A First Step to the Evaluation of SimGrid in the Context of a Real Application

Abdou Guermouche and Hélène Renard,
LaBRI/Univ Bordeaux I - I3S/École polytechnique universitaire de Nice-Sophia Antipolis

April 19, 2010
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
Data redistribution algorithms: context

Target platforms: distributed heterogeneous platforms (network of workstations, clusters of clusters, grids, etc.)

1. Various sources of load imbalance: application requirements / platform.

2. The data must be redistributed to achieve a better load balancing.

3. No discussion of the mechanism of load balancing we consider it as given.
The algorithm operates on a wide array of rectangular sample data:
- The array is split in vertical slices;
- This geometric constraint recommends that processors must be organized as a virtual ring:
 - Each processor only communicates twice (once with each neighbor).

Figure: Communication scheme.
Redistribution problem for heterogeneous bidirectional rings

Definition

A redistribution is light if each processor initially owns all data that it will send during the execution of the algorithm.

Minimize τ subject to

$$
\begin{align*}
S_{i,i+1} &\geq 0 & 1 \leq i \leq n \\
S_{i,i-1} &\geq 0 & 1 \leq i \leq n \\
S_{i,i+1} + S_{i,i-1} - S_{i+1,i} - S_{i-1,i} & = \delta_i & 1 \leq i \leq n \\
S_{i,i+1}c_{i,i+1} + S_{i,i-1}c_{i,i-1} & \leq \tau & 1 \leq i \leq n \\
S_{i+1,i}c_{i+1,i} + S_{i-1,i}c_{i-1,i} & \leq \tau & 1 \leq i \leq n
\end{align*}
$$

To lead to ...

We can use the solution of System 1 safely.
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
Laplace equation

Context

- A metal plate to which is applied a source of heat from the edges.
- The heat will spread within plate.
- The temperature at the edges is kept constant, the heat distribution in the plate tends to a stationary state.

Laplace equation: \[\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0 \]
Laplace equation: \[\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0 \]

Resolution:

1. Approximating the solution \(\Rightarrow\) discretization \(\Rightarrow\) grid \(n^2\) points

2. Using finite differences on the Laplace equation, this is equivalent to iteratively solve the following equation:

\[4x_{i,j} - (x_{i-1,j} + x_{i+1,j} + x_{i,j-1} + x_{i,j+1}) = 0 \]
Laplace equation: \[
\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0
\]

⇒ Same pattern of communication as the ring of processors

⇒ Communication only with immediate neighbors.

Figure: Communication scheme.

3. Solving a linear system

⇒ Jacobi, since it is of the form: \(Ax = b \), with \(A \) and \(x \) as

\[
\begin{pmatrix}
\vdots & \vdots & \vdots \\
-1 & -1 & 4 & -1 & -1 \\
\vdots & \vdots \\
\end{pmatrix}
\begin{pmatrix}
x_{1,1} \\
x_{1,2} \\
\vdots \\
x_{n,n-1} \\
x_{n,n}
\end{pmatrix}
= b
\]
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
Grid’5000 vs SimGrid

Goal: Compare the behavior of algorithms for load balancing and data redistribution on two different "platforms":

- Grid’5000
- SimGrid
The master and the workers

- This organization is used in both the simulated and real-life context.
- The difference comes from the monitor which is given by SimGrid in the simulated context.

Figure: Experimental scheme: the master and the workers.
The master and the workers

Figure: Experimental scheme: the *master* and the *workers*.

Master:
- Gather the results of the measurements.
- Call the redistribution algorithms when needed.

Abdou Guermouche
The master and the workers

Monitor:

 Modiﬁy (using \texttt{wrekavoc}) the characteristics of the platform.

Figure: Experimental scheme: the master and the workers.
The master and the workers

Figure: Experimental scheme: the master and the workers.

Slaves:
- Do all the computations and communications.
- Exchange data for redistribution according to the results of the master.
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
In our context, Wrekavoc is used to
- control CPU and network capabilities;
- of randomly chosen resources;
- in order to study the behavior of the application.

Figure: Wrekavoc in pictures
Grid’5000 vs SimGrid

1. Real and simulated execution:
 - Retrieve through measurements:
 - processor speed
 - network latency
 - inbound bandwidth
 - ...

2. Differences:
 - Real execution: the modification of the characteristics of the platform are done using wrekavoc,
 - Simulated execution: the modification of the characteristics of the platform is a built-in functionality of SimGrid.
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
Grid’5000 vs SimGrid

Experimental results

(a) No platform variation.
(b) With platform variation (3 platform variations, once every 29 iterations).

Figure: Time needed (in seconds) for each iteration on the real-life and the simulated platform: one site platform.
Grid’5000 vs SimGrid

(a) No platform variation.

(b) With platform variation (3 platform variations, once every 29 iterations).

Figure: Time needed (in seconds) for each iteration on the real-life and the simulated platform: two sites platform.
Experimental results

Grid’5000 vs SimGrid

Figure: Time needed (in seconds) for each iteration on the real-life and the simulated platform: five sites platform.

(a) No platform variation.

(b) With platform variation (3 platform variations, once every 29 iterations).
Experimental results

Grid’5000 vs SimGrid

(a) No platform variation.
(b) With platform variation
(3 platform variations, once every 29 iterations).

Figure: Time needed (in seconds) for each iteration on the real-life and the simulated platform: two sites platform. Each iteration is three time more costly than a regular one.
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
1. Two versions of the same application: the propagation of heat
 - Simulated implementation on top of SimGrid.
 - Real-life implementation running on the Grid’5000 platform.
 - Using wrekavoc to control the characteristics of the platform.
 - Use the same platform characteristics over time in the two contexts.

2. The observed behavior for the simulated case is very close to that of a real execution.

3. A first step for validation of SimGrid in the context of complex applications.