
Dynamic Adaptation of DAGs with
Uncertain Execution Times in
Heterogeneous Computing Systems

Qin Zheng

Institute of High Performance Computing

Agency for Science, Technology and Research
(A*Star), Singapore

Background on DAG Scheduling

� Static algorithms

e.g., HEFT, which sets the priority of each task with the
upward rank value, which is the length of the critical path
from this task (inclusive) to the exit task based on mean
computation and communication costs.

� Dynamic algorithms

e.g., Just-In-Time (JIT), which schedules a task only when
it is ready to start, that is, after all its parents complete.

Performance of Static Algorithms When
Task Execution Times Are Uncertain

� In many cases, in a DAG, the actual execution time of a
task is different from the expected one [3].

� This may greatly affect the performance of static
algorithms [4].

� In [5], the authors point out that considering their average
case behavior is not safe, because execution overruns
may cause other tasks to miss their deadlines.

� In hard real-time feasibility analysis, it is assumed the
worst case execution time as the task computation time.

Our Work

� We study how to improve the performance of static
algorithms when tasks execution times in a DAG are
uncertain.

� The initial schedule, based on the estimated task
execution times, is revised or modified (adapted) during
runtime as necessary when tasks overrun or underrun.

� The objective is to minimize the response time and the
number of adaptations.

When Should We Adapt a Task
Schedule?

� When each of its predecessor (or only parent) overruns?
not scalable and causing overhead. Also, not necessary.

� We consider adapting a task when all its parents start
running. At this time, except its running parents, this task
will not be influenced by its other predecessors. This
enables us to focus on uncertainties of its running parents
only and reduces the overhead.

Whether This Task Schedule Should Be
Adapted?

� At this time, its parents either (1) have completed or (2) have
actually started and are still running. Therefore, we can have a
better estimation of the expected earliest start time (e-est) of
this task based on

� the actual completion times (act) of its parents for (1)

� the actual starting times (ast) + the expected running times of its
parents for (2)

e-est of this task is the maximum of the above among its parents.

� The task is invalid if its scheduled start time < the act of any parent.

� The task is likely to be invalid if its scheduled start time < its e-est.

Early release

Which Task Schedule to Adapt First if
There Are More Than One of Them?

0

What to Do When An Underrun Occurs?

� We consider adapting a task when its parent underruns
so as to reduce the response time for the DAG.

� This task may be able to start on earlier slots because of
two reasons.
� Firstly, its est may become earlier.

� Secondly, there may exist an earlier schedule due to the early
release of that parent.

� A task is considered only after all its parents have started.

� Among the children, which task schedule to adapt? Critical
task

The Maximum Number of Tasks
Adapted

� For task adaptation due to overruns, if we only adapt task
schedules that become invalid, then in the worst case it
equals to the number of invalid tasks in the DAG.

� For task adaptation due to underruns, in the worst case, it
equals to the number of underruning tasks in the DAG.

The Case with No Initial Static Schedule
– Dynamic Planning and Adaptation

� During runtime, schedules are planned for tasks when all
their parents have started.

� Which task to plan first if there are more than one of
them? Base on their potential impact on the response
time, i.e., e-est (at this time) + upward rank value

� When a task underruns, which child schedule should be
adapted?
� The critical path may change during runtime, which needs to be

taken into consideration in order to optimize the response time.

� The child on the current critical path first, then the child with the
largest potential impact on the response time.

Performance Study

� Event-driven simulations using traces collected from the

Hilbert system at A*STAR Computational Resource Center

(ACRC) [24].

� The Hilbert system consists of 128 quad processor

Opteron with aggregated 2 TeraByte memory space.

� Above 200,000 requests were processed over the period

between Jan 2008 and April 2008.

Response Time

Success Ratio

The Average Number of Tasks
Rescheduled

Conclusion

� In this paper, we presented efficient heuristics to handle
task overruns and underruns for DAGs during runtime.

� The objective is to minimize the response time and the
number of tasks adapted.

� We considered both cases with and without an initial
static schedule.

� The proposed heuristics can be used together with
existing static and dynamic DAG scheduling algorithms to
deal with uncertainties and improve the response time.

Q&A

