Decentralized Dynamic Scheduling
across Heterogeneous Multi-core
Desktop Grids

Jaehwan Lee, Pete Keleher, Alan Sussman

Department of Computer Science
University of Maryland

Multi-core is not enough

* Multi-core CPU is the current trend of desktop
computing

* Not easy to exploit Multi-core in a single machine
for high throughput computing

= “Multicore is Bad news for Supercomputers”, S.
Moore, IEEE Spectrum, 2008

* We have proposed decentralized solution for
initial job placement for Multi-core Grids, but..

Dynamic Re-scheduling can surely improve

performance even more ...

Motivation and Challenges

* Why is dynamic scheduling needed?
= Stale load information
= Unpredictable job completion times
= Probabilistic initial job assignment

* Challenges for decentralized dynamic
scheduling for multi-core grids

= Multiple resource requirements
= Decentralized algorithm needed
= No Job starvation allowed

Our Contribution

* New Decentralized Dynamic Scheduling
Schemes for Multi-core Grids

" Intra-node scheduling
" Inter-node scheduling
= Aggressive job migration via Queue Balancing

* Experimental Results via extensive simulation
= Performance better than static scheduling
= Competitive with an online centralized scheduler

Outline

* Background

* Related work
* Our approach
* Experimental Results

* Conclusion & Future Work

Overall System Architecture

e P2P grid
g ______ Job J
-7 - Initiate
.7 Owner
Heartbeat _~-=" Node
2 Route -~ S _
) Job J % . Send
7 N
K R S~ JobJ Find
/ / Heartbeat
/ I/) '
‘ Insert i
Job J .
Injection Run
Clients - Node Peer-to-Peer Node
Network]
(DHT - CAN)

Assign GUID

to Job J FIFO Job Queue

Matchmaking Mechanism in CAN
Memory ¢

e e e
d d d
—————————————————— e
1 1

! ! Node
| : J ;;
""""""" Pushing - t‘"““:‘“' FIFO Queue , 1

JobJ
‘ ‘ ‘ l Heartbeat

Client

|

InsertJ

M;

C, CPU

Outline

* Background

* Related work

* Our approach
* Experimental Results

* Conclusion & Future Work

Backfilling

* Basic Concept
CPUs 4

Job2 Job4

Job1l

Job3

Time

* Features
= Job running time must be known
= Conservative vs. EASY Backfilling

" |naccurate job running time estimates reduce overall
performance

Approaches for K-resource requirements

* Backfilling with multiple resource requirements
(Leinberger:SC’99)
= Backfilling in a single machine
= Heuristic approaches
= Assumption : Job Running times are known

* Job migration to balance K-resources between nodes
(Leinberger:HCW’00)

= Reduce local load imbalance by exchanging jobs, but does
not consider overall system loads

= No backfilling scheme
= Assumption : near-homogeneous environment

Outline

* Background

 Related work

* Our approach

* Experimental Results

* Conclusion & Future Work

Dynamic Scheduling

* After Initial Job assignment, but before the job
starts running, dynamic scheduling algorithm
invoked Periodically

* Costs for dynamic scheduling

= Job Migration Cost

* None : For intra-node scheduling

* Minimal : For inter-node scheduling & Queue balancing
= CPU cost : None

* No preemptive scheduling : Once a job starts running, it
won’t be stopped due to dynamic scheduling.

Intra-Node Scheduling

e Extension of Backfilling with

. . J
multiple resource requirements 3

Running J, <G Backfilling
N\
Job \

* Backfilling Counter (BC)

* |nitial value : 0 geadof
ueue

o)
(@]

—
oy
~- -_”

= Counts number of other jobs
that have bypassed the job J 15

N&

W

o N e e

" Only a job whose BC is equal
to or greater than maximum
BC of jobs in the queue can be
backfilled Quad-core CPU

-l;\

Queue

* No job starvation

Which job should be backfilled?

* |f multiple jobs can be backfilled,
= Backfill Balanced (BB) (Leinberger:SC’99) algorithm

* Choose the job with minimum objective function(= BM x
FM)

* Balance Measure (BM)
Maximum Utilization
= BM =

Average Utilization
= Minimize uneven usage across multiple resources

* Fullness Measure (FM)
= FM =1 — Average Utilization
= Maximize average utilization

Inter-node Scheduling

* Extension of Intra-node scheduling across nodes
* Node Backfilling Counter (NBC)

= Maximum BC of jobs in the node’s waiting queue

= Only jobs whose BC is equal to or greater than NBC of the target
node can be migrated

= No job starvation

Running J,
Job

NBC: 2

<

BC

Node A

Running J,

N Job

\

\
\

\~-— Jz.

J;

J

Node B

Jy

Running J.
Job >
4
é NBC:0
il
/ 9
J10
Node C

Inter-node Scheduling — PUSH vs. PULL

* PUSH

A job sender initiates the process

Sender tries to match every job in its queue with residual resources in its
neighbors in the CAN

If a job can be sent to multiple nodes, pick the node with minimum objective
function, and prefer a node with the fastest CPU

1

nter— PU S — B:\[: F:\[:
JInter—PUSH CPUenins

* PULL

A job receiver initiates the process

Receiver sends a PULL-Request message to the potential sender (the one with
maximum current queue length)

Potential sender checks whether it has a job that can be backfilled, and the job
satisfies BC condition

If multiple jobs can be sent, choose the job with minimum objective function (=
BM x FM)

If no job can be found, send a PULL-Reject message to receiver

The receiver looks for another potential sender among neighbors, if gets a
PULL-Reject message

Queue Balancing

* Intra-node scheduling & Inter-node scheduling look for job
that can start running immediately, to use current residual

resources

* Add Proactive job migration for queue (load) balancing
= Migrated job does not have to start immediately

* Use normalized Load measure for a node with multiple

resources (Leinberger:HCW’00)

= For each resource, sum all job’s requirements in the queue and
normalize it with respect to node’s resource capability

= Load on a node defined as the maximum of those

e PUSH & PULL schemes can be used
= Minimize total local loads (= sum of loads of neighbors, TLL)

* Minimize maximum local load among neighbors (MLL)

Outline

* Background
» Related work

* Our approach

* Experimental Results

* Conclusion & Future Work

Experimental Setup

* Event-driven Simulations
= A set of nodes and events
* 1000 initial nodes and 5000 job submissions

* Jobs are submitted with average inter-arrival time t (with a
Poisson distribution)

* Anode has 1,2,4 or 8 cores

* Job run times uniformly distributed between 30 and 90
minutes

* Node Capabilities and Job Requirements
* CPU, Memory, Disk and the number of cores

* Job requirement for a resource can be omitted (Don’t care)

= Job Constraint Ratio : The probability that each resource type for
a job is specified

= Steady state experiments

Comparison Models

* Centralized Scheduler (CENT)

" Online and global scheduling mechanism with a single wait
queue

= Not feasible in a complete implementation of P2P system

el
al

i;

JobJ

CPU > 2.0GHz
Mem > 500MB

Disk > 1GB

"

=
Lk

* Tested combinations of our schemes
= Vanilla : No dynamic scheduling (Static Scheduling only)
L : Intra-node scheduling only
LI : L + Inter-node scheduling
LIQ : LI + Queue balancing
LI(Q)-PUSH/PULL : LI & LIQ with PUSH/PULL options

Performance varying system load

LIQ-PULL > LI-PULL > LIQ-PUSH
> LI-PUSH > L >= Vanilla

Average Wait Time

Inter-node scheduling 200 | Vanila —s—
provides big improvement . 180 LpUsH -
0]
. — 160 LI-PULL
PULL is better than PUSH LIQ-PUSH —o—
L 140 LIQ-PULL —e&— -
= Inoverloaded system, PULLis = ., CENT ——
better to spread information |
due to aggressive trial for job = %07
migration (Demers:PODC’87) =
@
Intra-node scheduling cannot g
guarantee better performance g
than Vanilla <
e 0 1 1 I T —4
= The Backfilling Counter does 2 2.2 24 2.6 2.8 3
not ensure that other waiting Job Inter-arrival Time (s)

jobs will not be delayed
(different from conservative
backfilling)

Number of Messages

Overheads

* PULL has higher cost than PUSH
= Active search (lots of trials and rejects)

e Other schemes are similar to Vanilla
= No significant additional overhead

Average Number of Messages (per min per node Average Volume of Messages (per min per node, kbytes)
205 r | 1 | 1 l —_ 282 [
0
. =
20 & - S 280 ¢
Q
d
19.5 - ~ g
Vanilla —»— D) 278
19 | L -8
LI-PUSH —&— g
LI-PULL w276
185 + LIQ-PUSH —&— - 0 e
LIQ-PULL —e— L
274 - . -
18 + Uy Vanilla ——
0 L
i = LI-PUSH —8—
e e = + g o L-PULL =
3 LIQ-PUSH —&—
17 : . ‘ ! ‘ g 270 I ! . LlQ-PU|LL e |
2 22 24 26 2.8 3 2 292 24 26 28 3

Job Inter-arrival Time (s) Job Inter-arrival Time (g)

Performance varying Job Constraint Ratio

LIQ-PULL : best

LIQ - LI Average Wait Time
LIQ-PULL is competitive [“wie—" =
to CENT D LPULL o

600 [LIQ-PUSH —&—
LIQ-PULL —e—
500 L CENT —a—

For 80% Job Constraint
Ratio, LIQ-PULL
performance gets
relatively worse

= difficult to find a

capable neighbor for N - —

job migration, because 20 30 40 50 60 oo
. . Percentage of Job Constraint %
jobs are more highly

constrained

400

300 -

200

Average Wait Time

100

Evaluation Summary

* Performance
= LIQ-PULL is competitive to CENT

* Inter-node Scheduling has major impact on
performance

= PULL is better than PUSH (more aggressive search)

= Good performance can be achieved regardless of
system load and job constraint ratio

= it’s worthwhile to do dynamic load balancing

* Overheads
= PULL > PUSH (more aggressive search)
= Competitive to Vanilla

Conclusion and Future Work

New decentralized Dynamic Scheduling for Multi-core P2P
Grids

= Extension of Backfilling (Intra-node/Inter-node)
= Backfilling Counter : No Job Starvation
= Proactive Queue Balancing

Performance Evaluation via simulation
= Better than Static Scheduling
= Competitive performance to CENT
= Low overhead

Future work
= Real grid experiments (in cooperation with Astronomy Dept.)

= Decentralized Resource Management for Heterogeneous
Asymmetric Multi-processors

