CUstom Built HEterogeneous Multi-Core ArCHitectures (CUBEMACH): Breaking the Conventions

Nagarajan Venkateswaran Director, Waran Research Foundation

Karthikeyan Palavedu Saravanan - Nachiappan Chidambaram Nachiappan Research Trainees (2008 - 2010), Waran Research Foundation

Aravind Vasudevan - Balaji Subramaniam - Ravindhiran Mukundarajan Former Research Trainees (2007 - 2009), Waran Research Foundation

Motivation : Heterogeneity Redefined

- Cost Effective High Performance Custom Built Heterogeneous Multi-Core Node Design for wider class applications
 - Inter and Intra core heterogeneity
- Breaking the Conventions
 - Multiple User Multiple Application without Space-Time sharing in a Cluster : Cost sharing across users
 - Single User Multiple Application without Space-Timer Sharing (non-multiprogramming) : Cost sharing across applications

Overview

- Custom Built Heterogeneous Multi-Core Architectures (CUBEMACH)
- Design Space
 - Architectural Space
 - Optimization Space
 - Customer Vendor Interaction
 - Simulation Space
- CUBEMACH Design and Simulation Tool Framework
- Conclusion

Custom Built Heterogeneous Multi-Core Architectures (CUBEMACH)

- CUBEMACH promises
 - Increased Resource Utilization
 - Multiple Application Flavored Architectures
 - Elimination of Space Time Sharing at the Quantum Level during Multiple Application Execution
 - Manufacturing and Operational Cost reduction

Overview

- Custom Built Heterogeneous Multi-Core Architectures (CUBEMACH)
- Design Space
 - Architectural Space
 - Optimization Space
 - Customer Vendor Interaction
 - Simulation Space
- CUBEMACH Design and Simulation Tool Framework
- Conclusion

CUBEMACH Design Paradigm

Architectural Design Space - CUBEMACH

Architectural Space

- Why ALU Why Not ALFU??
 - Hardwired units
 - Design : Homogeneously Structured
 - Reduced Instruction Generation & Fetches : Employ a Higher Level ISA
 - Reduced memory-functional unit interaction
 - Helps execute multiple applications without space & time sharing

Algorithm Level Functional Unit

ALU vs ALFU Instruction Generation Results

Sample Algorithm Level Functional Units

- Scalar Units
 - Scalar Adder / Subtractor
 - Scalar Multiplier
 - Scalar Divider
 - Comparator
 - Sorter
 - Multiple Operand Adder
 - Min / Max Finder
- Vector Units
 - Inner Product

• Matrix Centric Units

Architectural Space Contd...

- Matmul
- Matadd
- Chain Matadd
- Graph Theoretic Units
 - Graph Traversal Unit –
 BFS, DFS
 - KL Graph Partitioning

Architectural Space Contd...

- Algorithm Level Instructions
- Triggers ALFUS
- ALISA \rightarrow Multiple VLIWs
- ALISA for heterogeneous multi-cores

Instruction – Level 2

Instruction

ALISA & Compiler On Silicon

Architectural Space Contd...

ON-Node-Network Architecture

Architectural Space Contd... **ON-Node-Network Architecture** H- Tree Topology **Global Router**

WAran Research FoundaTion Chennai, India

Local Router

Sub-Local Router

Comparison of Conventional NOCs with ONNET

	ONNET	Conventional NOCs
Type of Switch	MIN	Crossbar
Number of Routers	N* log ₂ (N)	N ²
Hierarchy	Yes	No
Switching Latency	Log ₂ (Number of Inputs) * Switch Delay	Number of Inputs * Switch Delay

On Node Network Architecture

Overview

- Motivation
- Custom Built Heterogeneous Multi-Core Architectures (CUBEMACH)
- Design Space
 - Architectural Space
 - Optimization Space
 - Customer Vendor Interaction
 - Simulation Space
- CUBEMACH Design and Simulation Tool Framework
- Conclusion

Optimization Space

Optimization Space

- Generates Optimized CUBEMACH for input specifications such as,
 - Power Performance Cost
 - Initial Architecture
- Power and Performance Model
- Uses GT and SA for optimization of Power and performance
- Uses KL For Core Grouping

Sample CUBEMACH Architecture

CUBEMACH Design Implementation : Supercomputer On Chip (SCOC) IP Cores

SCOC IP Cores

- ALFUs designed as SCOC IP Cores
- Soft IP Core
- Coarse-grained Reusable Soft IP Cores
- Scalable IP Cores

Optimization Space Contd... Customer Vendor Interaction

Overview

- Motivation
- Custom Built Heterogeneous Multi-Core Architectures (CUBEMACH)
- Design Space
 - Architectural Space
 - Optimization Space
 - -Customer Vendor Interaction
 - Simulation Space
- CUBEMACH Design and Simulation Tool Framework
- Conclusion

CUBEMACH Simulator

- pThread based Simulator
- Evaluates candidate CUBEMACH Architecture
- Feed results to CUBEMACH Optimizer
- CUBEMACH Optimization Engine (COE) produces Optimized Architecture
- Simulation & Optimization : An iterative process
- Consists of

ALFU Sub-Simulator COS Sub-Simulator

ONNET Sub-Simulator Memory Sub-Simulator

CUBEMACH Simulator

Integrated CUBEMACH Design Paradigm ...

Sample CUBEMACH Architecture :

Simulation Results

Matrix Based Algorithms

Graph Based Algorithms

Sample CUBEMACH Architecture :

Simulation Results

Mixture of Algorithms

Comparison of Performance delivered by Optimized Architectures for corresponding types of Algorithms

Sample CUBEMACH Architecture :

Simulation Results

Overall Resource Utilization of :

- (i) Initial CUBEMACH Architecture : Mean = 59 %
- (ii) Optimized CUBEMACH Architecture : Mean = 74 %

Sample CUBEMACH Architecture : Simulation Results

In Initial Candidate CUBEMACH Architecture,

- •Matrix ALFUS low usage
- •Scalar ALFUS average usage
- •Graph ALFUS high usage

In Optimized Candidate CUBEMACH Architecture,

- •Matrix ALFUS high usage
- •Scalar ALFUS high usage
- •Graph ALFUS high usage

Conclusion

- Custom Built Heterogeneous Multi-Core Architectures (CUBEMACH) promises,
 - Increased Resource Utilization
 - Multiple application flavored architectures
 - Elimination of Space Time Sharing at the Quantum Level during Multiple Application Execution (without multiprogramming)
 - Manufacturing and Running Cost reduction

Thank You

Questions??

Architectural Space Contd... Customizable Compiler-On-Silicon

• What Compiler-On-Silicon?

• Why do we need Compiler-On-Silicon ?

• Why go for Customizable Compiler-On-Silicon ?

Architectural Space Contd...

Architecture uses -

Multistage Interconnect Network

ONNET

- Hardware Packetization Unit
- ONNET Design Space
 - H-Tree Structure within a Core
 - 2D Torus Across Cores
 - MIN Type

Architectural Design Space - CUBEMACH

- ALFU Algorithm Level Functional Units
- BISA Backbone Instruction Set Architecture
- COS Compiler On Silicon
- ONNET On Node Network
- Novel Cache Mapping Scheme
- SCOC IP Cores : Achieving cost effectiveness
 (Super Computer On Chip IP Cores)

Features -

- Communication across heterogeneous multi-cores
- Data requirements of diverse ALFUs
- High bandwidth
- Scalable
- Hierarchical Network-On-Chip

Memory

Advantages of SCOC IP Cores

- Fully Customizable
- Greatly reduces Design-Turnaround-Time
- Physically Design Friendly

- Constraints of Area, Power and Performance

Constrained & Rigid Design Methodology