Decentralized Dynamic Scheduling
across Heterogeneous Multi-core
Desktop Grids

Jaehwan Lee, Pete Keleher, Alan Sussman

Department of Computer Science
University of Maryland




Multi-core is not enough

* Multi-core CPU is the current trend of desktop
computing

* Not easy to exploit Multi-core in a single machine
for high throughput computing

= “Multicore is Bad news for Supercomputers”, S.
Moore, IEEE Spectrum, 2008

* We have proposed decentralized solution for
initial job placement for Multi-core Grids, but..

Dynamic Re-scheduling can surely improve

performance even more ...




Motivation and Challenges

* Why is dynamic scheduling needed?
= Stale load information
= Unpredictable job completion times
= Probabilistic initial job assignment

* Challenges for decentralized dynamic
scheduling for multi-core grids

= Multiple resource requirements
= Decentralized algorithm needed
= No Job starvation allowed



Our Contribution

* New Decentralized Dynamic Scheduling
Schemes for Multi-core Grids

" Intra-node scheduling
" Inter-node scheduling
= Aggressive job migration via Queue Balancing

* Experimental Results via extensive simulation
= Performance better than static scheduling
= Competitive with an online centralized scheduler
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Overall System Architecture
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Backfilling

* Basic Concept
CPUs 4
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* Features
= Job running time must be known
= Conservative vs. EASY Backfilling

" |naccurate job running time estimates reduce overall
performance



Approaches for K-resource requirements

* Backfilling with multiple resource requirements
(Leinberger:SC’99)
= Backfilling in a single machine
= Heuristic approaches
= Assumption : Job Running times are known

* Job migration to balance K-resources between nodes
(Leinberger:HCW’00)

= Reduce local load imbalance by exchanging jobs, but does
not consider overall system loads

= No backfilling scheme
= Assumption : near-homogeneous environment
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Dynamic Scheduling

* After Initial Job assignment, but before the job
starts running, dynamic scheduling algorithm
invoked Periodically

* Costs for dynamic scheduling

= Job Migration Cost

* None : For intra-node scheduling

* Minimal : For inter-node scheduling & Queue balancing
= CPU cost : None

* No preemptive scheduling : Once a job starts running, it
won’t be stopped due to dynamic scheduling.



Intra-Node Scheduling

e Extension of Backfilling with
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Which job should be backfilled?

* |f multiple jobs can be backfilled,
= Backfill Balanced (BB) (Leinberger:SC’99) algorithm

* Choose the job with minimum objective function(= BM x
FM)

* Balance Measure (BM)
Maximum Utilization
= BM =

Average Utilization
= Minimize uneven usage across multiple resources

* Fullness Measure (FM)
= FM =1 — Average Utilization
= Maximize average utilization



Inter-node Scheduling

* Extension of Intra-node scheduling across nodes
* Node Backfilling Counter (NBC)

= Maximum BC of jobs in the node’s waiting queue

= Only jobs whose BC is equal to or greater than NBC of the target
node can be migrated

= No job starvation
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Inter-node Scheduling — PUSH vs. PULL

* PUSH

A job sender initiates the process

Sender tries to match every job in its queue with residual resources in its
neighbors in the CAN

If a job can be sent to multiple nodes, pick the node with minimum objective
function, and prefer a node with the fastest CPU

1

nter— PU S — B:\[ : F:\[ :
JInter—PUSH CPUenins

* PULL

A job receiver initiates the process

Receiver sends a PULL-Request message to the potential sender (the one with
maximum current queue length)

Potential sender checks whether it has a job that can be backfilled, and the job
satisfies BC condition

If multiple jobs can be sent, choose the job with minimum objective function (=
BM x FM )

If no job can be found, send a PULL-Reject message to receiver

The receiver looks for another potential sender among neighbors, if gets a
PULL-Reject message



Queue Balancing

* Intra-node scheduling & Inter-node scheduling look for job
that can start running immediately, to use current residual

resources

* Add Proactive job migration for queue (load) balancing
= Migrated job does not have to start immediately

* Use normalized Load measure for a node with multiple

resources (Leinberger:HCW’00)

= For each resource, sum all job’s requirements in the queue and
normalize it with respect to node’s resource capability

= Load on a node defined as the maximum of those

e PUSH & PULL schemes can be used
= Minimize total local loads (= sum of loads of neighbors, TLL)

* Minimize maximum local load among neighbors (MLL)
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Experimental Setup

* Event-driven Simulations
= A set of nodes and events
* 1000 initial nodes and 5000 job submissions

* Jobs are submitted with average inter-arrival time t (with a
Poisson distribution)

* Anode has 1,2,4 or 8 cores

* Job run times uniformly distributed between 30 and 90
minutes

* Node Capabilities and Job Requirements
* CPU, Memory, Disk and the number of cores

* Job requirement for a resource can be omitted (Don’t care)

= Job Constraint Ratio : The probability that each resource type for
a job is specified

= Steady state experiments



Comparison Models

* Centralized Scheduler (CENT)

" Online and global scheduling mechanism with a single wait
queue

= Not feasible in a complete implementation of P2P system
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* Tested combinations of our schemes
= Vanilla : No dynamic scheduling (Static Scheduling only)
L : Intra-node scheduling only
LI : L + Inter-node scheduling
LIQ : LI + Queue balancing
LI(Q)-PUSH/PULL : LI & LIQ with PUSH/PULL options



Performance varying system load
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Number of Messages

Overheads

* PULL has higher cost than PUSH
= Active search (lots of trials and rejects)

e Other schemes are similar to Vanilla
= No significant additional overhead
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Performance varying Job Constraint Ratio

LIQ-PULL : best
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Evaluation Summary

* Performance
= LIQ-PULL is competitive to CENT

* Inter-node Scheduling has major impact on
performance

= PULL is better than PUSH (more aggressive search)

= Good performance can be achieved regardless of
system load and job constraint ratio

= it’s worthwhile to do dynamic load balancing

* Overheads
= PULL > PUSH (more aggressive search)
= Competitive to Vanilla



Conclusion and Future Work

New decentralized Dynamic Scheduling for Multi-core P2P
Grids

= Extension of Backfilling (Intra-node/Inter-node)
= Backfilling Counter : No Job Starvation
= Proactive Queue Balancing

Performance Evaluation via simulation
= Better than Static Scheduling
= Competitive performance to CENT
= Low overhead

Future work
= Real grid experiments (in cooperation with Astronomy Dept.)

= Decentralized Resource Management for Heterogeneous
Asymmetric Multi-processors



