Mapping filter services on heterogeneous platforms To appear in IPDPS 2009

Anne Benoit, Fanny Dufossé, Yves Robert

January 9, 2009

Anne Benoit, Fanny Dufossé, Yves Robert () Mapping filter services on heterogeneous plati

January 9, 2009 1 / 42

The problem:

- treatment of a data flow
- filter services with selectivity σ and cost c
- precedence constraints between services
- servers with speed s
- one-to-one mappings

The objective:

- minimize the period
- minimize the latency

For services of selectivity less than one

- grep
- web services
- Select-Project-Join query optimization

• ...

Related problems:

- component testing
- unsupervised systems

Period

- General structure of optimal solutions
- Case of homogeneous servers
- NP-completeness of MINPERIOD-HET
- Integer linear program

Latency

- General structure of optimal solutions
- Polynomial algorithm on homogeneous platforms
- NP-completeness of problem MINLATENCY-NOPREC-HET
- Integer linear program

Bi-criteria problem

5 Heuristics

6 Experiments

Conclusion

The problems depend on:

- the criteria: MINPERIOD, MINLATENCY or BICRITERIA
- \bullet the platform: ${\rm HOM}$ or ${\rm HET}$
- \bullet the dependence constraints: NoPREC or PREC

The problems depend on:

- the criteria: MINPERIOD, MINLATENCY or BICRITERIA
- the platform: HOM or HET
- the dependence constraints: NOPREC or PREC

The instances: $\mathcal{A} = (\mathcal{F}, \mathcal{G}, \mathcal{S})$ with:

- The services: $\mathcal{F} = \{C_1, C_2, \dots, C_n\}$
- \bullet The precedence constraints: $\mathcal{G} \subset \mathcal{F} \times \mathcal{F}$

• The servers:
$$\mathcal{S} = \{S_1, S_2, \dots, S_p\}$$

Example for 3 independent services: The plan?

The mapping?

 $(C_1, S_2), (C_2, S_1), (C_3, S_3)$ $(C_1, S_3), (C_2, S_2), (C_3, S_1)$

Figure: Chaining services.

Figure: Combining selectivities

$$\begin{aligned} \mathcal{P} &= \max\left(\frac{c_1}{s_1}, \frac{\sigma_1 c_2}{s_2}, \frac{\sigma_1 \sigma_2 c_3}{s_3}\right) \quad \mathcal{P} = \max\left(\frac{c_1}{s_1}, \frac{c_2}{s_2}, \frac{\sigma_1 \sigma_2 c_3}{s_3}\right) \\ \mathcal{L} &= \frac{c_1}{s_1} + \frac{\sigma_1 c_2}{s_2} + \frac{\sigma_1 \sigma_2 c_3}{s_3} \quad \mathcal{L} = \max\left(\frac{c_1}{s_1}, \frac{c_2}{s_2}\right) + \frac{\sigma_1 \sigma_2 c_3}{s_3} \end{aligned}$$

Example

•
$$c_1 = 1, c_2 = 4, c_3 = 10$$

• $\sigma_1 = \frac{1}{2}, \sigma_2 = \sigma_3 = \frac{1}{3}$

•
$$s_1 = 1$$
, $s_2 = 2$ and $s_3 = 3$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Example

•
$$c_1 = 1$$
, $c_2 = 4$, $c_3 = 10$
• $\sigma_1 = \frac{1}{2}$, $\sigma_2 = \sigma_3 = \frac{1}{3}$
• $s_1 = 1$, $s_2 = 2$ and $s_3 = 3$

Figure: Optimal plan for period.

Figure: Optimal plan for latency

$$L = \frac{13}{6}$$
$$P = \frac{4}{3}$$

P = 1 $L = \frac{5}{2}$

Framework

Period

- General structure of optimal solutions
- Case of homogeneous servers
- NP-completeness of MINPERIOD-HET
- Integer linear program

Latency

- General structure of optimal solutions
- Polynomial algorithm on homogeneous platforms
- NP-completeness of problem MINLATENCY-NOPREC-HET
- Integer linear program

4 Bi-criteria problem

5 Heuristics

6 Experiments

Conclusion

General structure of optimal solutions

The instance : $C_1, ..., C_n, S_1, ..., S_n$ with

- $\sigma_1, ..., \sigma_p \le 1$
- $\sigma_{p+1}, ..., \sigma_n \geq 1$

General structure of optimal solutions

The instance : $C_1, ..., C_n, S_1, ..., S_n$ with

- $\sigma_1, ..., \sigma_p \le 1$
- $\sigma_{p+1}, ..., \sigma_n \geq 1$

Figure: General structure

- The instance : $C_1, ..., C_n$ with
 - $c_1 \leq c_2 \leq \ldots \leq c_p$
 - $\sigma_1, ..., \sigma_p < 1$
 - $\sigma_{p+1}, ..., \sigma_n \ge 1$

The matching: $C_1 \rightarrow C_2 \rightarrow ... \rightarrow C_p$

Computing the optimal subgraph for *C* in the graph *G*: Let $D = \max_i \{ \log \sigma_i \}$. We construct a network flow graph *W* with:

- a source s
- a node f_i by service in G
- a sink node t
- an edge $s > f_i$ with capacity $+\infty$ if C_i is ancestor of C in G, D else
- an edge $f_i f_j$ of capacity $+\infty$ if C_j is an ancestor of C_i in G
- an edge $f_i > t$ with capacity $D + \log \sigma_i$

The set of services on the side of s in a min-cut is the optimal subset of predecessors for latency.

Computing the optimal subgraph for *C* in the graph *G*: Let $D = \max_i \{\log \sigma_i\}$. We construct a network flow graph *W* with:

- a source s
- a node f_i by service in G
- a sink node t
- an edge $s > f_i$ with capacity $+\infty$ if C_i is ancestor of C in \mathcal{G} , D else
- an edge $f_i f_j$ of capacity $+\infty$ if C_j is an ancestor of C_i in G
- an edge $f_i > t$ with capacity $D + \log \sigma_i$

The set of services on the side of s in a min-cut is the optimal subset of predecessors for latency.

Optimal algorithm: at each step place the available service with minimal possible period.

2 Period

- General structure of optimal solutions
- Case of homogeneous servers
- NP-completeness of MINPERIOD-HET
- Integer linear program

Latency

- General structure of optimal solutions
- Polynomial algorithm on homogeneous platforms
- NP-completeness of problem MINLATENCY-NOPREC-HET
- Integer linear program

Bi-criteria problem

- 5 Heuristics
- 6 Experiments

Conclusion

Problem (RN3DM)

Given an integer vector A = (A[1], ..., A[n]) of size n, does there exist two permutations λ_1 and λ_2 of $\{1, 2, ..., n\}$ such that

 $\forall 1 \leq i \leq n, \quad \lambda_1(i) + \lambda_2(i) = A[i]$

Problem (RN3DM)

Given an integer vector A = (A[1], ..., A[n]) of size n, does there exist two permutations λ_1 and λ_2 of $\{1, 2, ..., n\}$ such that

$$\forall 1 \leq i \leq n, \quad \lambda_1(i) + \lambda_2(i) = A[i]$$

The associated instance :

•
$$c_i = 2^{A[i]}$$

•
$$\sigma_i = 1/2$$

•
$$s_i = 2^i$$

Problem (RN3DM)

Given an integer vector A = (A[1], ..., A[n]) of size n, does there exist two permutations λ_1 and λ_2 of $\{1, 2, ..., n\}$ such that

$$\forall 1 \leq i \leq n, \quad \lambda_1(i) + \lambda_2(i) = A[i]$$

The associated instance :

۵

$$c_{i} = 2^{A[i]}$$

$$\sigma_{i} = 1/2$$

$$s_{i} = 2^{i}$$

$$P = 2$$

$$\forall 1 \le i \le n, \quad \lambda_{1}(i) + \lambda_{2}(i) \ge A[i]$$

$$\iff \forall 1 \le i \le n, \quad \left(\frac{1}{2}\right)^{\lambda_{1}(i)-1} \times \frac{2^{A[i]}}{2^{\lambda_{2}(i)}} \le 1$$

2

Proposition

For any K > 0, there exists no K-approximation algorithm for MINPERIOD-NOPREC-HET, unless P=NP.

Proposition

For any K > 0, there exists no K-approximation algorithm for MINPERIOD-NOPREC-HET, unless P=NP.

Reduction from RN3DM:

•
$$c_i = K^{A[i]-1}$$

•
$$\sigma_i = 1/K$$

•
$$s_i = K^i$$

- $t_{i,u} = 1$ if service C_i is assigned to server S_u
- $s_{i,j} = 1$ if service C_i is an ancestor of C_j
- *M* is the logarithm of the optimal period

- $t_{i,u} = 1$ if service C_i is assigned to server S_u
- $s_{i,j} = 1$ if service C_i is an ancestor of C_j
- *M* is the logarithm of the optimal period

The constraints:

• $\forall i, \quad \sum_{u} t_{i,u} = 1$ • $\forall u, \quad \sum_{i} t_{i,u} = 1$ • $\forall i, j, k, \quad s_{i,j} + s_{j,k} - 1 \le s_{i,k}$ • $\forall i, s_{i,i} = 0$ • $\forall i, \quad \log c_i - \sum_{u} t_{i,u} \log s_u + \sum_{k} s_{k,i} \log \sigma_k \le M$

The objective function: Minimize M

Framework

2 Period

- General structure of optimal solutions
- Case of homogeneous servers
- NP-completeness of MINPERIOD-HET
- Integer linear program

Latency

- General structure of optimal solutions
- Polynomial algorithm on homogeneous platforms
- NP-completeness of problem MINLATENCY-NOPREC-HET
- Integer linear program

Bi-criteria problem

5 Heuristics

6 Experiments

Conclusion

Structure of the optimal plan

Proposition

Anne Benoit,

Let $C_1, ..., C_n, S_1, ..., S_n$ be an instance of MINLATENCY. Then, the optimal latency is obtained with a plan G such that, for any $v_1 = (C_{i_1}, S_{u_1})$, $v_2 = (C_{i_2}, S_{u_2})$,

- If d_{i1}(G) = d_{i2}(G), they have the same predecessors and the same successors in G.
- 2 If $d_{i_1}(G) > d_{i_2}(G)$ and $\sigma_{i_2} \le 1$, then $c_{i_1}/s_{u_1} < c_{i_2}/s_{u_2}$.
- 3 All nodes with a service of selectivity $\sigma_i > 1$ are leaves $(d_i(G) = 0)$.

2 Period

- General structure of optimal solutions
- Case of homogeneous servers
- NP-completeness of MINPERIOD-HET
- Integer linear program

Latency

- General structure of optimal solutions
- Polynomial algorithm on homogeneous platforms
- NP-completeness of problem MINLATENCY-NOPREC-HET
- Integer linear program

4 Bi-criteria problem

5 Heuristics

6 Experiments

7 Conclusion

```
Data: n services of cost c_1 \leq \cdots \leq c_n and of selectivities \sigma_1, \dots, \sigma_n \leq 1
Result: a plan G optimizing the latency
G is the graph reduced to node C_1;
for i = 2 to n do
    for i = 0 to i - 1 do
        Compute the completion time t_i of C_i in G with predecessors
        C_1, ..., C_i
    end
    Choose j such that t_i = \min_k \{t_k\};
    Add the node C_i and the edges C_1 \rightarrow C_i, \ldots, C_i \rightarrow C_i to G;
end
```

Algorithm 1: Optimal algorithm for MINLATENCY-NOPREC-HOM.

G is the graph reduced to the node C of minimal cost with no predecessor in $\mathcal{G};$

```
for i = 2 to n do
    Let S be the set of services not yet in G and such that their set of
    predecessors in \mathcal{G} is included in G;
   for C \in S do
       for C' \in G do
           Compute the set S' minimizing the product of selectivities
           among services of latency less than L_G(C'), and including all
           predecessors of C in \mathcal{G}:
       end
       Let S_C be the set that minimizes the latency of C in G and L_C be
       this latency;
   end
```

```
Choose a service C such that L_C = \min\{L_{C'}, C' \in S\};
Add to G the node C, and \forall C' \in S_C, the edge C' \to C;
```

end

Algorithm 2: Optimal algorithm for MINLATENCY-PREC-HOM.

Example

 C_1

3

<ロ> (日) (日) (日) (日) (日)

Example

æ

A B > 4
 B > 4
 B

æ

<≣>

æ

문 문 문

A B > A
 A
 B > A
 A

Example

æ

문 문 문

A B > A
 A
 B > A
 A

< 1[™] >

æ

-≣-> January 9, 2009

æ

A B > A
 A
 B > A
 A

2 Period

- General structure of optimal solutions
- Case of homogeneous servers
- NP-completeness of MINPERIOD-HET
- Integer linear program

Latency

- General structure of optimal solutions
- Polynomial algorithm on homogeneous platforms
- NP-completeness of problem MINLATENCY-NOPREC-HET
- Integer linear program

4 Bi-criteria problem

5 Heuristics

6 Experiments

7 Conclusion

Lemma

Let $C_1, ..., C_n, S_1, ..., S_n$ be an instance such that $\forall i, c_i$ and s_i are integer power of 2 and $\sigma_i \leq \frac{1}{2}$. Then the optimal latency is obtained with a plan G such that

- **1** Proposition 2 is verified;
- **2** for all nodes (C_{i_1}, S_{u_1}) and (C_{i_2}, S_{u_2}) with $d_{i_1}(G) = d_{i_2}(G)$, we have $\frac{c_{i_1}}{s_{u_1}} = \frac{c_{i_2}}{s_{u_2}}$.

Lemma

Let $C_1, ..., C_n, S_1, ..., S_n$ be an instance such that $\forall i, c_i$ and s_i are integer power of 2 and $\sigma_i \leq \frac{1}{2}$. Then the optimal latency is obtained with a plan G such that

- Proposition 2 is verified;
- **2** for all nodes (C_{i_1}, S_{u_1}) and (C_{i_2}, S_{u_2}) with $d_{i_1}(G) = d_{i_2}(G)$, we have $\frac{c_{i_1}}{s_{u_1}} = \frac{c_{i_2}}{s_{u_2}}$.
- $c_i = 2^{A[i] \times n + (i-1)}$ • $\sigma_i = (\frac{1}{2})^n$ • $s_i = 2^{n \times (i+1)}$ • $l = 2^n - 1$

Proposition

For any K > 0, there exists no K-approximation algorithm for MINLATENCY-NOPREC-HET, unless P=NP.

Proposition

For any K > 0, there exists no K-approximation algorithm for MINLATENCY-NOPREC-HET, unless P=NP.

Reduction from $\operatorname{RN3DM}$

• $c_i = K^{A[i] \times n + (i-1)}$ • $\sigma_i = \left(\frac{1}{K}\right)^n$ • $s_i = K^{n \times (i+1)}$ • $L = \frac{K^n - 1}{K - 1}$

2 Period

- General structure of optimal solutions
- Case of homogeneous servers
- NP-completeness of MINPERIOD-HET
- Integer linear program

Latency

- General structure of optimal solutions
- Polynomial algorithm on homogeneous platforms
- NP-completeness of problem MINLATENCY-NOPREC-HET
- Integer linear program

Bi-criteria problem

5 Heuristics

6 Experiments

Conclusion

- z(i, u, e) = 1 if the service C_i is associated to the server S_u and its set of predecessors is e ⊂ C.
- t(i) is the completion time of C_i
- *M* is the optimal latency

- z(i, u, e) = 1 if the service C_i is associated to the server S_u and its set of predecessors is e ⊂ C.
- t(i) is the completion time of C_i
- *M* is the optimal latency

The constraints:

•
$$\forall u \in S$$
, $\sum_{i \in C} \sum_{e \subset C} z(i, u, e) = 1$
• $\forall i \in C$, $\sum_{u \in S} \sum_{e \subset C} z(i, u, e) = 1$

- z(i, u, e) = 1 if the service C_i is associated to the server S_u and its set of predecessors is e ⊂ C.
- t(i) is the completion time of C_i
- *M* is the optimal latency

The constraints:

•
$$\forall u \in S$$
, $\sum_{i \in C} \sum_{e \subset C} z(i, u, e) = 1$
• $\forall i \in C$, $\sum_{u \in S} \sum_{e \subset C} z(i, u, e) = 1$
• $\forall i, i' \in C, \forall u, u' \in S, \forall e, e' \subset C, e \nsubseteq e', i \in e', z(i, u, e) + z(i', u', e') \le 1$

•
$$\forall u \in S, \forall e \subset C, \forall i \in e, \ z(i, u, e) = 0$$

- z(i, u, e) = 1 if the service C_i is associated to the server S_u and its set of predecessors is e ⊂ C.
- t(i) is the completion time of C_i
- *M* is the optimal latency

The constraints:

•
$$\forall u \in S$$
, $\sum_{i \in C} \sum_{e \in C} z(i, u, e) = 1$
• $\forall i \in C$, $\sum_{u \in S} \sum_{e \in C} z(i, u, e) = 1$
• $\forall i, i' \in C, \forall u, u' \in S, \forall e, e' \in C, e \notin e', i \in e', z(i, u, e) + z(i', u', e') \leq 1$
• $\forall u \in S, \forall e \in C, \forall i \in e, z(i, u, e) = 0$
• $\forall i \in C, \forall e \in C, \forall k \in e, t(i) \geq \sum_{u \in S} z(i, u, e) \left(\frac{c_i}{s_u} * \prod_{C_j \in e} \sigma_j + t(k)\right)$
• $\forall i \in C, t(i) \geq \sum_u z(i, u, e) \frac{c_i}{s_u} * \prod_{C_j \in e} \sigma_j$
• $\forall i \in C, t(i) \leq M$

The objective function: Minimize M

Framework

2 Perioc

- General structure of optimal solutions
- Case of homogeneous servers
- NP-completeness of MINPERIOD-HET
- Integer linear program

Latency

- General structure of optimal solutions
- Polynomial algorithm on homogeneous platforms
- NP-completeness of problem MINLATENCY-NOPREC-HET
- Integer linear program

Bi-criteria problem

- 5 Heuristics
- 6 Experiments
- 7 Conclusion

Data: *n* services of cost $c_1 \leq \cdots \leq c_n$ and of selectivities $\sigma_1, ..., \sigma_n \leq 1$ and a maximum throughput K

Result: a plan *G* optimizing the latency with a throughput less than K *G* is the graph reduced to node C_1 ;

for i = 2 to n do

for j = 0 to i - 1 do Compute the completion time t_j of C_i in G with predecessors $C_1, ..., C_j$; end Let $S = \{k | c_i \prod_{0 \le k < i} \sigma_k \le K\}$; Choose j such that $t_j = \min_{k \in S} \{t_k\}$; Add the node c_i and the edges $C_1 \rightarrow C_i, ..., C_i \rightarrow C_i$ to G;

end

Algorithm 3: Optimal algorithm for latency with a fixed throughput.

Framework

2 Perioc

- General structure of optimal solutions
- Case of homogeneous servers
- NP-completeness of MINPERIOD-HET
- Integer linear program

Latency

- General structure of optimal solutions
- Polynomial algorithm on homogeneous platforms
- NP-completeness of problem MINLATENCY-NOPREC-HET

January 9, 2009

30 / 42

Integer linear program

Bi-criteria problem

5 Heuristics

Experiments

Conclusion

sigma-inc We place services on a chain in increasing order of σ .

short service/fast server We associate the service with shortest cost to the server with fastest speed.

long service/fast server We associate the service with largest cost with the server with fastest speed.

opt-homo We randomly associate services to servers.

- greedy min This simple heuristic consists in running successively the four previous heuristics on the problem instance, and returning as a result the best of the four solutions.
 - random This last heuristic is fully random: we randomly associate services and servers, and we randomly place these pairs on a linear chain.

Framework

2 Perioc

- General structure of optimal solutions
- Case of homogeneous servers
- NP-completeness of MINPERIOD-HET
- Integer linear program

Latency

- General structure of optimal solutions
- Polynomial algorithm on homogeneous platforms
- NP-completeness of problem MINLATENCY-NOPREC-HET
- Integer linear program

Bi-criteria problem

5 Heuristics

6 Experiments

Conclusion

The instances:

- independent services
- the cost of services: $1 \le c \le 100$
- the selectivities: 0,01 $\leq \sigma \leq 1$
- the speed of servers: $1 \le s \le 100$

Figure: Experiment 1: general experiment.

э

Image: A match a ma

Figure: Experiment 1: general experiment.

Figure: Experiment 2: with small selectivity.

э

< 4 → <

Figure: Experiment 3: with high selectivity.

э.

Image: A math a math

Figure: Experiment 4: with low speed.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Figure: Experiment 5: with low heterogeneity.

э

Image: A math a math

39 / 42

Figure: Experiment 1: Computing times.

References

- M. P. Alessandro Agnetis, Paolo Detti and M. S. Sodhi. Sequencing unreliable jobs on parallel machines. *Journal on Scheduling*, May 2008.
- U. Srivastava, K. Munagala, and J. Burge. Ordering pipelined query operators with precedence constraints. Technical report, Stanford University, November 2005.
- U. Srivastava, K. Munagala, and J. Widom.
 Operator placement for in-network stream query processing.
 In PODS '05: Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 250–258, New York, NY, USA, 2005. ACM.
- U. Srivastava, K. Munagala, J. Widom, and R. Motwani. Query optimization over web services.
 In VLDB '06: Proceedings of the 32nd international conference on Very large data bases, pages 355–366. VLDB Endowment, 2006.

The results:

- MINLATENCY-HOM is polynomial
- MINPERIOD-HET is NP-complete
- MINLATENCY-HET is NP-complete
- BICRITERIA-HOM is polynomial
- The experiments on MINPERIOD-NOPREC-HET:
 - heuristics close to the optimal for small instances
 - better performance than random

Future work:

model with communication costs

January 9, 2009

42 / 42