Application of metaheuristics to task-to-processors assignment problems

Domingo Giménez

Departamento de Informática y Sistemas
University of Murcia, Spain
domingo@um.es
http://dis.um.es/~domingo

Scheduling for large-scale systems, Knoxville, May 13-15 2009
Why metaheuristics?

- We use metaheuristics in different scientific problems
 ... but we are not alone
- This presentation describes our experience with tasks mapping problems
- A common algorithmic scheme is used for the different metaheuristics
- A hierarchy of classes is proposed
Why metaheuristics?

- We use metaheuristics in different scientific problems
 ... but we are not alone
- This presentation describes our experience with tasks mapping problems
 - A common algorithmic scheme is used for the different metaheuristics
 - A hierarchy of classes is proposed
Why metaheuristics?

- We use metaheuristics in different scientific problems
 ... but we are not alone
- This presentation describes our experience with tasks mapping problems
- A common algorithmic scheme is used for the different metaheuristics
 A hierarchy of classes is proposed
Why metaheuristics?

- We use metaheuristics in different scientific problems
 ... but we are not alone
- This presentation describes our experience with tasks mapping problems
- A common algorithmic scheme is used for the different metaheuristics
- A hierarchy of classes is proposed
Contents

1. Presentation of the PCGUM
2. Metaheuristics in assignment problems
 - Advantages of using metaheuristics
 - General metaheuristic scheme
3. Mapping problems
 - Execution time model
 - Optimization architecture
4. Class hierarchy
 - Advantages of a class hierarchy
 - An example of class hierarchy
5. Examples
 - Iterative scheme on a heterogeneous system
 - Master-slave with memory restrictions
 - Backtracking with master-slave
6. Conclusions
Presentation of the Parallel Computing Group - University of Murcia

Where is Murcia?
Presentation of the Parallel Computing Group - University of Murcia

Components
- 2 doctors
- 10 PhD students, from the:
 - Universidad Católica de Murcia
 - Centro de Supercomputación de Murcia
 - Marine studies company
 - Universidad Politécnica de Cartagena
 - Universidad Miguel Hernández de Elche
 - Universidade Federal do Estado da Bahia, Brazil

Information
- Group page:
 http://www.um.es/pcgum/
- Publications:
 http://dis.um.es/~domingo/investigacion.html
Presentation of the Parallel Computing Group - University of Murcia

- **Components**
 - 2 doctors
 - 10 PhD students, from the:
 - Universidad Católica de Murcia
 - Centro de Supercomputación de Murcia
 - Marine studies company
 - Universidad Politécnica de Cartagena
 - Universidad Miguel Hernández de Elche
 - Universidade Federal do Estado da Bahia, Brazil

- **Information**
 - Group page:
 - http://www.um.es/pcgum/
 - Publications:
 - http://dis.um.es/~domingo/investigacion.html
Projects

Regional: Adaptation and Optimization of Scientific Codes in Hierarchical Computational Systems
Collaboration with the Computational Electromagnetic group of the Universidad Politécnica de Cartagena

National: Automatic Building and Optimization of Parallel Scientific Libraries
Collaboration with the universities: La Laguna, Jaume I of Castellón, Alicante, Politécnica de Valencia

Regional in preparation: Solution of Biotechnology Problems with the Ben Arabí Supercomputer
Collaboration with the company Inbionova and the Plant pathology group
Presentation of the Parallel Computing Group - University of Murcia

Applications

- Orbits of artificial satellites - Observatorio Astronómico de la Armada Cádiz
- Simulation of marine biosystems - Taxon Estudios Ambientales
- Simultaneous equation models - Temporal series group, applications for medicine and psychology
- Design of signal filters - Computational electromagnetic group
- Physical engine of games - Centro de Supercomputación de Murcia
- Biocatalizers - Inbionova
- Cellular and molecular bases analysis - Plant pathology group
- Regional meteorology simulations - Regional climate modelling group
Presentation of the Parallel Computing Group - University of Murcia

Metaheuristics

- Applications
 - Simultaneous equation models
 - Automatic obtention of model from a set of data
 - Design of signal filters
 - Design of the filter to obtain a given response function
 - Molecule simulation
 - Estimation of the parameters to obtain the function which describes an experiment

- Tasks-to-processors assignation problems
 - To automatically optimize the execution of parallel routines
 - For parallel algorithmic schemes
 - For specific routines
Presentation of the Parallel Computing Group - University of Murcia

Metaheuristics

Applications
- Simultaneous equation models
 Automatic obtention of model from a set of data
- Design of signal filters
 Design of the filter to obtain a given response function
- Molecule simulation
 Estimation of the parameters to obtain the function which describes an experiment

Tasks-to-processors assignation problems
- To automatically optimize the execution of parallel routines
 - For parallel algorithmic schemes
 - For specific routines
Metaheuristics

Applications
- Simultaneous equation models
 Automatic obtention of model from a set of data
- Design of signal filters
 Design of the filter to obtain a given response function
- Molecule simulation
 Estimation of the parameters to obtain the function which describes an experiment

Tasks-to-processors assignation problems
- To automatically optimize the execution of parallel routines
 - For parallel algorithmic schemes
 - For specific routines
Advantages of using metaheuristics

- General assignation problems are NP-complete
- Exact methods for specific problems, algorithms or systems
- In some cases the use of heuristics is satisfactory
- ... but in general it is not possible to obtain satisfactory assignations in a reduced time \Rightarrow metaheuristics
 - Provides a general framework for problems with different characteristics
 - Re-scheduling: new tasks, modifications in the system...
 - Hierarchical or distributed systems, on-chip systems...
 - Facilitates the development of different methods
 - Facilitates experimentation and tuning of the technique to the problem
 - Possible to combine different methods (hybridation)
Advantages of using metaheuristics

- General assignation problems are NP-complete
- Exact methods for specific problems, algorithms or systems
- In some cases the use of heuristics is satisfactory
- ... but in general it is not possible to obtain satisfactory assignations in a reduced time \Rightarrow metaheuristics
 - Provides a general framework for problems with different characteristics
 - Re-scheduling: new tasks, modifications in the system...
 - Hierarchical or distributed systems, on-chip systems...
 - Facilitates the development of different methods
 - Facilitates experimentation and tuning of the technique to the problem
 - Possible to combine different methods (hybridation)
Advantages of using metaheuristics

- General assignation problems are NP-complete
- Exact methods for specific problems, algorithms or systems
- In some cases the use of heuristics is satisfactory
- ... but in general it is not possible to obtain satisfactory assignations in a reduced time \Rightarrow metaheuristics
 - Provides a general framework for problems with different characteristics
 - Re-scheduling: new tasks, modifications in the system...
 - Hierarchical or distributed systems, on-chip systems...
 - Facilitates the development of different methods
 - Facilitates experimentation and tuning of the technique to the problem
 - Possible to combine different methods (hybridation)
General metaheuristic scheme

Use of a scheme common to different metaheuristics

Initialize(S)
while not EndCondition(S) do
 if $|SS| > 1$ then
 $SS1 = \text{Combine}(SS)$
 else
 $SS1 = SS$
 end if
 $SS2 = \text{Improve}(SS1)$
 $S = \text{IncludeSolutions}(SS2)$
end while
General metaheuristic scheme

- A common scheme
 - New versions of a metaheuristic just by modifying a function or a parameter in the scheme
 - A new metaheuristic just by modifying some functions or parameters in the scheme
 - Hybrid metaheuristics just by combining functions from different metaheuristics

- Possible to develop a hierarchy of classes to facilitate the development of metaheuristics

- But a different infrastructure is necessary for each assignment problem
General metaheuristic scheme

- A common scheme
 - New versions of a metaheuristic just by modifying a function or a parameter in the scheme
 - A new metaheuristic just by modifying some functions or parameters in the scheme
 - Hybrid metaheuristics just by combining functions from different metaheuristics

- Possible to develop a hierarchy of classes to facilitate the development of metaheuristics

- But a different infrastructure is necessary for each assignment problem
General metaheuristic scheme

- A common scheme
 - New versions of a metaheuristic just by modifying a function or a parameter in the scheme
 - A new metaheuristic just by modifying some functions or parameters in the scheme
 - Hybrid metaheuristics just by combining functions from different metaheuristics

- Possible to develop a hierarchy of classes to facilitate the development of metaheuristics

- But a different infrastructure is necessary for each assignment problem
General metaheuristic scheme

- A common scheme
 - New versions of a metaheuristic just by modifying a function or a parameter in the scheme
 - A new metaheuristic just by modifying some functions or parameters in the scheme
 - Hybrid metaheuristics just by combining functions from different metaheuristics

- Possible to develop a hierarchy of classes to facilitate the development of metaheuristics

- But a different infrastructure is necessary for each assignment problem
General metaheuristic scheme

- A common scheme
 - New versions of a metaheuristic just by modifying a function or a parameter in the scheme
 - A new metaheuristic just by modifying some functions or parameters in the scheme
 - Hybrid metaheuristics just by combining functions from different metaheuristics
- Possible to develop a hierarchy of classes to facilitate the development of metaheuristics
- But a different infrastructure is necessary for each assignment problem
Our goal is to obtain the execution conditions which give the lowest execution time.

A model of the execution time is used. The model reflects:

- The characteristics of the system
- The possible modifications in the execution of the routine which should be selected to optimize the execution time

If the model improves, the selection is better, but the methodology is the same independent of the model’s accuracy.
Execution time model

- Our goal is to obtain the execution conditions which give the lowest execution time
- A model of the execution time is used. The model reflects:
 - The characteristics of the system
 - The possible modifications in the execution of the routine which should be selected to optimize the execution time

if the model improves, the selection is better, but the methodology is the same independent of the model’s accuracy
Our goal is to obtain the execution conditions which give the lowest execution time

A model of the execution time is used. The model reflects:

- The characteristics of the system
- The possible modifications in the execution of the routine which should be selected to optimize the execution time

if the model improves, the selection is better, but the methodology is the same independent of the model’s accuracy
Execution time model

- Parameters to be obtained:
 - Block size of computations
 - Block size of communications
 - ...
 - number of processors
 - number of processes
 - logical topology of the processes
 - processes to processors mapping...

- A large number of parameters, for which a general determination method is not available.
- and for different problems, different heuristics or metaheuristics are preferable.
Execution time model

Parameters to be obtained:

- Block size of computations
- Block size of communications
- ...
- number of processors
- number of processes
- logical topology of the processes
- processes to processors mapping...

- A large number of parameters, for which a general determination method is not available

- and for different problems, different heuristics or metaheuristics are preferable
Execution time model

Parameters to be obtained:

- Block size of computations
- Block size of communications
- ...
- number of processors
- number of processes
- logical topology of the processes
- processes to processors mapping...

A large number of parameters, for which a general determination method is not available

and for different problems, different heuristics or metaheuristics are preferable
Execution time model

Parameters to be obtained:

- Block size of computations
- Block size of communications
- ...
- number of processors
- number of processes
- logical topology of the processes
- processes to processors mapping...

A large number of parameters, for which a general determination method is not available

and for different problems, different heuristics or metaheuristics are preferable
Optimization architecture

- **Design**
 - Routine design
 - Building cost function
 - Obtaining value of system parameters on the actual system

- **Installation**
 - Including system parameters in the cost function

- **Execution**
 - Obtaining the optimum values of the algorithmic parameters
 - Routine execution
A large or huge decision tree

and it is impossible to use exact or analytical methods
The development of a class hierarchy allows us to:

- Reuse classes and methods
- Add classes and methods
- Develop new metaheuristics
- Tune parameters and functions to the problem
- Develop hybrid metaheuristics
- Obtain a satisfactory metaheuristic for the problem

but it is problem specific

some typical problems could be included in the hierarchy

and a tool to add new problems could be incorporated
Advantages of a class hierarchy

Class hierarchy

The development of a class hierarchy allows us to:

- Reuse classes and methods
- Add classes and methods
- Develop new metaheuristics
- Tune parameters and functions to the problem
- Develop hybrid metaheuristics
- Obtain a satisfactory metaheuristic for the problem

- but it is problem specific
- some typical problems could be included in the hierarchy
- and a tool to add new problems could be incorporated
Advantages of a class hierarchy

Class hierarchy

- The development of a class hierarchy allows us to:
 - Reuse classes and methods
 - Add classes and methods
 - Develop new metaheuristics
 - Tune parameters and functions to the problem
 - Develop hybrid metaheuristics
 - Obtain a satisfactory metaheuristic for the problem

- but it is problem specific
 - some typical problems could be included in the hierarchy
 - and a tool to add new problems could be incorporated
Advantages of a class hierarchy

Class hierarchy

- The development of a class hierarchy allows us to:
 - Reuse classes and methods
 - Add classes and methods
 - Develop new metaheuristics
 - Tune parameters and functions to the problem
 - Develop hybrid metaheuristics
 - Obtain a satisfactory metaheuristic for the problem

- but it is problem specific
- some typical problems could be included in the hierarchy
- and a tool to add new problems could be incorporated
An example of class hierarchy

As an example

```
void mapping_class :: apply (...)  
  virtual void Initialize (...)  
  virtual void ObtainSubset (...)  
  Virtual void Combine (...)  
...
```

```
void tabu_class :: apply (...)  
  void Initialize (...)  
  void ObtainSubset (...)  
  void Combine (...)  
...
```

```
void scatter_class :: apply (...)  
  void Initialize (...)  
  void ObtainSubset (...)  
  void Combine (...)  
...
```

```
void grasp_class :: apply (...)  
  void Initialize (...)  
  void ObtainSubset (...)  
  void Combine (...)  
...
```

```
void genetic_class :: apply (...)  
  void Initialize (...)  
  void ObtainSubset (...)  
  void Combine (...)  
...
```
Use of a scheme common to different metaheuristics
possible reuse of functions

<table>
<thead>
<tr>
<th></th>
<th>Genetic</th>
<th>Scatter</th>
<th>GRASP</th>
<th>Tabu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize</td>
<td>*</td>
<td>*</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>EndCondition</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Combine</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improve</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Include</td>
<td>-</td>
<td>-</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
Iterative scheme on a heterogeneous system

The problem

- An iterative scheme with computation and communication in each step
- A number of homogeneous processes: ideally the same volume of computation in each process
- Decide the number of processes and the number of processes assigned to each processor (d_i)
- The system is modelled with:
 - A vector t_c of costs of basic arithmetic operations on each processor
 - Two bidimensional arrays t_s and t_w, with the start and word-sending time between processes in two processors
The problem

- An iterative scheme with computation and communication in each step
- A number of homogeneous processes: ideally the same volume of computation in each process
- Decide the number of processes and the number of processes assigned to each processor (d_i)
- The system is modelled with:
 - A vector t_c of costs of basic arithmetic operations on each processor
 - Two bidimensional arrays t_s and t_w, with the start and word-sending time between processes in two processors
Iterative scheme on a heterogeneous system

The problem

- An iterative scheme with computation and communication in each step
- A number of homogeneous processes: ideally the same volume of computation in each process
- Decide the number of processes and the number of processes assigned to each processor (d_i)
- The system is modelled with:
 - A vector t_c of costs of basic arithmetic operations on each processor
 - Two bidimensional arrays t_s and t_w, with the start and word-sending time between processes in two processors
The problem

- An iterative scheme with computation and communication in each step
- A number of homogeneous processes: ideally the same volume of computation in each process
- Decide the number of processes and the number of processes assigned to each processor (d_i)
- The system is modelled with:
 - A vector t_c of costs of basic arithmetic operations on each processor
 - Two bidimensional arrays t_s and t_w, with the start and word-sending time between processes in two processors
Execution time model

- No overlapping of computation and communication is considered: \(t_{comp} + t_{comm} \)

- The arithmetic cost is modelled:
 \[
 t_{comp} = \max_{i=1,...,P} \{ n_{comp}(i) t_c(i) \}
 \]

- and the communication cost:
 \[
 \max_{i=1,...,P; j=1,...,P} \{ n_{str}(i,j) t_{sij} \} + \\
 \max_{i=1,...,P; j=1,...,P} \{ n_{dat}(i,j) t_{wij} \}
 \]

- ... but other models could be considered
Execution time model

No overlapping of computation and communication is considered: \(t_{\text{comp}} + t_{\text{comm}} \)

The arithmetic cost is modelled:
\[
t_{\text{comp}} = \max_{i=1,\ldots,P} \{ n_{\text{comp}}(i) t_c(i) \}
\]

and the communication cost:
\[
\max_{i=1,\ldots,P; \ j=1,\ldots,P} \{ n_{\text{str}}(i,j) t_{\text{str}}(i,j) \} + \\
\max_{i=1,\ldots,P; \ j=1,\ldots,P} \{ n_{\text{dat}}(i,j) t_{\text{dat}}(i,j) \}
\]

... but other models could be considered
Execution time model

- No overlapping of computation and communication is considered: $t_{comp} + t_{comm}$
- The arithmetic cost is modelled:
 $$t_{comp} = \max_{i=1,\ldots,P} \{ n_{comp}(i) t_{c_i} \}$$
- and the communication cost:
 $$\max_{i=1,\ldots,P; j=1,\ldots,P} \{ n_{str}(i,j) t_{s_{ij}} \} + \max_{i=1,\ldots,P; j=1,\ldots,P} \{ n_{dat}(i,j) t_{w_{ij}} \}$$

... but other models could be considered
Iterative scheme on a heterogeneous system

Execution time model

- No overlapping of computation and communication is considered: \(t_{\text{comp}} + t_{\text{comm}} \)
- The arithmetic cost is modelled:
 \[
 t_{\text{comp}} = \max_{i = 1, \ldots, P} \{ n_{\text{comp}}(i) t_{c_i} \}
 \]
- and the communication cost:
 \[
 \max_{i = 1, \ldots, P; \ j = 1, \ldots, P} \{ n_{\text{str}}(i, j) t_{s_{ij}} \} + \max_{i = 1, \ldots, P; \ j = 1, \ldots, P} \{ n_{\text{dat}}(i, j) t_{w_{ij}} \}
 \]
- ... but other models could be considered
Assignation tree

\[t_c = \max\{t_{c1}, 2t_{c2}\} \]
\[t_s = \max\{t_{s12}, t_{s21}, t_{s22}\} \]
\[t_w = \max\{t_{w12}, t_{w21}, t_{w22}\} \]
Metaheuristics experimented with:

- Hill climbing
- Tabu search
- Scatter search
- Genetic algorithms
- Ant colony
- Simulated annealing

And exact methods with heuristics or probability:

- Backtracking and Branch and Bound with pruning based on heuristics (possibly pruning nodes which could lead to the optimum solution) and tree traversal guided by heuristics
- Probabilistic algorithms
Metaheuristics experimented with:

- Hill climbing
- Tabu search
- Scatter search
- Genetic algorithms
- Ant colony
- Simulated annealing

And exact methods with heuristics or probability:

- Backtracking and Branch and Bound with pruning based on heuristics (possibly pruning nodes which could lead to the optimum solution) and tree traversal guided by heuristics
- Probabilistic algorithms
Experience

- Easy development of metaheuristics
- Reuse of functions
- Easy development of parallel metaheuristics
- Application to dynamic programming and LU factorization
- Similar results for the different metaheuristics
- Better results (lower theoretical execution time and lower decision time) with metaheuristics
Experience

- Easy development of metaheuristics
- Reuse of functions
 - Easy development of parallel metaheuristics
 - Application to dynamic programming and LU factorization
- Similar results for the different metaheuristics
- Better results (lower theoretical execution time and lower decision time) with metaheuristics
Experience

- Easy development of metaheuristics
- Reuse of functions
- Easy development of parallel metaheuristics
- Application to dynamic programming and LU factorization
- Similar results for the different metaheuristics
- Better results (lower theoretical execution time and lower decision time) with metaheuristics
Experience

- Easy development of metaheuristics
- Reuse of functions
- Easy development of parallel metaheuristics
- Application to dynamic programming and LU factorization
- Similar results for the different metaheuristics
- Better results (lower theoretical execution time and lower decision time) with metaheuristics
Experience

- Easy development of metaheuristics
- Reuse of functions
- Easy development of parallel metaheuristics
- Application to dynamic programming and LU factorization
- Similar results for the different metaheuristics
- Better results (lower theoretical execution time and lower decision time) with metaheuristics
Experience

- Easy development of metaheuristics
- Reuse of functions
- Easy development of parallel metaheuristics
- Application to dynamic programming and LU factorization
- Similar results for the different metaheuristics
- Better results (lower theoretical execution time and lower decision time) with metaheuristics
Comparison of Backtracking and Scatter Search

Percentage of runs in which Scatter Search obtains better Total Time (Modelled Time plus Decision Time) than backtracking with node pruning

real system with 6 processors; simulated system with 60 processors
Master-slave with memory restrictions

The problem

- A master processor generates a set of independent tasks that are solved by slave processors.
- Each task has certain memory requirements and each processor has a certain amount of memory.
- The assignation of tasks to slave processors is done statically: $d_i = j$ means task i is assigned to processor j.
- Each processor receives a new task when it has processed the one previously assigned.
- The goal is to obtain the assignation with lowest theoretical time.
The problem

- A master processor generates a set of independent tasks that are solved by slave processors.
- Each task has certain memory requirements and each processor has a certain amount of memory.
- The assignation of tasks to slave processors is done statically: $d_i = j$ means task i is assigned to processor j.
- Each processor receives a new task when it has processed the one previously assigned.
- The goal is to obtain the assignation with lowest theoretical time.
A master processor generates a set of independent tasks that are solved by slave processors.

Each task has certain memory requirements and each processor has a certain amount of memory.

The assignation of tasks to slave processors is done statically: $d_i = j$ means task i is assigned to processor j.

Each processor receives a new task when it has processed the one previously assigned.

The goal is to obtain the assignation with lowest theoretical time.
Master-slave with memory restrictions

The problem

- A master processor generates a set of independent tasks that are solved by slave processors.
- Each task has certain memory requirements and each processor has a certain amount of memory.
- The assignation of tasks to slave processors is done statically: $d_i = j$ means task i is assigned to processor j.
- Each processor receives a new task when it has processed the one previously assigned.
- The goal is to obtain the assignation with lowest theoretical time.
Master-slave with memory restrictions

The problem

- A master processor generates a set of independent tasks that are solved by slave processors.
- Each task has certain memory requirements and each processor has a certain amount of memory.
- The assignment of tasks to slave processors is done statically: $d_i = j$ means task i is assigned to processor j.
- Each processor receives a new task when it has processed the one previously assigned.
- The goal is to obtain the assignment with lowest theoretical time.
Master-slave with memory restrictions

Execution time model

- Number of basic operations for each task: \(c_i, \ i = 1, \ldots, T \)
- Given assignation \(d \), the cost in processor \(j \): \(t_{c_j} \sum_{l=1, d_l=j}^{T} c_j \)
- For an assignation \(d \) the cost is: \(\max_{j=1, \ldots, P} \left\{ t_{c_j} \sum_{l=1, d_l=j}^{T} c_j \right\} \)
- The optimization problem:
 \[
 \min_d \left\{ \max_{j=1, \ldots, P} \left\{ t_{c_j} \sum_{l=1, d_l=j}^{T} c_j \right\} \right\}
 \]
Master-slave with memory restrictions

Execution time model

- Number of basic operations for each task: $c_i, \ i = 1, \ldots, T$
- Given assignation d, the cost in processor j: $t_{c_j} \sum_{l=1, d_l=j}^{T} c_j$
- For an assignation d the cost is: $\max_{j=1,\ldots,P} \left\{ t_{c_j} \sum_{l=1, d_l=j}^{T} c_j \right\}$
- The optimization problem:
 $\min_d \left\{ \max_{j=1,\ldots,P} \left\{ t_{c_j} \sum_{l=1, d_l=j}^{T} c_j \right\} \right\}$
Master-slave with memory restrictions

Execution time model

- Number of basic operations for each task: c_i, $i = 1, \ldots, T$
- Given assignation d, the cost in processor j: $t_{cj} \sum_{l=1, d_l=j}^{T} c_l$
- For an assignation d the cost is: $\max_{j=1, \ldots, P} \left\{ t_{cj} \sum_{l=1, d_l=j}^{T} c_l \right\}$
- The optimization problem:
 $$\min_d \left\{ \max_{j=1, \ldots, P} \left\{ t_{cj} \sum_{l=1, d_l=j}^{T} c_l \right\} \right\}$$
Master-slave with memory restrictions

Execution time model

- Number of basic operations for each task: c_i, $i = 1, \ldots, T$
- Given assignation d, the cost in processor j: $tc_j \sum_{l=1,d_l=j}^{T} c_j$
- For an assignation d the cost is: $\max_{j=1,\ldots,P} \left\{ tc_j \sum_{l=1,d_l=j}^{T} c_j \right\}$
- The optimization problem:
 $$\min_d \left\{ \max_{j=1,\ldots,P} \left\{ tc_j \sum_{l=1,d_l=j}^{T} c_j \right\} \right\}$$
Master-slave with memory restrictions

Assignation tree

- Task 1
 - Nodes eliminated due to memory restrictions
- Task 2
- Task 3
Use of the class hierarchy

- Metaheuristics:
 - Tabu search
 - Scatter search
 - Genetic algorithms
 - GRASP

- Integrated in the hierarchy
- Common problem and solution classes
- Reutilization of functions
- Easy tuning to the problem
- Hybridation
Use of the class hierarchy

- Metaheuristics:
 - Tabu search
 - Scatter search
 - Genetic algorithms
 - GRASP

- Integrated in the hierarchy
- Common problem and solution classes
- Reutilization of functions
- Easy tuning to the problem
- Hybridation
The greedy functions used in GRASP can be used in:

- Scatter Search, in the improvement of the elements, which is done after each element is generated
- Genetic Algorithms, in the individual generated in the mutation, so allowing the descendant of the individual to survive some generations and contribute to improve the population
- Tabu Search, to improve the best element
Comparison of metaheuristics

Master-slave with memory restrictions
A master processor generates subproblems up to a certain level and assign the subproblems to the slave processors. The assignment can be:

- Contiguous
- Cyclic

Solving an optimization problem by using metaheuristics, ... but the main difficulty is in modelling the execution time because we do not know the number of nodes which will be generated and it depends on the problem but also on the input.
A master processor generates subproblems up to a certain level and assign the subproblems to the slave processors. The assignment can be:

- Contiguous
- Cyclic

Solving an optimization problem by using metaheuristics, ... but the main difficulty is in modelling the execution time because we do not know the number of nodes which will be generated and it depends on the problem but also on the input
The execution time is knc, with:

- n number of nodes in the tree
- c the cost of evaluation of each node, estimated at installation time
- k the percentage of nodes generated, estimated at installation time for some representative inputs and updated at running time with a subproblem of the problem to be solved

- Different possibilities to estimate and update k
- Other possible theoretical models, but with the same problem
Execution time model

- The execution time is knc, with:
 - n number of nodes in the tree
 - c the cost of evaluation of each node, estimated at installation time
 - k the percentage of nodes generated, estimated at installation time for some representative inputs and updated at running time with a subproblem of the problem to be solved

- Different possibilities to estimate and update k

- Other possible theoretical models, but with the same problem
The execution time is knc, with:

- n number of nodes in the tree
- c the cost of evaluation of each node, estimated at installation time
- k the percentage of nodes generated, estimated at installation time for some representative inputs and updated at running time with a subproblem of the problem to be solved

- Different possibilities to estimate and update k
- Other possible theoretical models, but with the same problem
Execution time model

- The execution time is knc, with:
 - n number of nodes in the tree
 - c the cost of evaluation of each node, estimated at installation time
 - k the percentage of nodes generated, estimated at installation time for some representative inputs and updated at running time with a subproblem of the problem to be solved

- Different possibilities to estimate and update k
 - Other possible theoretical models, but with the same problem
The execution time is knc, with:

- n number of nodes in the tree
- c the cost of evaluation of each node, estimated at installation time
- k the percentage of nodes generated, estimated at installation time for some representative inputs and updated at running time with a subproblem of the problem to be solved

Different possibilities to estimate and update k

Other possible theoretical models, but with the same problem
Preliminary results

Knapsack 0/1, problems of size 40. Heur obtention of the assignation with a greedy method, Pred with predetermined values from experiments with smaller problems, Opt the lowest experimental time obtained from executions varying the parameters but without approximating the optimization problem.
Conclusions

- Metaheuristics are useful to solve mapping problems
- We propose to use a unified approach with a common algorithmic scheme and a class hierarchy
- This reduces programming and experiment costs
- But for each problem a different problem class and different functions
- It is necessary to develop a tool to facilitate the inclusion of new problems
- Until now preliminary results with some mapping problems
Conclusions

- Metaheuristics are useful to solve mapping problems
- We propose to use a unified approach with a common algorithmic scheme and a class hierarchy
- This reduces programming and experiment costs
- But for each problem a different problem class and different functions
- It is necessary to develop a tool to facilitate the inclusion of new problems
- Until now preliminary results with some mapping problems
Conclusions

- Metaheuristics are useful to solve mapping problems
- We propose to use a unified approach with a common algorithmic scheme and a class hierarchy
- This reduces programming and experiment costs
- But for each problem a different problem class and different functions
- It is necessary to develop a tool to facilitate the inclusion of new problems
- Until now preliminary results with some mapping problems
and credits

- Metaheuristic scheme: Francisco Almeida, Juan-Pedro Martínez-Gallar
- Class hierarchy: Javier Cuenca, Antonio Llanes
- Iterative scheme: Ángel-Luis Calvo, Ana Cortés, Juan-Pedro Martínez-Gallar, Carmela Pozuelo
- Master-slave: Javier Cuenca
- Backtracking: Manuel Quesada
- Translation: Stephen Hasler

... and more
Application of metaheuristics to task-to-processors assignment problems

Domingo Giménez

Departamento de Informática y Sistemas
University of Murcia, Spain
domingo@um.es
http://dis.um.es/~domingo

Scheduling for large-scale systems, Knoxville, May 13-15 2009