

during its execution (i.e., during the solution of a model).

This includes the data, memory structures reserved by the

procedure, and also the process stack. The only parameters

that change from one algorithm to the next are the memory

structures reserved by the algorithms (probability vectors,

intermediate array structures, and so on).

We present results obtained from two classical parallel

systems chosen from the literature ([13, 14, 2]). The first

model, called mutex1, performs resource sharing with the

use of functions; the second, mutex2, represents the same

model, but with functions replaced by synchronizing transi-

tions. The results obtained from a queuing network model

can be found in [3].

In both models, � distinct clients share � identical units
of a common resource. A customer requests use of a re-

source at a rate 	 and frees up resource at a rate 
 . For the
tests, we use the values 	���
 and 
���� . The values of �
and � are varied according to the experiment.

Mutex 1

For this first model, a function is used to represent the

mechanism by which access to the units of resource is re-

stricted. The semantics of this function is as follows: access

permission is granted if at least one unit of the resource is

available. Freeing up resource, as opposed to acquiring re-

source, occurs in an independent manner.

The SAN product state space for this model is of size���
. Notice that when ����� , the reachable state space is of

size ����� , which is considerably smaller than the product
state space, while when ����� the reachable state space is

the entire product state space. Other values of � give rise

to intermediate cases.

The first results we give are for the case in which ���
��
 , and in varying � . In all cases, we have ���� ��� 
"!$#%!�&'
 ,
and, naturally � � � changes with � .

Model E-Sh FR-Sh

� ( )�( ( )�( *+(�,)-( Time Mem Time Mem

sec. Kb Sec Kb

1 17 0.03% 27.2 4208 3.5 2124

4 2517 3.8% 112 4208 22.1 2304

6 14893 22.7% 178.2 4208 93.1 3128

8 39203 59.8% 235.4 4208 267.4 4748

10 58651 89.5% 292.7 4212 478.9 6040

12 64839 98.9% 332 4212 612.9 6448

16 65536 100% 27 4212 377.8 6516

We notice, as expected, that FR-Sh is better than E-Sh in

terms of execution time so long as the percentage of reach-

able states remains reasonable (less than 50%). During exe-

cution, we notice that algorithm FR-Sh permits a reduction

in memory needs with respect to algorithm E-Sh as long as

the percentage of reachable states is sufficiently high. In-

deed, when we are working in reduced vector format, we

use structures of the size of � � � , but an element of the vector
needs additional information which is also stored. Thus,

once we exceed 50% of reachable states, we should not

hope to produce a gain in memory since a vector is stored

with the help of two arrays of size � � � , which is greater than
���� � .
We performed additional experiments on larger models

to determine the limits and the possibilities of the algo-

rithms developed. When �.� �0/ , only algorithm FR-Sh

is successful. With �1�2��� , we have �� �� �3�1��
4#65'5'57#� ��

and � � �$� / #8! / �4#9&':'
 . The solution is obtained in 101,348
seconds and requires 307,768 Kb of memory.

The limits of this algorithm are however reached when

the percentage of nonreachable states is high. When �2;
� � , the memory needs of algorithm FR-Sh become exces-

sive and the solution cannot be computed.

Mutex 2

Let us now look at how this same system may be mod-

eled without using functional transitions. One possibility

is to introduce an additional automaton, a resource pool

automaton, which counts the number of units of resource

available at any moment. The action of a process in acquir-

ing a resource could then be represented as a synchronizing

event requiring the cooperation of the demanding process

and the resource pool. A further synchronizing event would

be needed for a process to return resource to the resource

pool.

The SAN product state space for this model is of size� �=<?> �@�A�CB , and the reachable state space size is identical
to that ofMutex1.

This model allows us to test the efficiency of the new

algorithm in the presence of synchronizations, and hence

intermediate vectors D which do not satisfy E�F�G�HAI � . We
observe that FR-Sh remains efficient in this case.
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Model E-Sh FR-Sh� ( ,� ( � ����
�
��� Time Mem Time Mem

sec. Kb Sec Kb

1 131072 0.01% 13.6 6480 2.2 2368

4 327680 0.77% 85.4 12672 11.1 2628

6 458752 3.25% 174.9 16800 47.9 3628

8 589824 6.65% 296.5 20928 150.3 5564

10 720896 8.14% 563.1 25060 350.9 7116

12 851968 7.61% 1002.5 29188 603.5 7628

16 1114112 5.88% 1861.5 37452 918.2 7780

Furthermore, the use of synchronizations implies a large

number of nonreachable states. Algorithm FR-Sh is there-

fore the most appropriate when the model contains synchro-

nized transitions, both from the point of view of memory

needs as well as from the point of view of execution time.

FR-Sh

0

5000

10000

15000

20000

25000

30000

35000

Mem. use (Kb)

0 10000 20000 30000 40000 50000 60000 � ���

E-Sh

Figure 1. Memory use for the mutex2 model

To verify that the memory required by the new algorithm

really depends on � 	
� and no longer on ���	
� , we have drawn
some curves that depict memory used by the two algorithms

(Figure 1). The memory used by FR-Sh is proportional to

� 	
� , whereas this is not the case for algorithm E-Sh. For E-

Sh we get a straight line in plotting memory use as a func-

tion of ���	�� , which goes to show that the memory used is

indeed proportional to � �	�� . The origin of the straight line
corresponds to the minimummemory needed for the execu-

tion of algorithm FR-Sh on this model (2400 Kb).

5 Conclusions

In this paper we presented a new algorithm based on

the shuffle algorithm. The comparative tests that were per-

formed allow us to reach the following conclusion:

- AlgorithmE-Sh, or the extended shuffle algorithm is

the most efficient when the percentage of reachable states is

large. So, whenever more than half the states are reachable,

this is the preferred algorithm.

- Algorithm FR-Sh, or the fully reduced shuffle algo-

rithm keeps all data structures at the reduced size. This

permits us to handle very large models, models which the

other algorithm cannot handle. We notice however a loss in

computation time and in memory needs with respect to E-

Sh when there are few unreachable states. This is the price

we pay in order to be able to handle the largest models. A

formal study of the complexity as a function of the percent-

age of reachable states and of the problem size is part of our

future work.

We shall also compare our results with those obtained

in generating the global matrix (in Harwell-Boeing (HB)

format) and then performing a vector-matrix multiplication

using standard sparse matrix multiplication. When it is pos-

sible to obtain the global matrix, there is no doubt that time-

wise this algorithm performs best. It is from the memory

point of view that it is limited. Therefore, the new algo-

rithm allows us to solve models that can not be solved with

the HBF algorithm. In the SANs formalism, the use of func-

tions allows a decrease in the size of the product state space.

The use of a generalized tensor algebra ([13, 2]) permits

tensor operations on matrices to have functional character-

istics. However, the cost of matrix evaluation is high and

so we try to limit their number. Some techniques have been

developed in order to decrease the number of matrix evalua-

tions in the shuffle algorithmE-Sh [13, 14]. One possibility

that we considered is a reordering of the automata. Some

details are provided in [3] on the manner in which the newly

presented algorithm need to be modified in order to handle

the reordering of automata. Automata grouping ([13]) is

another technique that may be used to decrease the number

of function evaluations, but this technique is not presented

here because the reduced storage of vectors does not cause

any change to these procedures.

Finally, the new algorithms was only compared to the

extended shuffle algorithm and the algorithm that generates

the global matrix in HB format. A comparison with other

classical algorithms, and notably algorithms that use Petri

nets, [5, 21], were not included. Such a comparison will

be performed in future work. We also propose to perform

comparisons with our algorithms and matrix diagrams. In-

deed, Ciardo in [7] presents a comparison between these

two approaches, but he does not use the most recent algo-

rithm developed for the Kronecker approach. His results

show that matrix diagrams have a substantial advantage on

the Act-Sh-JCB of [6], but it is now necessary to perform

new experiments with FR-Sh in order to have comparisons

with an algorithm which improves both the memory needs

and the computation time when there is a lot of unreachable

states.

These improvements to the shuffle algorithm will allow

us to model and analyze even larger parallel and distributed

systems, something that seems to us to be of primary im-

portance in the evolution of such systems.
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