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Motivation : Heterogeneity Redefined

• Cost  Effective High Performance Custom Built 
Heterogeneous Multi-Core Node Design for wider 
class applications

– Inter and Intra core heterogeneity

• Breaking the Conventions

– Multiple User Multiple Application without Space-
Time sharing in a Cluster : Cost sharing across users

– Single User Multiple Application without Space-Timer 
Sharing (non-multiprogramming) : Cost sharing across 
applications
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Overview

• Custom Built Heterogeneous Multi-Core 
Architectures (CUBEMACH)

• Design Space 
– Architectural Space

– Optimization Space 
– Customer Vendor Interaction

– Simulation Space

• CUBEMACH Design and Simulation Tool 
Framework

• Conclusion
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Custom Built Heterogeneous Multi-Core Architectures 
(CUBEMACH)

• CUBEMACH promises

– Increased Resource Utilization

– Multiple Application Flavored Architectures

– Elimination of Space Time Sharing at the Quantum 
Level during Multiple Application Execution

– Manufacturing and Operational Cost reduction
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CUBEMACH Design Paradigm
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ONNET

CUBEMACH

Architectural Space

SCOSPCOS

Compiler-On-
Silicon

ALFU

SRAMDRAM

Memory
ALISA

Architectural Design Space - CUBEMACH
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Architectural Space

• Why ALU Why Not ALFU??

– Hardwired units

–Design : Homogeneously Structured 

–Reduced Instruction Generation & Fetches : 
Employ a Higher Level ISA

–Reduced memory-functional unit 
interaction 

–Helps execute multiple applications without 
space & time sharing
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ALU vs ALFU Instruction Generation Results

10
Chennai, India



Sample Algorithm Level Functional Units

• Matrix Centric Units

• Matmul

• Matadd

• Chain Matadd

• Scalar Units

• Scalar Adder / Subtractor

• Scalar Multiplier

• Scalar Divider

• Comparator

• Sorter

• Multiple Operand Adder

• Min / Max Finder

• Vector Units

• Inner Product

• Graph Theoretic Units

• Graph Traversal Unit –

BFS, DFS

• KL Graph  Partitioning

Architectural Space Contd…
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ALISA – Algorithm Level Instruction Set Architecture

• Algorithm Level Instructions

• Triggers ALFUS

• ALISA       Multiple VLIWs

• ALISA for heterogeneous multi-cores

Architectural Space Contd…
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Hierarchical Compilation Scheme

• PCOS Partitions A Problem 

Into Sub-Problems – Level 1

• SCOS Partitions The Sub-

Problems Into ALFU Level 

Instruction – Level 2

PCOS

SCOS

Application

Sub - Application

Instruction

Architectural Space Contd…
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ALISA & Compiler On Silicon
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ON-Node-Network Architecture

2D - Torus

Sub-Local Router Local Router

ALFU

Population

Global Router

Core

Architectural Space Contd…

15
Chennai, India



ON-Node-Network Architecture

H- Tree 
Topology

Architectural Space Contd…

Sub-Local Router

Local Router

Global Router
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ONNET Conventional 
NOCs

Type of Switch MIN Crossbar
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Routers
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Inputs) * Switch 
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Number of Inputs
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Comparison of Conventional NOCs with ONNET
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On Node Network Architecture
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Overview

• Motivation
• Custom Built Heterogeneous Multi-Core 

Architectures (CUBEMACH)
• Design Space 

– Architectural Space
– Optimization Space 

–Customer Vendor Interaction
– Simulation Space

• CUBEMACH Design and Simulation Tool 
Framework

• Conclusion
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Optimization Space

• Generates Optimized CUBEMACH for input 
specifications such as,

– Power – Performance – Cost

– Initial Architecture

• Power and Performance Model

• Uses GT and SA for optimization of Power and 
performance

• Uses KL For Core Grouping
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Sample CUBEMACH Architecture

22



CUBEMACH Design 
Implementation : Supercomputer 

On Chip (SCOC) IP Cores

23
Chennai, India



SCOC IP Cores

• ALFUs  designed as SCOC  IP Cores

• Soft IP Core

• Coarse-grained Reusable Soft IP Cores

• Scalable IP Cores
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Customer Vendor Interaction

App 2
App 3
App 4

App 1CUBEMACH 
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Design 
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Intermediate 
CUBEMACH
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Optimization Space Contd…
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CUBEMACH Simulator

• pThread based Simulator

• Evaluates candidate CUBEMACH   Architecture

• Feed results to CUBEMACH Optimizer

• CUBEMACH Optimization Engine (COE) produces   
Optimized Architecture

• Simulation & Optimization : An iterative process

• Consists of        

ALFU Sub-Simulator         COS Sub-Simulator                                         

ONNET Sub-Simulator    Memory Sub-Simulator
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CUBEMACH Simulator
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Integrated CUBEMACH Design 
Paradigm … 

What we have seen . . .
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Sample CUBEMACH Architecture : 

Simulation Results

Matrix Based Algorithms Graph Based Algorithms 
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Sample CUBEMACH Architecture : 

Simulation Results

Mixture of Algorithms Comparison of Performance 

delivered by Optimized 

Architectures for corresponding 

types of Algorithms
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Overall Resource Utilization of :
(i) Initial CUBEMACH Architecture         : Mean = 59 %
(ii) Optimized CUBEMACH Architecture : Mean = 74 %

Sample CUBEMACH Architecture : 

Simulation Results
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In Initial Candidate CUBEMACH 
Architecture,

•Matrix ALFUS – low usage
•Scalar ALFUS – average usage
•Graph ALFUS – high usage 

In Optimized Candidate CUBEMACH 
Architecture,

•Matrix ALFUS – high usage
•Scalar ALFUS – high usage
•Graph ALFUS – high usage 

Sample CUBEMACH Architecture : 
Simulation Results
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Conclusion

• Custom Built Heterogeneous Multi-Core 
Architectures (CUBEMACH) promises,

– Increased Resource Utilization

– Multiple application flavored architectures

– Elimination of Space Time Sharing at the Quantum 
Level during Multiple Application Execution 
(without multiprogramming) 

– Manufacturing and Running Cost reduction
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Thank You

Questions??
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Customizable Compiler-On-Silicon

• What  Compiler-On-Silicon?

• Why do we  need Compiler-On-Silicon ?

• Why go for Customizable Compiler-On-Silicon ?

Architectural Space Contd…
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ONNET 

Architecture uses -

• Multistage Interconnect Network

• Hardware Packetization Unit

• ONNET Design Space 

– H-Tree Structure within a Core

– 2D Torus Across Cores

– MIN Type

Architectural Space Contd…
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Architectural Design Space - CUBEMACH

• ALFU – Algorithm Level Functional Units

• BISA – Backbone Instruction Set Architecture

• COS – Compiler On Silicon

• ONNET – On Node Network

• Novel Cache Mapping Scheme

• SCOC IP Cores : Achieving cost effectiveness

( Super Computer On Chip - IP Cores)
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Features  -

• Communication across heterogeneous  multi-cores

• Data requirements of diverse ALFUs

• High bandwidth

• Scalable

• Hierarchical Network-On-Chip 

On Node Network Architecture
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SRAMDRAM
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Advantages of SCOC IP Cores

• Fully Customizable

• Greatly reduces Design-Turnaround-Time

• Physically Design Friendly

– Constraints of Area, Power and Performance

• Constrained & Rigid Design Methodology
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